FATIGUE ASSESSMENT OF SHIP STRUCTURES

FEBRUARY 2003
FOREWORD

DET NORSKE VERITAS is an autonomous and independent Foundation with the objective of safeguarding life, property and the environment at sea and ashore.

DET NORSKE VERITAS AS is a fully owned subsidiary Society of the Foundation. It undertakes classification and certification of ships, mobile offshore units, fixed offshore structures, facilities and systems for shipping and other industries. The Society also carries out research and development associated with these functions.

DET NORSKE VERITAS operates a worldwide network of survey stations and is authorised by more than 120 national administrations to carry out surveys and, in most cases, issue certificates on their behalf.

Classification Notes

Classification Notes are publications which give practical information on classification of ships and other objects. Examples of design solutions, calculation methods, specifications of test procedures, as well as acceptable repair methods for some components are given as interpretations of the more general rule requirements.

An updated list of Classification Notes is available on request. The list is also given in the latest edition of the Introduction-booklets to the "Rules for Classification of Ships and the "Rules for Classification of High Speed, Light Craft and Naval Surface Craft".

In "Rules for Classification of Fixed Offshore Installations", only those Classification Notes which are relevant for this type of structure have been listed.

This edition of Classification Note No. 30.7 replaces the issue from January 2001.

Main changes

Figure 2.5 amended
Chapter 8.2.1 Table 8.3 - nomenclature amended
Chapter 8.3.1 Table 8.5 - nomenclature amended
Chapter 8.3.3 nomenclature of the load condition updated
1. General

1.1 Introduction

1.1.1
Fatigue cracks and fatigue damages have been known to ship designers for several decades. Initially the obvious remedy was to improve detail design. With the introduction of higher tensile steels (HTS-steels) in hull structures, at first in deck and bottom to increase hull girder strength, and later on in local structures, the fatigue problem became more imminent.

1.1.2
In the DNV Rules for Classification of Ships, the material factor f_1, which give the ratio of increase in allowable stresses as a function of the material yield point was initially introduced in 1966. The factor is varying with the yield point at a lower than linear rate, this to give some (but insufficient) contribution to the general safety against fatigue fracture of higher tensile steels. However, during recent years a growing number of fatigue crack incidents in local tank structures in HTS steels have demonstrated that a more direct control of fatigue is needed.

1.1.3
This Classification Note is intended to give a general background for the rule requirements for fatigue control of ship structures, and to provide detailed recommendations for such a control. The aim of the fatigue control is to ensure that all parts of the hull structure subjected to fatigue (dynamic) loading have an adequate fatigue life. Calculated fatigue lives, calibrated with the relevant fatigue damage data, may give the basis for the structural design (steel selection, scantlings and local details). Furthermore, they can form the basis for efficient inspection programs during fabrication and throughout the life of the structure.

1.2 Scope, limitations, and validity

This Classification Note includes procedures for evaluation of fatigue strength, but not limited to, for the following:

- Steel ship structures excluding high speed light crafts.
- Foundations welded to hull structures.
- Any other areas designated primary structures on the drawings of ship structures
- Attachment by welding to primary ship structures, such as double plates, etc.

This Classification Note may be adapted for modification to existing ship structures, subject to the limitations imposed by the original material and fabrication techniques.

This Classification Note is valid for steel material with yield stress less than 500 MPa.

1.3 Methods for fatigue analysis

1.3.1
Fatigue design may be carried out by methods based on fatigue tests (S-N data) and estimation of cumulative damage (Palmgrens - Miner rule).

1.3.2
The long term stress range distribution is a fundamental requirement for fatigue analysis. This may be determined in various ways. This Classification Note outlines two methods for stress range calculation:

1) A postulated form of the long-term stress range distribution with a stress range based on dynamic loading as specified in the rules.
2) Spectral method for the estimation of long-term stress range

In the first method a Weibull distribution is assumed for the long term stress ranges, leading to a simple formula for calculation of fatigue damage. The load effects can be derived directly from the ship rules. The nominal stresses have to be multiplied by relevant stress concentration factors for calculation of local notch stresses before entering the S-N curve.

The second method implies that the long-term stress range distribution is calculated from a given (or assumed) wave climate. This can be combined with different levels of refinement of structural analysis.

Thus a fatigue analysis can be performed based on simplified analytical expressions for fatigue lives or on a more refined analysis where the loading and the load effects are calculated by numerical analysis. The fatigue analysis may also be performed based on a combination of simplified and refined techniques as indicated by the diagonal arrows in Figure 1.1.

1.3.3
The requirement to analysis refinement should be agreed upon based on

- experience with similar methods on existing ships and structural details with respect to fatigue
consequences of a fatigue damage in terms of service problems and possible repairs

In general, the simplified method for fatigue life calculation is assumed to give a good indication as to whether fatigue is a significant criterion for design or not. The reliability of the calculated fatigue lives is, however, assumed to be improved by refinement in the design analysis.

1.3.4
It should further be kept in mind that real fatigue lives are a function of workmanship related to fabrication and corrosion protection. Therefore, to achieve the necessary link between the calculated and the actual fatigue lives for ships, the fabrication has to be performed according to good shipbuilding practice with acceptance criteria as assumed in the calculation.

1.4 Fatigue accumulation

1.4.1
The fatigue life under varying loading is calculated based on the S-N fatigue approach under the assumption of linear cumulative damage (Palmgrens-Miner rule). The total damage that the structure is experiencing may be expressed as the accumulated damage from each load cycle at different stress levels, independent of the sequence in which the stress cycles occur.

The design life assumed in the fatigue assessment of ships is normally not to be taken less than 20 years. The accumulated fatigue damage is not to exceed a usage factor of 1.0. The acceptance criteria is related to design S-N curves based on mean-minus-two-standard-deviations curves for relevant experimental data.

1.5 Definitions

1.5.1
The following general symbols are used in this Classification Note:

- \(I_b \) Moment of inertia for the longitudinal stringer/girder
- \(K \) Stress concentration factor
- \(K_g \) Geometric stress concentration factor
- \(K_n \) Un-symmetrical stiffeners with lateral loading stress concentration factor
- \(K_{ne} \) Eccentric tolerance stress concentration factor
- \(K_t \) Angular mismatch stress concentration factor
- \(K_w \) Weld geometry stress concentration factor
- \(L \) Rule length of ship in m, cfr. Rules Pt.3 Ch.1 Sec.1
- \(L_{pp} \) Length between perpendiculars
- \(M \) Moment
- \(M_{wo} \) Wave induced vertical moment
- \(M_H \) Wave induced horizontal moment
- \(N_s \) Number of cross ties
- \(Q (\Delta \sigma) \) Probability level for exceedance of stress range \(\Delta \sigma \)
- \(S_n(\omega) \) Wave spectrum
- \(S_\sigma(\omega) \) Stress response spectrum
- \(T_d \) Design life
- \(T_{act} \) Draught actual
- \(T \) vessel mean moulded summer draught in m
- \(T_z \) Zero crossing period
- \(Z \) Section modulus
- \(\tilde{\sigma} \) S-N fatigue parameter
- \(a \) Local / global load combination factor
- \(b \) Local / global load combination factor
- \(b_f \) Flange width
- \(a_i \) Acceleration in direction \(i \)
- \(f_i \) Material factor as specified in the Rules
- \(f_e \) Environmental reduction factor
- \(f_m \) Mean stress reduction factor
- \(f_r \) Factor for calculation of load effects at \(10^{-4} \) probability level
- \(g \) Acceleration of gravity (\(= 9.81 \) m/s\(^2\))
- \(h \) Weibull shape parameter
- \(h_0 \) Basic Weibull shape parameter
- \(h_w \) Web height
- \(i_s \) \(I_s / S \)
- \(i_b \) \(I_b / l \)
- \(l \) Stiffener length
- \(\log() \) 10th logarithm
- \(\ln() \) Natural logarithm
- \(m \) S-N fatigue parameter
- \(m_n \) Spectral moment of order \(n \)
- \(p \) Lateral pressure
- \(p_{ij} \) Occurrence probability of sea condition \(i \) and heading \(j \)
- \(p_s \) Sailing rate = fraction of design life at sea
q Weibull scale parameter
s Stiffener spacing
t Plate thickness
t_p Plate thickness
t_f Flange thickness
t_w Web thickness
t_n Net plate thickness
δ Deformation
v_{ij} Zero crossing frequency in short-term condition \(i, j\)
ω Wave frequency
v_o Long-term average zero frequency
ρ Correlation coefficient
σ Stress amplitude
σ_2 Secondary stress amplitude resulting from bending of girder system
σ_3 Tertiary stress amplitude produced by bending of plate elements between longitudinal and transverse frames/stiffeners
σ_{nominal} Nominal stress amplitude, e.g. stress derived from beam element or finite element analysis
η Fatigue usage factor
Δ moulded displacement in t in salt water (density 1.025 t/m³) on draught T
Δσ Stress range
Δσ_g Global stress range
Δσ_l Local stress range
Δσ_h Nominal stress range due to horizontal bending
Δσ_v Nominal stress range due to vertical bending
Γ() Gamma function
Figure 1.1 Flow diagram over possible fatigue analysis procedures
2. Fatigue Analysis

2.1 Cumulative damage

2.1.1 The fatigue life may be calculated based on the S-N fatigue approach under the assumption of linear cumulative damage (Palmgren-Miner rule).

When the long-term stress range distribution is expressed by a stress histogram, consisting of a convenient number of constant amplitude stress range blocks $\Delta \sigma_i$ each with a number of stress repetitions n_i the fatigue criterion reads

$$ D = \sum_{i=1}^{k} \frac{n_i}{N_i} \left(\Delta \sigma_i \right)^m \leq \eta $$

where

- D = accumulated fatigue damage
- $\Delta \sigma_i$, m = S-N fatigue parameters
- k = number of stress blocks
- n_i = number of stress cycles in stress block i
- N_i = number of cycles to failure at constant stress range $\Delta \sigma_i$
- η = usage factor. Accepted usage factor is defined as $\eta = 1.0$

Applying a histogram to express the stress distribution, the number of stress blocks, k, is to be large enough to ensure reasonable numerical accuracy, and should not be less than 20. Due consideration should be given to selection of integration method as the position of the integration points may have a significant influence on the calculated fatigue life dependent on integration method.

2.1.2 When the long-term stress range distribution is defined applying Weibull distributions for the different load conditions, and a one-slope S-N curves is used, the fatigue damage is given by,

$$ D = \frac{V_T}{\Delta \sigma} \sum_{n=1}^{N_{\text{load}}} p_n q_n \Gamma(1 + \frac{m}{h_n}) \leq \eta $$

where

- N_{load} = total number load conditions considered
- p_n = fraction of design life in load condition n, $2 p_n \leq 1$, but normally not less than 0.85
- T_d = design life of ship in seconds (20 years = 6.3 10^8 secs.)

h_n = Weibull stress range shape distribution parameter for load condition n, see Section 3.2

q_n = Weibull stress range scale distribution parameter for load condition n

v_0 = long-term average response zero-crossing frequency

$\Gamma(1 + \frac{m}{h_n})$ = gamma function. Values of the gamma function are listed in Table 2.1

<table>
<thead>
<tr>
<th>h</th>
<th>$m = 3.0$</th>
<th>h</th>
<th>$m = 3.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>120.000</td>
<td>0.86</td>
<td>11.446</td>
</tr>
<tr>
<td>0.61</td>
<td>104.043</td>
<td>0.87</td>
<td>10.829</td>
</tr>
<tr>
<td>0.62</td>
<td>91.350</td>
<td>0.88</td>
<td>10.263</td>
</tr>
<tr>
<td>0.63</td>
<td>80.358</td>
<td>0.89</td>
<td>9.741</td>
</tr>
<tr>
<td>0.64</td>
<td>71.048</td>
<td>0.90</td>
<td>9.261</td>
</tr>
<tr>
<td>0.65</td>
<td>63.119</td>
<td>0.91</td>
<td>8.816</td>
</tr>
<tr>
<td>0.66</td>
<td>56.331</td>
<td>0.92</td>
<td>8.405</td>
</tr>
<tr>
<td>0.67</td>
<td>50.491</td>
<td>0.93</td>
<td>8.024</td>
</tr>
<tr>
<td>0.68</td>
<td>45.442</td>
<td>0.94</td>
<td>7.671</td>
</tr>
<tr>
<td>0.69</td>
<td>41.058</td>
<td>0.95</td>
<td>7.342</td>
</tr>
<tr>
<td>0.70</td>
<td>37.234</td>
<td>0.96</td>
<td>7.035</td>
</tr>
<tr>
<td>0.71</td>
<td>33.886</td>
<td>0.97</td>
<td>6.750</td>
</tr>
<tr>
<td>0.72</td>
<td>30.942</td>
<td>0.98</td>
<td>6.483</td>
</tr>
<tr>
<td>0.73</td>
<td>28.344</td>
<td>0.99</td>
<td>6.234</td>
</tr>
<tr>
<td>0.74</td>
<td>26.044</td>
<td>1.00</td>
<td>6.000</td>
</tr>
<tr>
<td>0.75</td>
<td>24.000</td>
<td>1.01</td>
<td>5.781</td>
</tr>
<tr>
<td>0.76</td>
<td>22.178</td>
<td>1.02</td>
<td>5.575</td>
</tr>
<tr>
<td>0.77</td>
<td>20.548</td>
<td>1.03</td>
<td>5.382</td>
</tr>
<tr>
<td>0.78</td>
<td>19.087</td>
<td>1.04</td>
<td>5.200</td>
</tr>
<tr>
<td>0.79</td>
<td>17.772</td>
<td>1.05</td>
<td>5.029</td>
</tr>
<tr>
<td>0.80</td>
<td>16.586</td>
<td>1.06</td>
<td>4.868</td>
</tr>
<tr>
<td>0.81</td>
<td>15.514</td>
<td>1.07</td>
<td>4.715</td>
</tr>
<tr>
<td>0.82</td>
<td>14.542</td>
<td>1.08</td>
<td>4.571</td>
</tr>
<tr>
<td>0.83</td>
<td>13.658</td>
<td>1.09</td>
<td>4.435</td>
</tr>
<tr>
<td>0.84</td>
<td>12.853</td>
<td>1.10</td>
<td>4.306</td>
</tr>
<tr>
<td>0.85</td>
<td>12.118</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Weibull scale parameter is defined from the stress range level, $\Delta \sigma_0$, as

$$ q_n = \frac{\Delta \sigma_0}{(\ln n_\sigma)^{1/v_0}} $$

where n_σ is the number of cycles over the time period for which the stress range level $\Delta \sigma_0$ is defined. ($\Delta \sigma_0$ includes mean stress effect)

In combination with calculation of stress range $\Delta \sigma_0$ by the simplified method given in Chapters 3, 4 and 10, the zero-crossing-frequency may be taken as,

$$ v_0 = \frac{1}{4 \cdot \log_{10}(L)} $$

where L is the ship Rule length in meters.
Alternatively, in combination with calculation of stress range $\Delta\sigma$ by direct analyses, the average zero-crossing-frequency can be derived as given in Chapter 5.

2.1.3

When the long term stress range distribution is defined through a short term Rayleigh distribution within each short term period for the different loading conditions, and a one-slope S-N curve is used, the fatigue criterion reads,

$$D = \frac{V_o T_d}{\bar{a}} \Gamma(1 + \frac{m}{2}) \sum_{i=1}^{N_{load}} \sum_{j=1}^{all \, headings} \sum_{\text{locations}} r_{ij} \left(2\sqrt{2m_{ijn}}\right)^m \leq \eta$$

where

- $r_{ij} = \text{the relative number of stress cycles in short-term condition } i, j$, see also 5.2.6
- $v_o = \text{long-term average response zero-crossing-frequency, see 5.2.6}$
- $m_{ij} = \text{zero spectral moment of stress response process}$

The Gamma function, $\Gamma(1 + \frac{m}{2})$ is equal to 1.33 for $m = 3.0$.

Expressions for fatigue damage applying bi-linear S-N curves are given in Appendix D.

2.2 Stresses to be considered

2.2.1

The procedure for the fatigue analysis is based on the assumption that it is only necessary to consider the ranges of cyclic principal stresses in determining the fatigue endurance. However, some reduction in the fatigue damage accumulation can be credited when parts of the stress cycle range are in compression.

It should be noted that in welded joints, there may be several locations at which fatigue cracks can develop, e.g. weld toe and weld root of fillet joints. It is recommended to check potential hot spot locations for fatigue cracks by comparing the principal stress level with the maximum allowable notch stress ranges in Tables 2.8 and 2.9.

2.2.2

When the potential fatigue crack is located in the parent material at the weld toe, the relevant local notch stress is the range of maximum principal stress adjacent to the potential crack location with stress concentrations being taken into account.

This stress concentration is due to the gross shape of the structure and the local geometry of the weld. As an example, for the weld shown in Figure 2.1 a), the relevant local notch stress for fatigue design would be the tensile stress, σ, multiplied by the stress concentration factor due to the weld K_w. For the weld shown in Figure 2.1 b), the stress concentration factor for the local geometry must in addition be accounted for, giving the relevant local notch stress equal to $K_w K_s \sigma$, where K_s is the stress concentration factor due to the hole. For butt-welds with the weld surface dressed flush and small local bending stress across the plate thickness, K_w of 1.0 is to be used. Otherwise K_w of 1.5 is to be used.

The maximum principal stress range within 45° of the normal to the weld toe should be used for the analysis.

![Figure 2.1 Explanation of local notch stresses](image)

2.2.3

For fatigue analysis of regions in the base material not significantly affected by residual stresses due to welding, the stress range may be reduced dependent on whether mean cycling stress is tension or compression. This reduction may e.g. be carried out for cut-outs in the base material. Mean stress means that the static notch stress including relevant stress concentration factors. The calculated stress range obtained may be multiplied by the reduction factor f_m as obtained from Figure 2.2 before entering the S-N curve. For variable amplitude stresses, $\Delta\sigma$ can be taken as the stress range at the 10^{-4} probability level of exceedance.

![Figure 2.2 Stress range reduction factor to be used with the S-N curve for base material](image)
2.2.4
Residual stresses due to welding and construction are reduced over time as the ship is subjected to loading. If a hot spot region is subjected to a tension force implying local yielding at the considered region, the effective stress range for fatigue analysis can be reduced due to the mean stress effect also for regions effected by residual stresses from welding. Mean stress means that the static notch stress including relevant stress concentration factors. The following reduction factor on the derived stress range may be applied, see Figure 2.3.

\[f_m = \text{reduction factor due to mean stress effects} \]
\[= 1.0 \text{ for tension over the whole stress cycle} \]
\[= 0.85 \text{ for mean stress equal to zero} \]
\[= 0.7 \text{ for compression over the whole stress cycle} \]

For parts of the structure being exposed to both compressive and tensile mean stress depending on the loading situation, the reduction factor \(f_m = 0.85 \) may be applied on the long-term stress range distribution. For variable amplitude stresses, \(\Delta \sigma \) can be taken as the stress range at the \(10^{-4} \) probability level of exceedance.

\[\log N = \log \bar{a} - m \log \Delta \sigma \]

with S-N curve parameters given in Tables 2.2 and 2.3.

\[N = \text{predicted number of cycles to failure for stress range} \Delta \sigma \]
\[\Delta \sigma = \text{stress range} \]
\[m = \text{negative inverse slope of S-N curve} \]
\[\log \bar{a} = \text{intercept of logN-axis by S-N curve} \]
\[\log \bar{a} = \log a - 2 s \]

where

\[a = \text{is constant relating to mean S-N curve} \]
\[s = \text{standard deviation of log N}; \]
\[s = 0.20 \]

In combination with the fatigue damage criteria given in Section 2.1.2 and 2.1.3, curves Ib, II, IIIb and IV should be used.

2.3.4
The use of bi-linear S-N curves complicates the expression for fatigue damage, ref. Appendix D. In order to reduce the computational effort, simplified one-slope S-N curves have been derived for typical long term stress range distributions in ship structures. Use of the one-slope S-N curves, defined by parameters as given in Table 2.3, leads to results on the safe side for calculated fatigue lives exceeding 20 years.

2.3.5
The basic design S-N curve is given as,

\[\log N = \log \bar{a} - m \log \Delta \sigma \]

\[N = \text{predicted number of cycles to failure for stress range} \Delta \sigma \]
\[\Delta \sigma = \text{stress range} \]
\[m = \text{negative inverse slope of S-N curve} \]
\[\log \bar{a} = \text{intercept of logN-axis by S-N curve} \]
\[\log \bar{a} = \log a - 2 s \]

where

\[a = \text{is constant relating to mean S-N curve} \]
\[s = \text{standard deviation of log N}; \]
\[s = 0.20 \]

In combination with the fatigue damage criteria given in Section 2.1.2 and 2.1.3, curves Ib, II, IIIb and IV should be used.

<table>
<thead>
<tr>
<th>S-N Curve</th>
<th>Material</th>
<th>(N \leq 10^7)</th>
<th>(N > 10^7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log (\bar{a}) (m)</td>
<td>log (\bar{a}) (m)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Welded joint</td>
<td>12.65 3.0</td>
<td>16.42 5.0</td>
</tr>
<tr>
<td>III</td>
<td>Base Material</td>
<td>12.89 3.0</td>
<td>16.81 5.0</td>
</tr>
</tbody>
</table>

a) Air or with cathodic protection:

<table>
<thead>
<tr>
<th>S-N Curve</th>
<th>Material</th>
<th>\log (\bar{a}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Welded joint</td>
<td>12.38 3.0</td>
</tr>
<tr>
<td>IV</td>
<td>Base material</td>
<td>12.62 3.0</td>
</tr>
</tbody>
</table>

b) Corrosive Environment:

Table 2.2 S-N parameters
Table 2.3 Alternative one-slope S-N parameters

<table>
<thead>
<tr>
<th>S-N Curve</th>
<th>Material</th>
<th>log α</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ib</td>
<td>Welded joint</td>
<td>12.76</td>
<td>3.0</td>
</tr>
<tr>
<td>IIIb</td>
<td>Base material</td>
<td>13.00</td>
<td>3.0</td>
</tr>
</tbody>
</table>

2.3.6
The design S-N curves given here correspond to test results from smooth specimens having a stress concentration factor $K = 1.0$. The curves for base material assume that flame cut- or otherwise rough surfaces are ground. For base material where the surface and edge corners are machined or ground smooth and protected against corrosion, the fatigue life may be increased by a factor of 2.0. The curves for welded joints assume welds proven free from significant defects.

For fatigue analysis of details with $K \neq 1.0$, the stress range must incorporate the stress concentration factors, see Chapter 10.

2.3.7
The fatigue strength of welded joints is to some extent dependent on plate thickness and on the stress gradient over the thickness. Thus for thickness larger than 25 mm, the S-N curve in air reads

$$\log N = \log \alpha - \frac{m}{4} \log \left(\frac{t}{25} \right) - m \log \Delta \sigma$$

where t is thickness (mm) through which the potential fatigue crack will grow. This S-N curve in general applies to all types of welds. For fatigue analysis of details where the stress concentration factor is less than 1.3, the thickness effect can be neglected and the basic S-N curve can be used. Such stress concentration factors are normally only achieved through grinding or machining of the weld/base material transition. See 10.4 for a description of normal workmanship associated with use of these S-N curves.

2.4 Corrosion

2.4.1
It is recognised that the fatigue life of steel structures is considerably shorter in freely corroding condition submerged in sea water than in air, i.e. in dry indoor atmosphere such as common laboratory air. For steel submerged in sea water and fully cathodically protected, approximately the same fatigue life as in dry air is obtained.

An intact coating system will also protect the steel surface from the corrosive environment, so that the steel can be considered to be as in dry air condition.
The basic S-N curve for welded regions in air is only to be applied for joints situated in dry spaces or joints effectively protected against corrosion. For joints efficiently protected only a part of the design life and exposed to corrosive environment the remaining part, the fatigue damage may be calculated as a sum of partial damages according to 2.4.3.

Estimating the efficient life time of coating- and cathodic protection systems, due consideration is to be given to specification, application and maintenance of the systems. A guideline for effective life times for common corrosion protection systems is listed in Table 2.4.

Full cathodic protection is defined as: Steel surfaces submerged in normal, aerated sea water having a potential of -0.80 volts measured with a silver/silver chloride reference cell (or -0.79 volts versus a calomel cell, etc.). The potential limit for cathodic overprotection will vary with the degree of cell (or -1.1 volts versus a calomel cell, etc.). The potential -1.1 volts for normal strength carbon manganese steel will be -1 volts versus steel strength. For normal strength carbon manganese steel, the limit for cathodic overprotection will vary with the degree of protection systems, due consideration is to be given to specification, application and maintenance of the systems. A guideline for effective life times for common corrosion protection systems is listed in Table 2.4.

Table 2.4 Duration of corrosion protection

<table>
<thead>
<tr>
<th>Coating system</th>
<th>5 years Prep. I</th>
<th>10 years Prep. II</th>
<th>15 years Prep. III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy based (light coloured)</td>
<td>1 x 200</td>
<td>1 x 200</td>
<td></td>
</tr>
<tr>
<td>Epoxy coal tar (Coal Tar Epoxy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other recognised coating systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As above</td>
<td>2 x 175</td>
<td>2 x 175</td>
<td>(to 2 x 225)</td>
</tr>
</tbody>
</table>

1. Other-than-epoxy based with well documented performance.
2. Prep. I: Steel plates shop primed on blast cleaned surface to Sa 2 - Sa 2.5. Welds and burns mechanically cleaned to min. St 3. To obtain a coating durability ≥ 5 years the steel surface preparation for shop priming should be Sa 2.5.
3. Prep. II: Zinc rich shop primer on surface blast cleaned to Sa 2.5 or better. Sharp edges broken. Welds and burns cleaned to min. St 3. Dry conditions: Air humidity ≤ 85 % and steel temperature ≥ 3°C above the dew point during blast cleaning and coating application. Prep. III: Zinc rich shop primer on surface blast cleaned to Sa 2.5 or better. Sharp edges broken. Welds, burns and broken edges blast cleaned to Sa 2.5 or better. Clean conditions: Any oil, grease, dust, weld smoke or salt contamination on shop primed or other surface to be coated, removed by cleaning before final blasting operations. Dry conditions: Air humidity ≤ 85 % and steel temperature ≥ 3°C above the dew point during blast cleaning and coating application.

Local stress components should be calculated based on reduced scantlings, i.e. gross scantlings minus corrosion addition tk, as given in Table 2.5. (The corrosion addition specified below is similar to that specified in the Rules [1].)

<table>
<thead>
<tr>
<th>Tank/hold region</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal members and plate boundary</td>
<td>Within 1.5 m below weather</td>
</tr>
<tr>
<td>between spaces of the given category</td>
<td>deck tank or hold top</td>
</tr>
<tr>
<td>Ballast tank ¹/²</td>
<td>3.0</td>
</tr>
<tr>
<td>Cargo oil tank only</td>
<td>2.0</td>
</tr>
<tr>
<td>Hold of dry bulk cargo carriers 4)</td>
<td>1.0</td>
</tr>
<tr>
<td>Plate boundary between given space</td>
<td>Within 1.5 m below weather</td>
</tr>
<tr>
<td>categories</td>
<td>deck tank or hold top</td>
</tr>
<tr>
<td>Ballast tank ¹/² / Cargo oil tank only</td>
<td>2.5</td>
</tr>
<tr>
<td>Ballast tank ¹/² / Hold of dry bulk</td>
<td>2.0</td>
</tr>
<tr>
<td>cargo carrier ³</td>
<td></td>
</tr>
<tr>
<td>Ballast tank ¹ / Other category space ²</td>
<td>2.0</td>
</tr>
<tr>
<td>Cargo oil tank only / Other category</td>
<td>1.0</td>
</tr>
<tr>
<td>space 3)</td>
<td></td>
</tr>
<tr>
<td>Hold of dry bulk carrier ⁴ / Other</td>
<td>0.5</td>
</tr>
<tr>
<td>category space ²</td>
<td></td>
</tr>
</tbody>
</table>

1) The term ballast tank includes also combined ballast and cargo oil tanks, but not cargo oil tanks which may carry water ballast according to Regulation 13 (3), of MARPOL 73/78, see Rules.
2) The figure in bracket refers to non-horizontal surfaces.
3) Other category space denotes the hull exterior and all spaces other than water ballast and cargo oil tanks and holds of dry bulk cargo carriers.
4) Hold of dry bulk cargo carriers refers to the cargo holds of vessels with class notations Bulk Carrier and Ore Carrier.
5) The figure in bracket refers to lower part of main frames in bulk carrier holds.

Table 2.5 Corrosion addition tk in mm

2.4.3 Fatigue strength may normally be assessed with the S-N curve in air for the effective corrosion protection period, i.e. the corrosion protection period of coating plus 5 years. The S-N curve in corrosive environment is to be used for the remaining time.

Carriage of sour crude oil cargoes may reduce the fatigue strength of structures in cargo tanks, while the sweet oil cargoes may not reduce the fatigue life. As type of oil cargoes and actual corrosion protection period of the coating system are uncertain at the design stage, for new building of oil tankers it is assumed that cargo tanks are exposed to sweet cargoes for the loaded condition. Thus, for cargo tanks, the S-N curve in air may normally be used for new building of oil tankers. If sour cargoes and the other cargoes causing corrosion are to be carried out frequently in cargo tanks, the S-N curve in corrosive environment may normally be used.
February 2003

For the ballast condition, as there is no cargo in the cargo tanks, the S-N curve in air may normally be used for new building of vessels. For ballast tanks, the effective corrosion protection period of 15 years may normally be used for new building of vessels.

For dry cargo holds, fuel oil tanks, void spaces, cofferdam, and hull external surfaces, the S-N curve in air may normally be used.

2.5 Maximum allowable notch stress ranges

2.5.1 Depending on the required accuracy of the fatigue evaluation it may be recommended to divide the design life into a number of time intervals due to different loading conditions and limitations of durability of the corrosion protection. For example, the design life may be divided into one interval with good corrosion protection and one interval where the corrosion protection is more questionable for which different S-N data should be used, see Section 2.3. Each of these intervals should be divided into that of loaded and ballast conditions.

The effect of varying degree of corrosion protection of ballast tanks during design life may, as a simplification, be accounted for by multiplying the calculated fatigue damage by a factor χ from Table 2.6. It is then assumed that the fatigue damage has been calculated for the total life time using only one of the S-N curves I or III. Guidance on expected effective corrosion protection period of coating is given in 2.4 and in Guidelines No 8. For ballast tanks protected by anodes only, it is recommended to apply S-N curves II or IV.

As a simplification therefore, the fatigue damage may be calculated applying S-N curves for air and then multiply the fatigue damage by the factor χ given in Table 2.6.

The procedure can be described as:

1. Calculate the fatigue life according to I or III (In Air)
2. If the calculated fatigue life is greater than the effective corrosion protection period, i.e. $T_c + 5$ years, the corrected life is calculated as

$$T = T_c + 5 + \frac{T_{\text{design}}}{D_{\text{InAir}}} - 5 \cdot \frac{D_{\text{InAir}}}{D_{\text{Corrosive}}}$$

where $\frac{1}{D_{\text{InAir}}}$ correspond to the calculated fatigue life (In Air), T_c = coating life time, T_{design} = design life time in years.

The factor χ as given in the table below is determined assuming $\frac{D_{\text{corrosive}}}{D_{\text{InAir}}} = 2.3$

The effect of varying degree of corrosion protection of ballast tanks during design life may, as a simplification, be accounted for by multiplying the calculated fatigue damage by a factor χ from Table 2.6. It is then assumed that the fatigue damage has been calculated for the total life time using only one of the S-N curves I or III. Guidance on expected effective corrosion protection period of coating is given in 2.4 and in Guidelines No 8. For ballast tanks protected by anodes only, it is recommended to apply S-N curves II or IV.

<table>
<thead>
<tr>
<th>S-N curve used for calculation of fatigue damage</th>
<th>Design life (years)</th>
<th>Effective corrosion protection period (Yrs)</th>
<th>Tanks for cargo oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ballsait tanks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Effective corrosion protection period (Yrs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>21</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>21</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table 2.6 Factor χ on fatigue damage to account for corrosion protection of structure exposed to a corrosive environment.

Example: Assume that a fatigue damage of ballast tank structure D_{air} has been calculated for a design life equal to 25 years based on S-N curve I. Assume further that the considered detail is exposed to a corrosive environment but with an effective corrosion protection period lasting 15 years. Then the resulting fatigue damage is obtained as $D = 1.5 \cdot D_{\text{air}}$
2.5.2

It can be assumed as a simplification that the long-term stress range distribution over the design life is a Weibull distribution. Any stress range in this distribution is a particular quantile, i.e. it is associated with a particular probability of exceedance. The maximum allowable stress range at a particular probability of exceedance is a design stress range, defined as the stress range that results from using the Weibull distribution in conjunction with a characteristic S-N curve and requiring the accumulated damage in the design life to be equal to 1.0. The characteristic S-N curve is obtained as the mean S-N curve shifted two standard deviations of logN to the left. Under the current safety format, the characteristic S-N curve is used as the design S-N curve.

Different maximum allowable notch stress ranges result for different Weibull shape parameters \(h \) and for different characteristic S-N curves. (For background see Chapter 10 of Ref. [8].) In Tables 2.8 and 2.9, the maximum allowable notch stress range \((\Delta \sigma_0) \) at probabilities of exceedance \(10^{-4} \) and \(10^{-8} \), respectively, has been calculated for total design lives of 0.5 \(\cdot \) \(10^8 \), 0.7 \(\cdot \) \(10^8 \) and 1.0 \(\cdot \) \(10^8 \) cycles. An example of use of the tables is shown in Figure 2.5. The S-N parameters for S-N curves I, II, III, and IV are given in Table 2.2.

The maximum allowable notch stress range includes the stress concentration factors (K-factors), such that the maximum allowable nominal stress range to be used for design is obtained as

\[
\Delta \sigma_{\text{nominal}} = \frac{\Delta \sigma_0}{K}
\]

Example:

Weibull shape parameter \(h = 0.87 \)
Total number of stress cycles \(n_{\text{total}} = 0.7 \cdot 10^8 \)
Welded joint, corrosive environment, S-N curve II

It follows from Tables 2.9 that the maximum allowable notch stress range at \(10^{-8} \) probability level of exceedance is 417.9 MPa and from Table 2.8 that maximum notch stress range at \(10^{-4} \) probability level of exceedance is 188.4 MPa

The maximum allowable nominal stress range taking into account that the considered detail is exposed to a corrosive environment, but protected against corrosion for a fraction of the design life, can be approximated as

\[
\Delta \sigma_{\text{nominal}} = \frac{\Delta \sigma_0}{K \cdot \chi^{\frac{1}{3}}}
\]

where \(\Delta \sigma_0 \) is taken from Tables 2.8 and 2.9 assuming S-N curve I or III and \(\chi \) is given in 2.5.1.

Example: Assume a welded detail with resulting stress concentration factor \(K = 3.1 \), \(h = 0.9 \), design life 20 years and number of cycles \(0.7 \cdot 10^8 \). From Table 2.9 we get \(\Delta \sigma_0 = 516.2 \) MPa. Assume effective corrosion protection 10 years, then it follows from 2.5.1 that \(\chi = 1.7 \). Maximum allowable nominal stress range (extreme value) is then

\[
\Delta \sigma_{\text{nominal}} = \frac{516.2}{3.1 \cdot 1.7^{1/3}} = 140 \text{ MPa}
\]
Table 2.7 Maximum allowable notch stress range (MPa) at a probability of exceedance 10^{-4} to keep the fatigue damage less than 1.0 for different design life cycles. (A Weibull distribution for the long-term stress range is assumed.)
Table 2.8 Maximum allowable notch stress range (MPa) at a probability of exceedance 10^{-8} to keep the fatigue damage less than 1.0 for different design life cycles. (A Weibull distribution for the long-term stress range is assumed.)

<table>
<thead>
<tr>
<th>Weibull Shape-Parameter (h)</th>
<th>S-N Curve I Welded joint Air/Cathodic, (\Delta\sigma_0)</th>
<th>S-N Curve II Welded joint Corrosive, (\Delta\sigma_0)</th>
<th>S-N Curve III Base material Air/Cathodic, (\Delta\sigma_0)</th>
<th>S-N Curve IV Base material Corrosive, (\Delta\sigma_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>1196.1</td>
<td>1075.0</td>
<td>962.1</td>
<td>1473.2</td>
</tr>
<tr>
<td>0.61</td>
<td>1157.6</td>
<td>1040.9</td>
<td>937.1</td>
<td>1390.6</td>
</tr>
<tr>
<td>0.62</td>
<td>1121.2</td>
<td>1008.6</td>
<td>903.1</td>
<td>1346.9</td>
</tr>
<tr>
<td>0.63</td>
<td>1086.5</td>
<td>977.9</td>
<td>876.0</td>
<td>1305.6</td>
</tr>
<tr>
<td>0.64</td>
<td>1053.9</td>
<td>948.6</td>
<td>850.2</td>
<td>1266.3</td>
</tr>
<tr>
<td>0.65</td>
<td>1023.0</td>
<td>912.1</td>
<td>825.9</td>
<td>1229.0</td>
</tr>
<tr>
<td>0.66</td>
<td>993.5</td>
<td>894.8</td>
<td>802.5</td>
<td>1193.6</td>
</tr>
<tr>
<td>0.67</td>
<td>965.4</td>
<td>868.9</td>
<td>780.2</td>
<td>1160.1</td>
</tr>
<tr>
<td>0.68</td>
<td>938.6</td>
<td>846.0</td>
<td>759.1</td>
<td>1127.8</td>
</tr>
<tr>
<td>0.69</td>
<td>913.3</td>
<td>823.4</td>
<td>738.9</td>
<td>1097.2</td>
</tr>
<tr>
<td>0.70</td>
<td>889.0</td>
<td>801.7</td>
<td>719.5</td>
<td>1068.0</td>
</tr>
<tr>
<td>0.71</td>
<td>865.9</td>
<td>781.0</td>
<td>701.2</td>
<td>1039.8</td>
</tr>
<tr>
<td>0.72</td>
<td>844.0</td>
<td>761.2</td>
<td>683.7</td>
<td>1013.5</td>
</tr>
<tr>
<td>0.73</td>
<td>822.7</td>
<td>742.3</td>
<td>667.0</td>
<td>988.1</td>
</tr>
<tr>
<td>0.74</td>
<td>802.5</td>
<td>724.1</td>
<td>650.9</td>
<td>963.8</td>
</tr>
<tr>
<td>0.75</td>
<td>783.1</td>
<td>706.8</td>
<td>635.6</td>
<td>940.6</td>
</tr>
<tr>
<td>0.76</td>
<td>764.5</td>
<td>690.3</td>
<td>620.7</td>
<td>917.5</td>
</tr>
<tr>
<td>0.77</td>
<td>746.8</td>
<td>674.4</td>
<td>606.7</td>
<td>896.9</td>
</tr>
<tr>
<td>0.78</td>
<td>729.6</td>
<td>659.2</td>
<td>593.1</td>
<td>874.4</td>
</tr>
<tr>
<td>0.79</td>
<td>713.3</td>
<td>644.6</td>
<td>580.2</td>
<td>850.4</td>
</tr>
<tr>
<td>0.80</td>
<td>697.3</td>
<td>630.4</td>
<td>567.1</td>
<td>826.4</td>
</tr>
<tr>
<td>0.81</td>
<td>682.6</td>
<td>617.0</td>
<td>555.7</td>
<td>802.4</td>
</tr>
<tr>
<td>0.82</td>
<td>668.1</td>
<td>604.0</td>
<td>544.3</td>
<td>778.6</td>
</tr>
<tr>
<td>0.83</td>
<td>654.1</td>
<td>591.6</td>
<td>533.2</td>
<td>754.8</td>
</tr>
<tr>
<td>0.84</td>
<td>640.6</td>
<td>579.6</td>
<td>522.4</td>
<td>731.1</td>
</tr>
<tr>
<td>0.85</td>
<td>627.7</td>
<td>568.0</td>
<td>512.1</td>
<td>707.3</td>
</tr>
<tr>
<td>0.86</td>
<td>615.3</td>
<td>556.9</td>
<td>502.2</td>
<td>683.6</td>
</tr>
<tr>
<td>0.87</td>
<td>603.4</td>
<td>546.3</td>
<td>492.7</td>
<td>660.8</td>
</tr>
<tr>
<td>0.88</td>
<td>591.8</td>
<td>535.9</td>
<td>483.5</td>
<td>638.1</td>
</tr>
<tr>
<td>0.89</td>
<td>580.7</td>
<td>525.9</td>
<td>474.6</td>
<td>616.4</td>
</tr>
<tr>
<td>0.90</td>
<td>569.9</td>
<td>516.2</td>
<td>465.9</td>
<td>594.8</td>
</tr>
<tr>
<td>0.91</td>
<td>559.5</td>
<td>506.9</td>
<td>457.7</td>
<td>574.0</td>
</tr>
<tr>
<td>0.92</td>
<td>549.6</td>
<td>497.9</td>
<td>449.7</td>
<td>553.3</td>
</tr>
<tr>
<td>0.93</td>
<td>539.9</td>
<td>488.3</td>
<td>442.0</td>
<td>533.7</td>
</tr>
<tr>
<td>0.94</td>
<td>530.5</td>
<td>478.9</td>
<td>434.5</td>
<td>514.1</td>
</tr>
<tr>
<td>0.95</td>
<td>521.2</td>
<td>468.2</td>
<td>427.2</td>
<td>495.5</td>
</tr>
<tr>
<td>0.96</td>
<td>512.6</td>
<td>458.4</td>
<td>420.3</td>
<td>477.0</td>
</tr>
<tr>
<td>0.97</td>
<td>504.1</td>
<td>448.2</td>
<td>413.2</td>
<td>458.6</td>
</tr>
<tr>
<td>0.98</td>
<td>495.9</td>
<td>439.9</td>
<td>407.0</td>
<td>440.3</td>
</tr>
<tr>
<td>0.99</td>
<td>487.9</td>
<td>424.8</td>
<td>400.6</td>
<td>422.0</td>
</tr>
<tr>
<td>1.00</td>
<td>480.2</td>
<td>415.9</td>
<td>394.6</td>
<td>403.7</td>
</tr>
<tr>
<td>1.01</td>
<td>472.6</td>
<td>408.0</td>
<td>388.5</td>
<td>385.3</td>
</tr>
<tr>
<td>1.02</td>
<td>465.4</td>
<td>400.6</td>
<td>382.8</td>
<td>368.0</td>
</tr>
<tr>
<td>1.03</td>
<td>458.4</td>
<td>393.7</td>
<td>377.2</td>
<td>354.0</td>
</tr>
<tr>
<td>1.04</td>
<td>451.5</td>
<td>387.2</td>
<td>371.7</td>
<td>345.1</td>
</tr>
<tr>
<td>1.05</td>
<td>444.9</td>
<td>380.6</td>
<td>366.7</td>
<td>335.0</td>
</tr>
<tr>
<td>1.06</td>
<td>438.5</td>
<td>374.4</td>
<td>361.2</td>
<td>325.1</td>
</tr>
<tr>
<td>1.07</td>
<td>432.2</td>
<td>368.0</td>
<td>356.2</td>
<td>315.2</td>
</tr>
<tr>
<td>1.08</td>
<td>426.2</td>
<td>361.7</td>
<td>351.4</td>
<td>305.3</td>
</tr>
<tr>
<td>1.09</td>
<td>420.2</td>
<td>355.3</td>
<td>346.7</td>
<td>295.4</td>
</tr>
<tr>
<td>1.10</td>
<td>414.5</td>
<td>349.1</td>
<td>342.1</td>
<td>285.5</td>
</tr>
</tbody>
</table>
2.6 Uncertainties in fatigue life prediction

2.6.1
There are a number of different uncertainties associated with fatigue life predictions. The calculated loading on the ship is uncertain due to uncertainties in wave heights, periods and distribution of waves. The resulting stresses in the ship are uncertain due to uncertainties in the loading, calculation of response and calculation of stress concentrations.

2.6.2
Because of the sensitivity of calculated fatigue life to the accuracy of estimates of stresses, particular care must be taken to ensure that stresses are realistic. Fatigue damage is proportional to stress raised to the power of the inverse slope of the S-N curve. I.e. small changes in stress result in much greater changes in fatigue life. Special attention should be given to stress raisers like eccentricities and secondary deformations and stresses due to local restraints. Due considerations should, therefore, be given to the fabrication tolerances during fatigue design.

2.6.3
There is a rather large uncertainty associated with the determination of S-N curves. The scatter in the test results which form the basis for the S-N curves is generally accepted to relate to the normal variation of weld imperfections within normal workmanship, indicated in Table 10.14. The ratio between calculated fatigue lives based on the mean S-N curve and the mean minus two standard deviations S-N curve is significant as shown in Figure 2.6.

2.6.4
There is also uncertainty associated with the determination of stress concentration factor. The error introduced in the calculated fatigue life by wrong selection of stress concentration factor is indicated in Figure 2.7.

2.6.5
It should be kept in mind that a high fatigue life is an efficient means to reduce probability of fatigue failure, see Figure 2.8. It also reduces the need for in-service inspection. In order to arrive at a cost optimal design, effort should be made to design details such that stress concentrations, including that of fabrication tolerances, are reduced to a minimum. Stresses may also be reduced by increasing the thickness of parent metal or weld metal, which will improve fatigue life.
3. Simplified Stress Analysis

3.1 General

3.1.1 This section outlines a simplified approach to determine the distributions of long-term stress ranges for closed or semi-closed hull cross sections, expressed as Weibull distributions. Simple formats for combination of global and local stress components are given, and alternative models for simplified calculations of stress response in ship structures are given.

3.1.2 Stress response may be calculated by different levels of accuracy:

Calculation of hull girder stresses is the simplest way of getting reasonable approximations to the stress level in longitudinal hull girder elements and connections and can be used for quick evaluation of stress levels in important details.

Dynamic pressure load analysis combined with manual calculation of stiffener bending response is the simplest way for determining the stress response of longitudinal and transverse frames due to external and internal pressure loads. The member end restraints/moments must, however, be evaluated with great care in order to arrive at reliable results. A frame analysis is generally more reliable and should be performed if there is uncertainty about used restraints/moments.

Frame Analysis should be applied in order to assess stresses in hull elements like transverse frames, floors and girders. Both 2-D and 3-D models can be used (Section 6.4).

In order to obtain a more precise stress estimation of the response in the hull, Finite Element Analysis should be applied (Section 6).

3.2 Long term distribution of stresses

3.2.1 The long term distribution of stress ranges at local details may be described by Weibull distribution

\[Q(\Delta\sigma) = \exp\left[-\left(\frac{\Delta\sigma}{q}\right)^h \right] \]

where:
- \(Q \) = probability of exceedance of the stress range \(\Delta\sigma \)
- \(h \) = Weibull shape parameter
- \(q \) = Weibull scale parameter, defined as
 \[q = \frac{\Delta\sigma_0}{(\ln n_0)^{\frac{1}{h}}} \]

The stress range distribution may also be expressed as

\[\Delta\sigma = \Delta\sigma_0 \left[\frac{\ln n}{\ln n_0} \right]^{1/h} \]

where
- \(\Delta\sigma_0 \) = reference stress range value at the local detail exceeded once out of \(n_0 \) cycles
- \(n_0 \) = total number of cycles associated with the stress range level \(\Delta\sigma_0 \)

When the long term stress range follows a Weibull distribution with shape parameters in the range 0.8 - 1.0, the main contribution to the cumulative fatigue damage comes from the smaller waves, see Figure 3.1. The long term stress range should generally be based on a reference stress range \(\Delta\sigma_0 \), being the highest stress range out of \(10^6 \) stress cycles.

Figure 3.1 Contribution to fatigue damage from different stress blocks

If the highest stress range out of \(10^8 \) stress cycles are used to describe the long-term stress range distributions, the calculated fatigue damage is very sensitive to the estimate of the Weibull shape parameter \(h \).

3.2.2 The Weibull shape parameter may be established from long-term wave load analysis. In lieu of more accurate calculations, the shape parameter may be taken as

\[h = h_0 \]

For deck longitudinals

\[h = h_0 + h_a \frac{(D - z)}{(D - T_{act})} \]

For ship side above the waterline

\[h = h_0 + h_a \]

For ship side at the waterline

\[h = h_0 + h_a z / T_{act} - 0.005(T_{act} z) \]

For ship side below the waterline

\[h = h_0 - 0.005 T_{act} \]

For bottom longitudinals

\[T_{act} < z < D \]

\[z = T_{act} \]

\[z < T_{act} \]

\[z < T_{act} \]
h = h₀ + hₐ

For longitudinal and transverse bulkheads

where:

h₀ = basic shape parameter
 = 2.21 - 0.54 log₁₀(L)

(In lieu of more accurate calculations h₀ may, for open type vessels, be taken as 1.05 in connection with fatigue assessment of deck structure subjected to dynamic, torsional stresses.)

hₐ = additional factor depending on motion response period
 = 0.05 in general
 = 0.00 for plating subjected to forces related to roll motions for vessels with roll period TR > 14 sec.

z = vertical distance from baseline to considered longitudinal (m)

The above Weibull shape parameters are based on results from the study in [2].

For hopper knuckle connections, the Weibull shape parameter for ship side at the waterline may be used.

3.3 Definition of stress components

3.3.1 Dynamic stress variations are referred to as either stress range (Δσ) or stress amplitude (σ). For linear responses, the following relation applies

$$\Delta \sigma = 2\sigma$$

3.3.2 The global dynamic stress components (primary stresses) which should be considered in fatigue analysis are

σᵥ = wave induced vertical hull girder bending stress

σᵥhg = wave induced horizontal hull girder bending stress

3.3.3 The local dynamic stress amplitudes which should be considered are defined as follows

σₑ = total local stress amplitude due to dynamic external pressure loads

σᵢ = total local stress amplitude due to dynamic internal pressure loads or forces

3.4 Combination of stresses

3.4.1 For each loading condition, combined local stress components due to simultaneous internal and external pressure loads are to be combined with global stress components induced by hull girder wave bending. The procedures described in the following is applicable for ships with closed or semi-closed cross sections only. For open type vessels (e.g., container vessels), torsional stresses may have to be included. ref. 9.3.

3.4.2 The stress components to be combined are the notch stresses, i.e., stresses including stress concentration factors, K. The resulting stress concentration factor of a structural detail depends on weld geometry, structural geometry and type of loading.

3.4.3 The combined global and local stress range may be taken as

$$\Delta \sigma = f_m \Delta \sigma$$

$$\Delta \sigma = f_e \max \left\{ \Delta \sigma_e + b \cdot \Delta \sigma_i \right\}$$

where

$$f_e = \text{Reduction factor on derived combined stress range accounting for the long-term sailing routes of the ship considering the average wave climate the vessel will be exposed to during the lifetime. Assuming world wide operation the factor may be taken as 0.8. For shuttle tankers and vessels that frequently operates in the North Atlantic or in other harsh environments, } f_e = 1.0 \text{ should be used.}$$

$$f_m = \text{Reduction factor on derived combined stress range accounting for the effect of mean stresses, see Sections 2.2.3 and 2.2.4.}$$
a, b = Load combination factors, accounting for the correlation between the wave induced local and global stress ranges. (The below factors are based on [2]).

\[
a = 0.6 \\
b = 0.6
\]

\[\Delta \sigma_l = \text{combined local stress range due to lateral pressure loads}\]

\[\Delta \sigma_g = \text{combined global stress range}\]

3.4.4
The combined global stress range may in general be taken as

\[
\Delta \sigma_g = \sqrt{\Delta \sigma_v^2 + \Delta \sigma_{hg}^2 + 2 \rho_{vh} \Delta \sigma_v \Delta \sigma_{hg}}
\]

except for ships with large hatch openings (i.e. container carriers and open hatch type bulk carriers) for which torsional stresses must be included, see 9.3.

\[\Delta \sigma_v = \text{stress range due to wave induced vertical hull girder bending}\]

\[\Delta \sigma_{hg} = \text{stress range due to wave induced horizontal hull girder bending}\]

\[= 2 \sigma_v\] in general (for tankers and vessels without large hatch openings)

\[\rho_{vh} = 0.10, \text{ average correlation between vertical and horizontal wave induced bending stress (from [2])}\]

3.4.5
The combined local stress range, \(\Delta \sigma_l\), due to external and internal pressure loads may be taken as

\[
\Delta \sigma = 2 \sqrt{\sigma_e^2 + \sigma_i^2 + 2 \rho_p \sigma_e \sigma_i}
\]

where

\[\sigma_e = \text{total local stress amplitude due to the dynamic sea pressure loads (tension = positive)}\]

\[\sigma_i = \text{total local stress amplitude due to internal pressure loads (tension = positive)}\]

\[\rho_p = \text{average correlation between sea pressure loads and internal pressure loads (from [2])}\]

\[
\rho_p = \frac{1}{2} \left(\frac{z}{10 \cdot T_{act}} + \frac{|y|}{4 \cdot L} + \frac{|y|}{4 \cdot B} - \frac{|y|^2 \cdot z}{5 \cdot L \cdot T_{act}} \right)
\]

where: \(z \leq T_{act}\)

For \(z > T_{act}\), \(z\) may be taken equal to \(T_{act}\)

Origo of the coordinate system has co-ordinates (midship, centerline, baseline), see Figure 3.2. \(x, y\) and \(z\) are longitudinal, transverse and vertical distance from origo to load point of considered structural member.

3.5 Calculation of Stress Components

3.5.1
The wave induced vertical hull girder stress is given by

\[
\sigma_v = 0.5 K [M_{w0,h} - M_{w0,s}] 10^{-3} |z - n_0| I_N
\]
where

\[M_{\text{wos}(h)} = \text{vertical wave sagging (hoggling) bending moment amplitude} \]

\[|z - n_0| = \text{vertical distance in m from the horizontal neutral axis of hull cross section to considered member} \]

\[I_N = \text{moment of inertia of hull cross-section in m}^4 \text{about transverse axis} \]

\[K = \text{stress concentration factor for considered detail and loading} \]

The corresponding stress range is

\[\Delta \sigma_v = 2 \sigma_v \]

3.5.2

The wave induced horizontal hull girder stress is given by

\[\sigma_h = K M_H 10^{-3} \frac{|y|}{I_C} \]

where

\[M_H = \text{horizontal wave bending moment amplitude} \]

\[y = \text{distance in m from vertical neutral axis of hull cross section to member considered} \]

\[I_C = \text{the hull section moment of inertia about the vertical neutral axis} \]

\[K = \text{stress concentration factor for considered detail and loading} \]

The corresponding stress range is

\[\Delta \sigma_{hg} = 2 \sigma_h \]

3.5.3

Local secondary bending stresses (\(\sigma_2 \)) are the results of bending due to lateral pressure of stiffened single skin or double hull cross-stiffened panels between transverse bulkheads, see Figure 3.3. This may be bottom or deck structures, sides or longitudinal bulkheads.

The preferred way of determining secondary stresses is by means of FEM analysis or alternatively by 3(2)-dimensional frame analysis models. When such analysis are not available, secondary stresses may be estimated by the expressions given in Appendix B.

Dynamic secondary bending stresses should be calculated for dynamic sea pressure \(p_e \) and for internal dynamic pressure \(p_i \). The pressures to be used should generally be determined at the mid-position for each cargo hold or tank.

3.5.4

The local bending stress of stiffeners with effective plate flange between transverse supports (e.g. frames, bulkheads) may be approximated by

\[\sigma_z = K \frac{M}{Z_z} + K \frac{m_\delta EI}{l^2 Z_z} r_g \cdot \delta \]

where

\[K = \text{stress concentration factor. Note that the stress concentration factor in front of each term may be different.} \]

\[M = \text{moment at stiffener support adjusted to hot spot position at the stiffener (e.g. at bracket toe)} \]

\[\frac{psl^2}{12} r_p \]

\[p = \text{lateral dynamic pressure} \]

\[p_e \text{ for dynamic sea pressure} \]

\[p_i \text{ for internal dynamic pressure} \]

\[s = \text{stiffener spacing} \]

\[l = \text{effective span of longitudinal/stiffener as shown in Figure 3.4} \]

\[Z_s = \text{section modulus of longitudinal/stiffener with associated effective plate flange. For definition of effective flanges, see 3.5.7} \]

\[I = \text{moment of inertia of longitudinal/stiffener with associated effective plate flange.} \]

\[m_\delta = \text{moment factor due to relative deflection between transverse supports. For designs where all the frames obtain the same deflection relative to the transverse bulkhead, e.g. where no stringers or girders supporting the frames adjacent to the bulkhead exist, } m_\delta \text{ may be taken as 4.4 at the bulkhead. At termination of stiff partial stringers or girders, } m_\delta \text{ may be taken as 4.4.} \]

When the different deflections of each frame are known from a frame and girder analysis, \(m_\delta \) should be calculated due to the actual deflections at the frames by using a beam model or a stress concentration model of the longitudinal. A beam model of a longitudinal covering \(\frac{1}{2} + \frac{1}{2} \) cargo hold length is shown in Figure 3.6. Normally, representative \(m_\delta \) may be calculated for side and bottom, using one load condition, according to

\[m_\delta = \frac{M_e l^2}{\delta E I} \]

where

\[M_e \text{ is the calculated bending moment at the bulkhead due to the prescribed deflection at the frames, } \delta_i, \delta_j, \ldots \delta_n. \]

\(\delta \) is the relative...
support deflection of the longitudinal at the nearest frame relative to the transverse bulkhead. The frame where the deflection for each longitudinal in each load condition, δ, is to be taken, should be used.

$\delta = \text{deformation of the nearest frame relative to the transverse bulkhead (positive inwards - net external pressure).}$

r_δ = moment interpolation factors for interpolation to hot spot position along the stiffener length, Figure 3.5.

$$
\begin{align*}
 r_\delta &= 1 - 2 \left(\frac{x}{l} \right) ; \quad 0 \leq x \leq l \\
 r_p &= \delta \left(\frac{x}{l} \right)^2 - \delta \left(\frac{x}{l} \right) + 1.0 ; \quad 0 \leq x \leq l
\end{align*}
$$

where

$x = \text{distance to hot spot, see Fig.3.5.}$
Figure 3.4 Definition of effective span lengths
It is of great importance for a reliable fatigue assessment that bending stresses in longitudinals caused by relative deformation between supports are not underestimated. The appropriate value of relative deformation δ has to be determined in each particular case, e.g. by beam- or element analyses (Classification Note Nos. 31.1 and 31.3 show modelling examples).

3.5.6

Longitudinal local tertiary plate bending stress amplitude in the weld at the plate/transverse frame/bulkhead intersection is midway between the longitudinals given by

$$\sigma_3 = 0.343 \ p \ (s/t_n)^2 \ K$$

where

- p = lateral pressure
- p_e for dynamic sea pressure
- p_i for internal dynamic pressure
- s = stiffener spacing
- t_n = "net" plate thickness

Similarly, the transverse stress amplitude at stiffener mid-length is

$$\sigma_{3T} = 0.50 \ p \ (s/t_n)^2 \ K$$

3.5.7

Effective breadth of plating can be taken as follows:

Flat and curved plate flanges of web frames and girders is to be taken as given in the Ship Rules. Effective breadth of plate flanges of stiffeners (longitudinals) in bending (due to the shear lag effect) exposed to uniform lateral load can be taken as

For bending at midspan:

$$\frac{s_e}{s} = \begin{cases} \sin \left(\frac{\pi \ (L_m)}{6 \ s} \right) & \text{for } \frac{L_m}{s} \leq 9 \\ 1.0 & \text{for } \frac{L_m}{s} \geq 9 \end{cases}$$

For bending at ends:

$$\frac{s_e}{s} = \begin{cases} 0.67 \sin \left(\frac{\pi \ (L_e)}{6 \ s} \right) & \text{for } \frac{L_e}{s} \leq 3 \\ 0.67 & \text{for } \frac{L_e}{s} \geq 3 \end{cases}$$

where

- $l_m = l / \sqrt{3}$ length of stiffener between zero moment inflection points (at midspan - uniformly loaded and clamped stiffener)
- $l_e = l (1 - 1 / \sqrt{3}) / 2$ length of stiffener at ends, i.e. outside zero moment inflection points
4. Simplified Calculation of Loads

4.1 General

4.1.1
This section outlines a simplified approach for calculation of dynamic loads. Formulas are given for calculation of global wave bending moments, external sea pressure acting on the hull and internal pressure acting on the tank boundaries.

The simple formula for calculation of loads in this section are based on the linear dynamic part of the loads as defined in the Rules [1]. The design loads as defined in the Rules do also includes non-linear effects such as bow-flare and roll damping, and are not necessarily identical with the dynamic loads presented herein.

4.1.2
Fatigue damage should in general be calculated for all representative load conditions accounting for the expected operation time in each of the considered conditions. For tankers, bulk carriers and container vessels, it is normally sufficient to consider only ballast- and fully loaded conditions, see also 7.2, 8.2 and 9.2. The loads are calculated using actual draughts, \(T_{\text{act}} \), metacentric heights \(G_{\text{M,act}} \) and roll radius of gyration, \(k_{\text{r,act}} \) for each considered loading condition.

4.2 Wave induced hull girder bending moments

4.2.1
The vertical wave induced bending moments may be calculated using the bending moment amplitudes specified in the Rules Pt. 3, Ch.1 [1].

\[
\begin{align*}
M_{w0,s} &= -0.11 f_r k_{wm} C_w L^2 B (C_B + 0.7) \text{ (kNm)} \\
M_{w0,h} &= 0.19 f_r k_{wm} C_w L^2 B C_B \text{ (kNm)}
\end{align*}
\]

where

\[
\begin{align*}
M_{w0,s} &= \text{wave sagging moment amplitude} \\
M_{w0,h} &= \text{wave hogging moment amplitude} \\
C_w &= \text{wave coefficient} \\
&= 0.0792 L \quad \text{L < 100 m} \\
&= 10.75 - \left(\frac{300 - L}{100} \right)^{3/2} \quad 100 \text{ m} < L \leq 300 \text{ m} \\
&= 10.75 \quad 300 \text{ m} < L \leq 350 \text{ m} \\
&= 10.75 - \left(\frac{L-350}{150} \right)^{3/2} \quad 350 \text{ m} < L
\end{align*}
\]

\(k_{wm} \) = moment distribution factor

\[
\begin{align*}
k_{wm} &= 1.0 \text{ between 0.40L and 0.65L from A.P., for ships with low/moderate speed.} \\
&= 0.0 \text{ at A.P. and F.P. (Linear interpolation between these values.)}
\end{align*}
\]

\(f_r \) = factor to transform the load from \(10^{-8}\) to \(10^{-4}\) probability level.

\[
\begin{align*}
f_r &= 0.51/\ h_o \\
h_o &= \text{long-term Weibull shape parameter} \\
&= 2.21 - 0.54 \log(L)
\end{align*}
\]

\(L \) = Rule length of ship (m)

\(B \) = Greatest moulded breath of ship in meters measured at the summer waterline

\(C_B \) = Block coefficient

For the purpose of calculating the vertical hull girder bending moment by direct global finite element analyses, simplified loads may be obtained from Appendix C.

4.2.2
The horizontal wave bending moment amplitude at \(10^{-4}\) probability level may be taken as follows (ref. Rules Pt.3, Ch.1 [1])

\[
M_H = 0.22 f_r L^{9/4} (T_{\text{act}} + 0.30 B) C_B (1 - \cos(2\pi x/L)) \text{ (kNm)}
\]

\(x \) = distance in m from A.P. to section considered.

\(L, B, C_B, f_r \) as defined in 4.2.1

4.2.3
Wave torsional loads and moments which may be required for analyses of open type vessels (e.g. container vessels) are defined in 9.3 and Appendix C.

4.3 External pressure loads

4.3.1
Due to intermittent wet and dry surfaces, the range of the pressure is reduced above \(T_{\text{act}} - z_{wl} \), see Figure 4.1. The dynamic external pressure amplitude (half pressure range), \(P_e \), related to the draught of the load condition considered, may be taken as:

\[
P_e = r_p P_d \text{ (kN/m²)}
\]

where:

\(P_d \) = dynamic pressure amplitude below the waterline.
The dynamic pressure amplitude may be taken as the largest of the combined pressure dominated by pitch motion in head/quartering seas, \(p_{dp} \), or the combined pressure dominated by roll motion in beam/quartering seas, \(p_{dr} \), as:

\[
\begin{align*}
p_{dp} &= \max \left(\frac{\sqrt{2} T \omega_{act}}{B + 7.5} - 1.2 (T_{w} - z_{wl}) \right) \\
p_{dr} &= 10 \left(\frac{\sqrt{2} \phi + C_{a}}{2} \right) \left(0.7 + 2 \frac{z_{wl}}{L_{t}} \right)
\end{align*}
\]

where

\[
p_{i} = k_{i} C_{w} + k_{f}
\]

\[
= (k_{i} C_{w} + k_{f}) \left(0.8 + 0.15 \frac{V}{\sqrt{L}} \right) \text{ if } \frac{V}{\sqrt{L}} > 1.5
\]

\[
k_{s} = 3 C_{b} + \frac{2.5}{C_{b}} \text{ at AP and aft.}
\]

\[
= 3 C_{b} \text{ between 0.2 L and 0.7 L from AP.}
\]

\[
= 3 C_{b} + 4.0 \frac{C_{b}}{C_{a}} \text{ at FP and forward.}
\]

Between specified areas \(k_{i} \) is to be varied linearly.

\[
z_{wl} = \text{ vertical distance from the baseline to the loadpoint}
\]

\[
y = \text{ maximum } T_{act} \text{ (m)}
\]

\[
\bar{y} = y, \text{ but minimum } B/4 \text{ (m)}
\]

\[
C_{W} = \text{ as given in 4.2.1}
\]

\[
k_{f} = \text{ the smallest of } T_{act} \text{ and } f
\]

\[
f = \text{ vertical distance from the waterline to the top of the ship's side at transverse section considered (m)}
\]

\[
= \text{ maximum } 0.8 C_{w} \text{ (m)}
\]

\[
L = \text{ ship length}
\]

\[
\phi = \text{ rolling angle, single amplitude (rad) as defined in 4.5.1}
\]

\[
V = \text{ vessels design speed in knots}
\]

\[
r_{p} = \text{ reduction of pressure amplitude in the surface zone}
\]

\[
= 1.0 \text{ for } z < T_{act} - z_{wl}
\]

\[
= \frac{T_{act} + z_{wl} - z}{2z_{wl}} \text{ for } T_{act} - z_{wl} < z < T_{act} + z_{wl}
\]

\[
= 0.0 \text{ for } T_{act} + z_{wl} < z
\]

\[
p = \text{ density of sea water, } 1.025 \text{ (t/m}^{3})
\]

\[
x_{s} = \text{ longitudinal distance from centre of free surface of liquid in tank to pressure point considered (m)}
\]

\[
y_{s} = \text{ transverse distance from centre of free}
\]

\[
T_{act} = \text{ draught in m of the considered load condition}
\]

\[
p_{r} = \text{ pressure at } z = T_{act}
\]

\[
p_{r} = \text{ pressure due to vertical acceleration (largest pressure in lower tank region)}
\]

\[
p_{2} = \text{ pressure due to transverse acceleration}
\]

\[
p_{3} = \text{ pressure due to longitudinal acceleration}
\]

\[
\rho = \text{ density of sea water, } 1.025 \text{ (t/m}^{3})
\]

\[
\omega_{act} = \text{ angular frequency}
\]

\[
L_{t} = \text{ transverse length of the ship}
\]

\[
\rho = \text{ density of sea water}
\]

\[
\phi = \text{ rolling angle}
\]

\[
V = \text{ vessels design speed in knots}
\]

\[
r_{p} = \text{ reduction of pressure amplitude in the surface zone}
\]

\[
= 1.0 \text{ for } z < T_{act} - z_{wl}
\]

\[
= \frac{T_{act} + z_{wl} - z}{2z_{wl}} \text{ for } T_{act} - z_{wl} < z < T_{act} + z_{wl}
\]

\[
= 0.0 \text{ for } T_{act} + z_{wl} < z
\]

\[
\rho = \text{ density of sea water}
\]

\[
\omega_{act} = \text{ angular frequency}
\]

\[
L_{t} = \text{ transverse length of the ship}
\]
The surface of liquid in tank to the pressure point considered (m), see Figure 4.5.

\[h_s = \text{vertical distance from point considered to surface inside the tank (m), Figure 4.5} \]

\[a_v, a_t \text{ and } a_l = \text{accelerations in vertical-, transverse-, or longitudinal direction (m/s}^2) \]

\[f_a = \text{factor to transform the load effect to probability level } 10^{-4}, \text{ when the accelerations are specified at the } 10^{-8} \text{ probability level.} \]

\[= 0.5^{\frac{1}{h}} \]

\[h = h_0 + 0.05 \]

\[= 2.26 - 0.54 \log_{10}(L). \]

Note that the factor \(f_a \) is estimated for ships with a roll period \(T_R < 14 \text{ sec.} \), and may otherwise be less for roll induced pressures and forces, see also Section 3.2.2.

The accelerations \(a_v, a_t \) and \(a_l \) are given in Section 4.5.

The effect of ullage (void space in top of tank) will add to the pressure in one half cycle and subtract in the other, and is therefore omitted in the above description of the half pressure range. Similarly, the effect of the tank top geometry may be omitted. For partly subdivided tanks, where the fluid is prevented to flow through swash bulkheads during one half motion cycle, the pressures may be reduced accordingly.

Note that the above scaling of pressures, by use of the factor \(f_a \), is only valid for fatigue assessment and may be justified as the dominating fatigue damage is caused mainly by moderate wave heights.

For bulk and ore cargoes, only \(p_1 \) need to be considered. The appropriate density and pressure height should be specially considered.

\[p_i \quad \text{External pressure} \quad p_e \quad \text{Internal pressure} \]

\[\text{Figure 4.2 Distribution of pressure amplitudes for tankers in the fully loaded condition.} \]

\[\text{Figure 4.3 Distribution of pressure amplitudes for tankers in ballast condition.} \]

\[\text{Figure 4.4 Distribution of pressure amplitudes for a bulk carrier in the ore loading condition.} \]

4.5 Ship accelerations and motions

4.5.1

The formula for ship accelerations and motions given below are derived from the Rules, Ch.1., Pt.3, Sec.4, [1]. The acceleration and motions are extreme values corresponding to a probability of occurrence of \(10^{-8} \).

Combined accelerations:

\[a_t = \text{combined transverse acceleration (m/s}^2) \]

\[a_t = \sqrt{a_y^2 + (g_0 \sin \phi + a_{a y})^2} \]

\[a_l = \text{combined longitudinal acceleration (m/s}^2) \]

\[a_l = \sqrt{a_x^2 + (g_0 \sin \theta + a_{a x})^2} \]

\[a_v = \text{combined vertical acceleration (m/s}^2) \]

\[a_v = \max \left(\sqrt{a_{v z}^2 + a_{v z}^2}, \sqrt{a_{v z}^2 + a_{v z}^2} \right) \]
Acceleration components:

\[a_x = \text{surge acceleration (m/s}^2) \]
\[= 0.2 \, g \, a_o \sqrt{C_B} \]
\[a_y = \text{acceleration due to sway and yaw (m/s}^2) \]
\[= 0.3 \, g \, a_o \]
\[a_z = \text{heave acceleration (m/s}^2) \]
\[= 0.7 \, g \, a_o / \sqrt{C_B} \]
\[a_o = \text{acceleration constant} \]
\[= 3C_w/L + C_V \, V / \sqrt{L} \]
\[C_V = \sqrt{L} / 50 , \text{ max. 0.2} \]
\[V = \text{ship design speed (knots)} . \]

Roll motions:

\[a_{ry} = \text{horizontal component of roll acceleration (m/s}^2) \]
\[= \phi \, (2 \pi / T_R)^2 R_{RZ} \]
\[a_{rz} = \text{vertical component of roll acceleration (m/s}^2) \]
\[= \phi \, (2 \pi / T_R)^2 R_{RY} \]
\[R_R = \text{distance from the axis of rotation to centre of mass (m).} \]

The distance is related to the roll axis of rotation that may be taken at \(z_r \) (m) above the baseline, where \(z_r \) is the smaller of \([D / 4 + T / 2] \) and \([D / 2] \).

For double hull ballast tanks the \(R_R \) may be approximated by the horizontal distance from the centreline to the tank surface centre.

\[R_{RZ} = \text{vertical distance from axis of rotation to centre of tank/mass (m)} \]
\[R_{RY} = \text{transverse distance from axis of rotation to centre of tank/mass (m)} \]
\[T_R = \text{period of roll} \]
\[= 2 \, k_r / \sqrt{GM} , \text{ maximum 30 (s)} \]

In case the values of roll radius, \(k_r \), and metacentric height, \(GM \), have not been calculated for the relevant loading conditions, the following approximate values may be used:

\[k_r = \text{roll radius of gyration (m), } k_r \text{ in the main rules Pt.3 ch.1 sec.17 shall be used unless the calculated value of } k_r \text{ is available} \]
\[= 0.39 \, B \text{ for ships with even distribution of mass and double hull tankers in ballast.} \]

\[GM = \text{metacentric height (m)} \]
\[= 0.07 \, B \text{ in general} \]
\[= 0.12 \, B \text{ for single skin tankers, bulk carriers and fully loaded double hull tankers.} \]
\[= 0.17 \, B \text{ for bulk and ore carriers in the ore loading condition.} \]
\[= 0.33 \, B \text{ for double hull tankers in the ballast loading condition.} \]
\[= 0.25 \, B \text{ for bulk carriers in the ballast condition} \]
\[= 0.04 \, B \text{ for container carriers} \]
\[\phi = \text{maximum roll angle, single amplitude (rad)} \]
\[= 50 \, c / (B + 75) \]
\[c = (1.25 - 0.025 \, T_R) \, k \]
\[k = 1.2 \text{ for ships without bilge keel} \]
\[= 1.0 \text{ for ships with bilge keel} \]
\[= 0.8 \text{ for ships with active roll damping facilities} \]

Pitch motions:

\[a_p = \text{tangential pitch acceleration (m/s}^2) \]
\[= \theta \, (2 \pi / T_P)^2 R_P \]
\[a_{px} = \text{longitudinal component of pitch acceleration (m/s}^2) \]
\[= \theta \, (2 \pi / T_P)^2 R_{PZ} \]
\[a_{pz} = \text{vertical component of pitch acceleration (m/s}^2) \]
\[= \theta \, (2 \pi / T_P)^2 R_{PX} \]
\[R_P = \text{distance from the axis of rotation to the tank centre (m)} \]
\[R_{PZ} = \text{vertical distance from axis of rotation to centre of tank/mass (m)} \]
\[R_{PX} = \text{longitudinal distance from axis of rotation to centre of tank/mass (m)} \]
\[T_P = \text{period of pitch (s)} \]
\[= 1.80 \sqrt{L / g} \]
\[\theta = \text{maximum pitch angle (rad)} \]
\[= 0.25 \, a_o / C_B \]
Axis of rotation may be taken as 0.45L from A.P., at centreline, z, above baseline.

Figure 4.5 Illustration of acceleration components

Figure 4.6 Illustration of acceleration components and centre of mass for double hull tankers or bulk carriers with connected top wing- and hopper/bottom ballast tanks
5. Wave Loading by Direct Computation

5.1 General

5.1.1
This section gives a brief description of the necessary steps in a direct load analysis for fatigue assessment. The loads computed by direct computations may substitute the simplified load components defined in Section 4 and is mainly intended for use in combination with finite element analysis.

5.1.2
A linear modelling of the ship response is in general sufficient for fatigue assessment purposes. The response is then described by a superposition of the response of all regular wave components that make up the irregular sea, leading to a frequency domain analysis. The resulting stress may be established as a summation over all contributing dynamic loads/load effects.

The linear frequency domain results should normally be applied without any corrections for large wave effects as most of the fatigue damage is related to moderate wave heights.

5.1.3
Transfer function values must be determined for a sufficient number of frequencies (>15) and headings (≥8, or ≥5 when considering symmetry). The length of the model should at least extend over Lpp. The mass model should reflect the steel weight distribution and the distribution of cargo both in vertical, longitudinal and transverse directions.

The fatigue damage should be calculated so that the effects of all the main load conditions are accounted for. For tankers, the ballast condition and fully loaded condition are normally sufficient. A vessel speed set to 2/3 of the service speed in full load and ballast condition should be applied in the modelling.

For load effects which are unsymmetrical with respect to the ship’s centreline (e.g. torsion induced stresses of container ships), the fatigue damage must be determined for both ship halves. The fatigue damage of any members due to unsymmetrical load effect may then be determined as the mean value of fatigue damages calculated for port and starboard side members.

5.1.4
In the evaluation of the ship response due to external wave induced loading, the effect of wave diffraction and radiation should be accounted for.

5.2 The long-term distribution

5.2.1
The long-term distribution of load responses for fatigue analyses may be estimated using the wave climate, represented by the distribution of Hs and Tz, as described in Table 5.1, representing the North Atlantic (Marsden squares 8, 9 and 15, [1]), or Table 5.2 for world wide operation. As a guidance to the choice between these data sets one should consider the average wave environment the vessel is expected to encounter during its design life. The world wide sailing routes will therefore normally apply. For shuttle tankers and vessels that will sail frequently on the North Atlantic, or in other harsh environments, the wave data given in Table 5.1 should be applied, if not otherwise specified.

The scatter diagrams are equal for all wave directions and specified at class midpoint values.
The environmental wave spectrum for the different sea states can be defined applying the Pierson Moskowitz wave spectrum,

\[S_v(\omega|H_s, T) = \frac{H_s^2}{4\pi} \left(\frac{2\pi}{T} \right)^4 \omega^{-5} \exp \left(- \frac{1}{\pi} \left(\frac{2\pi}{T} \right)^4 \omega^{-4} \right), \quad \omega > 0 \]

The response spectrum of the ship based on the linear model is directly given by the wave spectrum, when the relation between unit wave height and stresses, the transfer function \(H_s(\omega) \), is established as

\[S_\sigma(\omega|H_s, T, \theta) = \left| H_s(\omega) \right|^2 \cdot S_v(\omega|H_s, T) \]
5.2.4
The spectral moments of order n of the response process for a given heading may be described as
\[m_n = \int \omega^n \cdot S_\sigma(\omega | H_s, T_z, \theta) d\omega \]
The spectral moments may include wave spreading as:
\[m_n = \int \sum_{\theta_{90'}} f_n(\theta) \omega^n \cdot S_\sigma(\omega | H_s, T_z, \theta) d\omega \]
using a spreading function $f(\theta) = k \cos^n(\theta)$, where k is selected such that $\int_0^{90'} f(\theta) d\theta = 1$.
and normally applying $n=2$.

5.2.5
The stress range response for ship structures can be assumed to be Rayleigh distributed within each short term condition. The stress range distribution for a given sea state i and heading direction j is then,
\[F_{\Delta \sigma ij}(\sigma) = 1 - \exp \left(- \frac{\sigma^2}{8m_0} \right) \]
where m_0 is the spectral moment of order zero.

5.2.6
In order to establish the long-term distribution of stress ranges, the cumulative distribution may be estimated by a weighted sum over all sea states and heading directions. The long-term stress range distribution is then calculated from,
\[F_{\Delta \sigma}(\sigma) = \sum_{i=1}^{\text{all sea states}} \sum_{j=1}^{\text{all headings}} r_{ij} \cdot F_{\Delta \sigma ij}(\sigma) \cdot p_{ij} \]
where:
- p_{ij} is the probability of occurrence of a given sea state i combined with heading j
- $r_{ij} = \frac{V_0}{V_0}$ is the ratio between the response crossing rates in a given sea state and the average crossing rate.
- $V_0 = \sum V_{ij} \cdot V_{ij}$ is the average crossing rate.
- $V_0 = \frac{1}{2\pi} \frac{m_0}{m_{00}}$ is the response zero-crossing rate in sea state i and heading j.

5.2.7
In derivation of the accumulated fatigue damage, the estimated long-term stress range distribution can be applied. A Weibull distribution is found to describe the long-term stress range distribution well, having shape parameter h and scale parameters q. The fitting of the Weibull distribution to the sum of Rayleigh distributions in 5.2.6 should preferably be based on a least square technique for a number of stress ranges σ. The Weibull distribution is described as:
\[F_{\Delta \sigma}(\sigma) = 1 - \left(\frac{\sigma}{q} \right)^h \]
As a guidance to define the Weibull distribution parameters, the stress levels corresponding to a cumulative probability of 95% and 99% will approximately divide the fatigue damage in three equal part-damages, indicating the most important range of the response distribution.

The parameters q and h of the fitted long-term Weibull distribution is applied in the calculation of the accumulated fatigue damage, see Section 2.1.2.

5.2.8
As an alternative to derive the accumulated fatigue damage based on the fitted long-term Weibull distribution, a summation of the fatigue damage within each sea-state and heading direction can be applied, where the stress range distribution within each short-term condition is Rayleigh distributed, see Section 2.1.3.

5.3 Transfer functions
5.3.1
The transfer function (frequency response function) $H(\omega, \theta)$, representing the response to a sinusoidal wave with unit amplitude for different frequencies ω and wave heading directions θ, can be obtained applying linear potential theory and the equation of motions of the ship, (see 5.1.4 above).

5.3.2
The vertical bending moment may be estimated by making a hydrodynamic model of a vessel including mass distribution data and by running a wave load program that determines the response for a set of wave frequencies and heading directions. The vertical bending moment transfer function is computed as the vertical bending moment $M_v(\omega, \theta)$ per unit wave amplitude ($H/2$).
\[H_v(\omega | \theta) = \frac{M_v(\omega | \theta)}{H / 2} \]

5.3.3
The horizontal bending moment transfer function, $H_h(\omega, \theta)$, is to be determined similarly to the vertical bending moment transfer function with consistent phase relations.
5.3.4
The external pressures are to be determined similarly to the vertical bending moment with consistent phase relations. In the waterline region, a reduction of the pressure range apply due to intermittent wet or dry surfaces [3].

5.3.5
The internal tank pressures may be obtained by combining the accelerations described in Section 4.5, substituting the given acceleration estimates with those obtained from computations with combined transfer functions for motions and accelerations relative to the ship axis system. The largest pressure induced by vertical, horizontal and longitudinal acceleration should be applied in determining the pressure amplitude.

5.3.6
A consistent representation of phase and amplitude for the transfer functions are required in order to achieve a correct modelling of the combined local stress response.

5.4 Combination of transfer functions
5.4.1
The combined stress response may be determined by a linear complex summation of stress transfer functions. The combined local stress transfer functions may be found by combining the complex response transfer function for the loading as

\[H_{\sigma}(\omega|\theta) = A_1 H_v(\omega|\theta) + A_2 H_h(\omega|\theta) + A_3 H_t(\omega|\theta) + A_4 H_{p}(\omega|\theta) + A_5 H_{c}(\omega|\theta) \]

where:

- \(A_1 \) = stress per unit vertical bending moment
- \(A_2 \) = stress per unit horizontal bending moment
- \(A_3 \) = stress per unit torsional bending moment
- \(A_4 \) = stress per unit relative lateral external pressure load
- \(A_5 \) = stress per unit relative lateral internal pressure load

\(H_v(\omega|\theta) \) transfer function for vertical bending moment at a representative section.
\(H_h(\omega|\theta) \) transfer function for horizontal bending moment.
\(H_t(\omega|\theta) \) transfer function for torsional bending moment. Only relevant for vessels with large hatch openings in the deck.
\(H_{p}(\omega|\theta) \) transfer function for external pressure in centre of the considered panel.
\(H_{c}(\omega|\theta) \) transfer function for liquid cargo pressure in centre of the considered panel

\(A_k \) is the local stress response in the considered detail due to a unit sectional load for load component \(k \). The factors \(A_k \) may be determined by FEM analyses or alternatively by a simplified method as described in Chapter 3, replacing the described loads by unit loads. Note that it is important to ensure compatibility between the reference (co-ordinate) systems used in the load model and the stress analysis model.

5.4.2
When the stress analysis extends over several hull sections it may be necessary to select load transfer functions for specific points or sections in order to determine the factors describing the stress per unit load, \(A_k \), in 5.4.1.

As a further simplification the factors \(A_k \) may be determined for one specific wave heading and/or wave frequency and assumed constant for all other headings/frequencies.

When the hull pressure distribution is determined from a wave loading program, the factors \(A_k \) may be determined by adding unit sectional loads at the considered sections, to determine the effect of each individual load component.

5.4.3
In the waterline the stress range is equal to the pressure amplitude, as negative pressures may not occur (intermittent wet and dry surfaces). The effective stress range for longitudinals in the waterline region may be estimated using the reduction factor, \(r_p \), as described in 4.3.1. Alternatively, the stress range distribution may be determined from the pressure ranges by integration of pressures in each wave height (or sea state) in the long-term environmental distribution, [3].

5.4.4
Non-linear effects due to large amplitude motions and large waves can be neglected in the fatigue assessment analysis since the stress ranges at lower load levels (intermediate wave amplitudes) contribute relatively more to the cumulative fatigue damage. In cases where linearization is required, e.g. in order to determine the roll damping, it is recommended that the linearization is performed at a load level representative for the stress ranges that contribute most to fatigue damage. i.e. stresses at probability level of exceedance between \(10^{-2} \) to \(10^{-4} \).
5.5 Design wave approach

5.5.1
As a simplification to the frequency domain analysis in Sections 5.2 and 5.3, a design wave approach may be applied. In this simplified approach, the extreme load response effect over a specified number of load cycles, e.g. \(n_0 = 10^4 \), is determined. The resulting stress range, \(\Delta \sigma \), is then representative for the stress at probability level of exceedance of \(10^{-4} \) per cycle.

The derived extreme stress response is combined with an assumed Weibull shape parameter \(h \) to define the long-term stress range distribution. The Weibull shape parameter for the stress response can be determined from the long-term distribution of the dominating load according to the procedure described in 5.2.7. Alternatively, the Weibull shape parameters specified in 3.2.2 may be applied, if a long-term load response analysis is not available.

The design wave may be chosen according to the following procedure:

1) The linear wave load corresponding to a \(1/n_0 \) probability level per cycle, e.g. midship bending moment, is determined by a long-term distribution with all headings included.
2) The maximum value of the transfer function is chosen for the worst heading and frequency for the wave load of interest.
3) The equivalent wave amplitude is determined by dividing the wave load corresponding to a \(1/n_0 \) probability level per cycle with the transfer function value from 2).
4) The wave steepness is checked such that it does not in any case exceed 1/7.
 For blunt (not peaked) transfer functions the wave steepness should normally not be taken less than 1/10. If the wave steepness is too high, the wave frequency in 2) is lowered somewhat and the procedure is repeated. This may sometimes be necessary for blunt transfer functions.
5) With the determined wave amplitude, frequency and heading the stress range during one wave cycle is determined by combining the resulting stresses from the real and imaginary components of the local stress or by time-stepping the wave through one wave cycle.
6) The total stress range due to hull girder bending and due to plate and/or stiffener bending associated with local pressure loads, is determined by combining the sums of the resulting real and imaginary component notch stress. Alternatively, the stress range may be obtained by time stepping the wave through one wave cycle, while determining the combined hull girder and local stress for each time step.

Note: In the waterline region, the negative sea pressure load should never be taken larger than the static pressure at the location considered.

5.5.2
The selection of wave height and wave periods should in general aim at determining the load response effect at a \(1/n_0 \) probability level of exceedance per cycle. This may also be determined by choosing the \(1/n_0 \) combination of wave height and period that gives the most sincere load response effect.

5.6 Stress component based stochastic analysis

5.6.1
For longitudinal elements in the cargo area a stress component based stochastic fatigue evaluation procedure may be employed. The load transfer functions calculated by the wave load program are then to be transferred to stress transfer functions. The load transfer functions normally include:

- Global vertical hull girder bending moments and shear forces
- Global horizontal bending moment
- Vessel motions in six d.o.f.
- Pressures for all panels of the 3-D diffraction model

The stress transfer functions are combined to a total stress transfer function as described in Section 5.4 and a stochastic fatigue evaluation is performed. Hence, the simultaneous occurrence of the different load effects is preserved.

The stress response factors \(A_k \) may in an initial phase be based on simplified formulas. After the global and local FE analyses have been carried out the stress factors \(A_k \) are to be updated and the fatigue evaluation repeated. The factors \(A_k \) are to include all relevant stress concentration factors either as tabulated values found in Chapter 10 or as the results of detailed FE stress concentration analyses using very fine mesh stress concentration models as described in Section 6.6.

5.6.2
The stochastic fatigue evaluation may be performed by calculating the part fatigue damage for each cell in the wave scatter diagram based on the applied wave spectrum, wave spreading function, ship heading and S/N data etc. The total damage is then a sum of all the part fatigue damages.

5.6.3
Alternatively, an equivalent long term stress distribution may be calculated from the applied wave spectrum and wave spreading function using a summation over each wave period/ship heading for each cell in the wave scatter diagram. In this way the Weibul parameter for the equivalent long term stress distribution can be determined and used for the fatigue damage calculation.
5.7 Full stochastic analyses

5.7.1
A local stress concentration model is used for the analysis. For these details mesh size is to be in the order of the plate thickness. Hence, all load effects, global and local, are taken care of in addition to the geometric stress concentration. 8-noded shell or 20-noded solid elements are used for this purpose. Typical details selected for the fully stochastic analyses are: discontinuous panel knuckles, bracket terminations of the main girder system and stiffeners subjected to large relative deflections. These are typical fatigue prone areas.

5.7.2
The global FE analysis is run for all wave load cases, i.e. 12 headings and 20-25 wave periods per heading, amounting to 240-300 load cases for each basic loading condition and ship speed. For each load case the deformations of the global FE model are automatically transferred to the local FE model as boundary displacements. In addition the local internal and external hydrodynamic pressures need to be automatically transferred to the local FE model by the wave load program. The part fatigue damage from each cell in the wave scatter diagram is then to be calculated based on the principal stresses from the local FE model extrapolated to the hotspot, the wave spectrum, wave spreading function, S/N data etc.
6. Finite Element Analysis

6.1 Finite element models

6.1.1
The main aim of applying a finite element model in the fatigue analysis is to obtain a more accurate assessment of the stress response in the hull structure. Several types or levels of Finite Element models are to be used in the analyses. Most commonly, five levels of finite element models are referred to:

1) *Global stiffness model*. A relatively coarse mesh is to be used to represent the overall stiffness and global stress distribution of the primary members of the hull. Typical models are shown in Figures 6.2-3.

2) *Cargo hold model*. The model is used to analyse the deformation response and nominal stresses of the primary members of the midship area. The model will normally cover \(\frac{1}{2} + 1 + \frac{1}{2} \) cargo hold length in the midship region. Typical models are shown in Figures 6.4-5.

3) *Frame and girder models* are to be used to analyse stresses in the main framing/girder system. The element mesh is to be fine enough to describe stress increase in critical areas (such as bracket with continuous flange).
 - Web frame at mid-tank and at the transverse bulkhead in the midship area and in the forebody, Fig. 6.6a.
 - Transverse bulkhead stringers with longitudinal connection, Fig. 6.6b.
 - Longitudinal double bottom girders and side stringers.

4) *Local structure models* are used to analyse stresses in stiffeners subjected to large relative deformation. Areas which normally are considered are:
 - Side, bottom and inner bottom longitudinals at the intersection to transverse bulkheads, Fig. 6.7.
 - Vertical stiffeners at transverse bulkhead, Fig. 6.7.
 - Horizontal longitudinals on longitudinal bulkheads at the connection to horizontal stringer levels at the transverse bulkheads, Fig. 6.6b.

5) *Stress concentration models* are used for fully stochastic fatigue analyses and for simplified fatique analyses for details where the geometrical stress concentration is unknown. Typical details to be considered are:
 - Discontinuous panel knuckles, Fig. 6.8.
 - Bracket and flange termination’s of main girder system.

6.1.2
All FE models are to be based on reduced scantlings, i.e. corrosion additions \(t_k \), are to be deducted as given in the Rules [1].

6.1.3
Effects from all stress raisers that are not implicitly included in fatigue test data and corresponding S-N curves must be taken into account in the stress analysis. In order to correctly determine the stresses to be used in fatigue analyses, it is important to note the definition of the different stress categories:

- Nominal stresses are those derived from beam element models, 6.4, or from coarse mesh FEM models of type 2 and type 3 as defined above. Stress concentrations resulting from the gross shape of the structure, e.g. shear lag effects, are included in the nominal stresses derived from coarse mesh FEM models.
- Geometric stresses includes nominal stresses and stresses due to structural discontinuities and presence of attachments, but excluding stresses due to presence of welds. Stresses derived from fine mesh FEM models (type 5) are geometric stresses. Effects caused by fabrication imperfections as e.g. misalignment of structural parts, are however normally not included in FEM analyses, and must be separately accounted for. The greatest value of the extrapolation to the weld toe of the geometric stress distribution immediately outside the region effected by the geometry of the weld, is commonly denoted hot spot stress.
- Notch stress is the total stress at the weld toe (hot spot location) and includes the geometric stress and the stress due to the presence of the weld.

\[\begin{align*}
\text{Nominal stress} &\quad \text{Hot spot} \\
\text{Geometric stress at hot spot (Hot spot stress)} &\quad \text{Geometric stress} \\
\end{align*} \]

Figure 6.1 Definition of stress categories

6.2 Global hull analysis

6.2.1
The purpose of the global hull analysis is to obtain a reliable description of the overall stiffness and global stress distribution in the primary members in the hull. The following effects should be taken into account:

- vertical hull girder bending including shear lag effects
- vertical shear distribution between ship side and bulkheads
- horizontal hull girder bending including shear lag effects
- torsion of the hull girder (if open hull type)
- transverse bending and shear
6.2.2
The extent of the model is dependent on the type of response to be considered and the structural arrangement of the hull. In cases where the response within the region considered is dependent on the stiffness variation of the hull over a certain length, the finite element model is generally required to extend over minimum the same length of the hull.

Thus for determination of the torsional response as well as the horizontal bending response of the hull of an open type ship it is generally required that the model extent covers the complete hull length, depth and breadth (a half breadth model may be used if the structure is symmetric, or can with sufficient accuracy be modelled as being symmetric, and antisymmetric boundary condition is assumed at the centreline). A complete finite element model may also be necessary for the evaluation of the vertical hull girder bending of ships with a complex arrangement of superstructures (e.g. passenger ships), and for ships of complex cross-section (e.g. catamarans). For car carriers and Ro-Ro ships, the transverse deformation- and stress response due to rolling may also require a model extending over the complete vessel length to be applied.

6.2.3
The loads can be produced by direct computation of hydrodynamic pressures and motions in accordance with Chapter 5. Simplified load models (pressures / line loads) producing specified hull girder loads, as outlined in Chapter 4 and/or based on the Rules as described in Appendix C may also be applied.

Figure 6.2 Global hull model of container vessel

6.2.4
The global analysis may be carried out with a relatively coarse mesh. Stiffened panels may be modelled by means of anisotropic elements. Alternatively, a combination of plate elements and beam elements, may be used. It is important to have a good representation of the overall membrane panel stiffness in the longitudinal/transverse directions and for shear.

Examples showing global finite element models for torsional analysis of a container vessel and global analysis of an oil tanker are shown in Figs. 6.2 and 6.3 respectively. The models may also be used to calculate nominal global (longitudinal) stresses away from areas with stress concentrations. In areas where local stresses in web frames, girders or other areas (as hatch corners) are to be considered (see Section 6.4-6) fine mesh areas may be modelled directly into the coarser model using suitable element transitions meshes to come down from coarse meshes to finer meshes. This approach leads to a fairly large set of equations to be solved simultaneously. An example of this is the container vessel shown in Figure 6.2 where the six hatch corner models initially were put directly into the global model and analysed together in order to determine hot-spot stresses in the hatch corners.

Figure 6.3 Global hull model of shuttle tanker

6.2.5
In general the various mesh models have to be “compatible” meaning that the coarser models are to have meshes producing deformations and/or forces applicable as boundary conditions for the finer mesh models. If super-element techniques are available, the model for local stress analysis may be applied as lower level super-elements in the global model.

6.2.6
Fine mesh models may be solved separately by transferring boundary deformations/ boundary forces and local internal loads to the local model. This load transfer can be done either manually or, if sub-modelling facilities are available, automatically by the computer programme. The finer mesh models are usually referred to as sub-models. The advantage of a sub-model or an independent local model is that the analysis is carried out separately on the local model. In this way less computer recourses are necessary and a controlled step by step analysis procedure can be carried out.
6.2.7
When the models are not compatible, deformations obtained in the coarser models cannot be applied directly in the finer mesh models. In such cases forces should preferably be transferred from the coarse model to the more detailed model rather than forced deformations.

6.2.8
Refined mesh models, when subjected to boundary forces or forced deformation from the coarser models, shall be checked to give comparable deformations and/or boundary forces as obtained from the coarse mesh model. Furthermore, it is important that the extent of the fine mesh model is sufficiently large to prevent that boundary effects due to prescribed forces and/or deformations on the model boundary affects the stress response in the areas of particular interest.

6.3 Cargo hold analysis

6.3.1
The cargo hold/tank analysis is used to analyse deformation response and nominal stresses of the primary hull structural members in the midship area. This model also provides boundary conditions for frame and girder analysis models.

a) 8-noded shell/composite elements

b) 4-noded shell elements

Figure 6.4 Cargo hold models of shuttle tanker (midship area)

6.3.2
Cargo hold model. The finite element model is normally to cover the considered tank/hold, and in addition one half tank/hold outside each end of the considered tank/hold, i.e. the model extent is $\frac{1}{2} + 1 + \frac{1}{2}$ hold or tank. If there is symmetry in structure and loading, a model covering the half breadth of the ship may be used. If there is a symmetry plane at the half-length of the considered tank/hold, the extent of the model may be taken as one half tank/hold on each side of the transverse bulkhead. Figs. 6.4 and 6.5 shows typical cargo hold midship models for a tanker and a container vessel respectively.

Note that for ships which give rise to warping response, a coarse mesh finite element model of the entire ship hull length may be required for torsional response calculations.

6.3.3
Load application. Two alternative ways of applying the loads are described here depending on whether or not simplified calculation of loads as outlined in Chapter 4, or wave loads by direct computation (Chapter 5) has been carried out.

In both cases lateral loads from sea pressure, cargo etc. are to be applied along the model. The longitudinal hull girder loads, however, have to be treated differently.

a) Simplified loads:
Hull girder loads, moments and shear forces, are to be applied to the ends of the model and analysed as separate load conditions. The shear forces are to be distributed in the cross-sections according to a shear flow analysis. Then, the hull girder response and the response from the lateral load distribution can be combined as outlined in Section 3.4.

Using this option, vertical load balance for the lateral load case will not be achieved and it will be important to use boundary conditions that minimise the effects of the unbalance.

b) Loads by direct load computations:
A consistent set of lateral loads along the model and hull girder loads at the model ends can be applied simultaneously to the model. This will automatically take care of the load combination issue, as loads based on direct hydrodynamic analysis will be simultaneously acting loads.

In this case the combined set of loads will approach a balance (equilibrium) such that a minimum of reaction forces at the supports should be present. In any case the boundary conditions should be arranged such as to minimise the effects of possible unbalances. The loads and boundary conditions in the hull cross section at each end of the model should be evaluated carefully when modelling only a part of the hull in order to avoid unrealistic stiffness from the forebody/aftbody.

6.3.4
Boundary conditions are closely related to how the loads are being applied to the FEM model. If the model covers one half
breadth of the vessel, symmetry conditions are to be applied in the centreline plane.

In order to cover the lateral load response associated with case a) “simplified load application” above, the model is to be supported vertically by distributed springs at the intersections of the transverse bulkheads with ship sides and the longitudinal bulkheads. The spring constants are to be calculated for the longitudinal bulkheads and the ship sides based on actual bending and shear stiffnesses and for a model length of three cargo holds. In addition, symmetry conditions at the model ends are to be applied. In this way no hull girder loads enter into the model. To account for the hull girder loads cases (moments & shear) the symmetry conditions at the ends have to be removed and the loads applied at the ends as described above applying the loads one at the time as separate load cases.

In cases where reduced models spanning ½ hold on each side of the transverse bulkhead is used the model can be fixed along the intersection between ship sides and transverse bulkheads.

To cater for case b) “loads by direct computations” the same spring system as in case a) can be applied, but all load components (lateral, moment and shear) are to be applied as a consistent set of simultaneously acting loads as produced by the hydrodynamic analysis.

Figure 6.5 Cargo hold model of container vessel

6.3.5

Finite element mesh. The mesh fineness of the cargo hold/tank analysis is to be decided based on the method of load application and type of elements used.

The element mesh of the cargo hold/tank model shall represent the deformation response and be fine enough to enable analysis of nominal stress variations in the main framing/girder system. The following may be considered as a guidance:

- A minimum of 3 elements (4-noded shell/membrane elements) over the web height will be necessary in areas where stresses are to be derived. With 8-noded elements, 2 elements over the web/girder height will normally be sufficient. Fig. 6.4 illustrates these two alternatives for possible mesh subdivisions in a double skin tanker. An additional example for the cellular cargo area of a container vessel is shown in Fig. 6.5 using 4-noded shell elements.

- For the tanker model shown in Fig. 6.4a, the general element length is equal to the web frame spacing. This implies that the effective flange/shear lag effect of the plate flanges (transverse web frames) will not be properly represented in this model, and that the mesh is not suitable for representation of stresses in way of stress concentrations as knuckles and bracket terminations.

- The mean girder web thickness in way of cut-outs may generally be taken as follows:

\[
\begin{align*}
 t_{\text{mean}} &= \frac{h - h_{\text{co}}}{h_r} t_w \\
 \text{where} & \ \\
 t_w &= \text{web thickness} \\
 r_{\text{co}} &= 1 + \frac{l_{\text{co}}^2}{2.6(h - h_{\text{co}})^2} \\
 l_{\text{co}} &= \text{length of cut-out} \\
 h_{\text{co}} &= \text{height of cut-out} \\
 h &= \text{girder web height}
\end{align*}
\]

For large values of \(r_{\text{co}} (> 2.0) \), geometric modelling of the cut-out is advisable.

6.4 Frame and girder models

6.4.1

Frame and girder models shall be capable of analysing deformations as well as stresses in the framing/girder system. Typical results derived will be membrane stresses caused by bending, shear and torsion for example in a double skin construction.

6.4.2

This model may be included in the cargo hold/tank analysis model, or run separately with prescribed boundary deformations/forces, ref. 6.2.6. However, provided sufficient computer capacity is available, it will in most cases be convenient to combine the two analyses into one model. The mesh density of the frame and girder model may then be used for the full extension of the cargo hold/tank FE model. Examples of such models are given in Figs. 6.4b and 6.5.
6.4.3

Finite element mesh. The element mesh should be fine enough to describe stress increase in critical areas (such as brackets with continuous flange). Typical local frame/girder models are given in Fig. 6.6. The following may be considered as a guidance:

- Normally element sizes equal to the stiffener spacing will be acceptable.
- In the longitudinal direction 3 elements between transverse frames is recommended for 4-noded elements. For 8-noded elements 2 elements is considered acceptable.
- A minimum of 3 elements (4-noded shell/membrane elements) over the web and girder heights will be necessary in areas where stresses are to be derived, see for example Fig. 6.4b showing the framing system in a double skin tanker with 4-noded elements. With 8-noded elements, 2 elements over the web/girder height will normally be sufficient, Fig. 6.4a.
- If cut-outs are not modelled, the mean girder web thickness in way of cut-outs may generally be taken as in 6.3.5 above.
- To the extent that reduced effectivity of flanges, webs etc. are not represented by the element formulation itself; the reduced effectivity may be defined by assigning reduced thickness of plate elements or cross-sectional areas of area elements. Efficiency of girder and frame flanges may be calculated by formulae given in Design Principles in the Rules [1]. However, care should be exercised in reducing thicknesses, as the effective flange for bending is different from the effective flange for membrane response. It will therefore not be possible to satisfy both conditions with the same model. Hence, an appropriately fine mesh able to capture the shear lag effect of girders and the warping effect of unsymmetrical members is recommended.

6.4.4

The model for analysis of frames and girders should be compatible with the cargo hold model if forced deformations are applied. If a separate analysis of frames and girders is carried out without any finite element calculation of the global stress response, the extent of the model, boundary conditions and load distribution should be carefully evaluated in order to obtain an acceptable global support and stiffness for the frame/girder model.

Similarly to the cargo hold model, the frame/girder model may be used for calculation of nominal stresses. For the models shown in Fig. 6.4b, 6.5 and 6.6a, the notch stresses at bracket toe terminations and panel knuckles have to be calculated using additional K-factors (K_K and K_w).

Figure 6.6 Frame and girder models

6.4.5

Local beam- and finite element analysis are utilised for determination of nominal stresses in frames, stringers and girders, and for determination of the deflection at supports of e.g. side and bottom longitudinal stiffeners.

Dependent on the complexity of the structure and the type of response investigated, alternative 3-D and 2-D analyses may be considered.

The Classification Notes for strength analysis of different types of ships, i.e. tankers and bulk carriers, give examples of beam and finite element modelling including calculation of efficient flanges, rigid element ends, boundary conditions and spring supports.

Global hull girder stresses shall be calculated based on actual thicknesses. Local stresses shall be calculated based on reduced scantlings, i.e. newbuilding scantlings minus corrosion addition t_k as given in Table 2.4.
For simplified analyses, loads are generally to be determined in accordance with Section 4, and the external- and internal loads shall generally be considered as separate load cases. The combined stress response shall be determined in accordance with 3.4.5.

Direct hydrodynamic load analyses are to be carried out as outlined in Chapter 5.

Unless a fine mesh finite element analysis is carried out, only nominal stresses will be derived. This implies that relevant K-factors has to be used for calculation of notch stresses, see also Chapter 10.

6.4.6

For calculation of nominal stresses in a web frame/ girder/ stringer system a 3-D beam or finite element model may be applied.

The longitudinal model extent shall be sufficient to obtain realistic boundary conditions. A model length extending from the middle of one hold to the middle of the adjacent hold is sufficient provided symmetry planes at the half lengths of the adjacent holds exist.

As the external and internal loads are analysed as separate load cases, the applied loads for each load case are generally unbalanced, and realistic support conditions must be defined.

6.4.7

When calculating nominal stresses in a simple frame or in a well defined grillage systems, a 2-D model may be applied.

Typical 2-D models are:
- one transverse web frame supported by side, girders, deck and bottom
- double bottom grillage, including floors and girders
- side construction including web, frames and stringers

For 2-D models the sensitivity of the assumed boundary conditions and support definition should be evaluated.

6.5 Local structure models

6.5.1

The local structure analyses are used to analyse stresses in local areas. Stresses in laterally loaded local plates and stiffeners subjected to large relative deformations between girders/frames and bulkheads may be necessary to investigate along with stress increase in critical areas (such as brackets with continuous flanges). Local structure models may also be used to determine the edge stress in way of critical hatch corner openings in, e.g. container vessels. In such cases the mesh fineness (i.e. the element length along the critical edge) is not to be larger than 0.2 R where R is the radius of curvature of the hatch corner. If 4-noded elements are used fictitious bar elements are to be applied at the free edge in order to facilitate a precise and straight forward read-out of the critical edge stress to be used in the fatigue analysis.

The model may be included in the 3-D cargo hold/tank analysis model of the frame and girder system, but may also be run separately with prescribed boundary deformations/forces from the frame and girder model. Note that local lateral pressure loads must be applied to the local model (if of relevance for the response).

6.5.2

Areas to model. As an example the following structures of a tanker are normally to be considered:

- Longitudinals in double bottom and adjoining vertical bulkhead members. See Fig. 6.7, which shows a model with 8-noded shell elements.
- Deck longitudinals and adjoining vertical bulkhead members.
- Double side longitudinals and adjoining horizontal bulkhead members.

![Figure 6.7 Stiffener transition at transverse bulkhead](image)

6.5.3

As a simplified approach local structure stiffener models may be modelled with beam elements in order to establish a simple basis for nominal stress to be applied in conjunction with established stress concentration factors as given in Chapter 10. It should be noted, however, that the K_s factors are derived on the basis of the simplified stress analysis procedure in Chapter 3 using the effective stiffener flanges given in 3.5.7.

6.5.4

Finite element mesh. Normally three (3) 8-noded elements are to be used over the height (web) of the stiffeners. Corresponding element sizes are to be used for the stiffener flange and the plate, noting that the plate mesh...
should be fine enough to pick up the shear lag effect. It is especially important to model unsymmetrical stiffeners correctly in order to capture the skew bending effect. In a model like the one in Fig. 6.7 the best strategy will be to combine the local structure stiffener model with the mesh fineness as described here with a stress concentration model (Section 6.6) in order to get a good description of the stress concentration in the bracket as basis for fatigue analysis. In a stochastic fatigue analysis procedure this is the preferred way of modelling.

6.6 Stress concentration models

6.6.1
Local finite element analyses may be used for calculation of local geometric stresses at the hot spots and for determination of associated K-factors. These analyses involve use of fine element mesh models of details such as bracket connections, stiffener to web frame connections or local design of frames/girders. For this purpose it is important to note the definition of the K-factors and their relation to the S-N curve (see also 10.1.2).

6.6.2
It is normally appreciated that it may be a considerable task to derive notch stresses directly from finite element analysis. This is due to:

- The local geometry has to be included in the finite element model in order to obtain stresses that account for this geometry. Thus in order to include the effect of the weld joint its geometry has to be included by three-dimensional elements. This may imply a rather large computer model.
- If a finite element mesh having zero radius models the hot spot region at corner details, the calculated stress will approach infinity as the element size is decreased to zero. Thus, a radius at such regions has to be assumed in order to obtain reliable results. The modelling of a relevant radius requires a very fine element mesh increasing the size of the computer model.

Hence, for design analysis a simplified numerical procedure is used in order to reduce the demand for large fine mesh models for the calculation of K-factors. The K-factor is calculated in two steps, \(K = K_g \cdot K_w \):

1) By means of a fine mesh model using shell elements (or alternatively solid elements) the stress concentration due to the geometry effect of the actual detail is calculated resulting in a \(K_g \) - factor.
2) The stress concentration due to the weld itself, \(K_w \), factor, may be based on standard values from Table 10.4 or 10.6 or direct finite element calculations with very fine mesh of solid elements (weld radius has to be modelled).

6.6.3
The aim of the finite element analysis is normally not to calculate directly the notch stress at a detail but to calculate the geometric stress distribution in the region of the hot spot such that these stresses can be used either directly in the fatigue assessment of given details or as a basis for derivation of stress concentration factors. Reference is made to Fig. 6.10 as an example showing the stress distribution in front of an attachment (A-B) welded to a plate with thickness \(t \). The notch stress is due to the presence of the attachment and the weld. The aim of the finite element analysis is to calculate the stress at the weld toe (hot spot) due to the presence of the attachment, denoted geometric stress, \(\sigma_g \). The stress concentration factor due to this geometry effect is defined as,

\[
K_g = \frac{\sigma_g}{\sigma_{\text{nominal}}}
\]

The stress concentration factor due to the weld itself may be taken from Table 10.4 for butt-welds, \(K_w \). Also, with reference to Fig. 6.10, the resulting stress concentration factor is defined as

\[
K = K_g \cdot K_w
\]

With the following definition of the stress concentration factor due to the weld only,

\[
K_w = \frac{\sigma_{\text{notch}}}{\sigma_g}
\]

The resulting stress concentration factor is obtained as

\[
K = K_g \cdot K_w
\]

Thus the main emphasis of the finite element analysis is to make a model that will give stresses with sufficient accuracy at a region outside that effected by the weld. For sufficiently accurate calculation of \(K_g \) the model should have a fine mesh for extrapolation of stresses back to the weld toe.

6.6.4
Changes in the density of the element mesh, where local stresses are to be analysed, should be avoided. The geometry of the elements should be evaluated carefully in order to avoid errors due to deformed elements (for example corner angles between 60° and 120° and length/breadth ratio less than 5).

The size of the model should be so large that the calculated results are not significantly affected by assumptions made for boundary conditions and application of loads. If the local stress model is to be given forced deformations from a coarser model (global model, frame/girder model or local structure model) the models have to be compatible as described in 6.2.5. If the models do not satisfy this requirement, forced deformations cannot be applied, and forces and simplified boundary conditions have to be modelled.
6.6.5

Elements size for stress concentration analysis. FEM stress concentration models are generally very sensitive to element type and mesh size. By decreasing the element size the FEM stresses at discontinuities will in the limit approach infinity. It is therefore necessary to set a lower bound for element size and use an extrapolation procedure to the hot spot to have a uniform basis for comparison of results from different computer programs and users. On the other hand, in order to properly pick up the geometric stress increase it is important that the stress reference points in t/2 and 3t/2 (Fig. 6.10) are not inside the same element. This implies that element sizes in the order of the plate thickness are to be used for the modelling. If solid modelling is used, the element size in way of the hot spot may have to be reduced to half the plate thickness in case the overall geometry of the weld is included in the model representation, Fig. 6.11.

It is recommended that shell elements are used as the standard element type and that solid elements are used on a comparative basis to investigate K_g factors in special areas.

Fig. 6.8 shows an example of a hopper tank knuckle in a tanker in which shell elements were used for the coarser models and solid elements for the fine mesh stress concentration model in order to directly determine the geometric stress at the knuckle line σ_g and hence the geometric stress concentration factor K_g directly.

For this case the nominal stress is defined as the average element stress one half longitudinal spacing from the knuckle line. This is referring to a frame and girder analysis model in which the element width is equal to the spacing between the longitudinals.

6.6.6

Element stresses are normally derived at the gaussian integration points. Depending on element type it may be necessary to perform several extrapolations in order to determine the stress at the location representing the weld toe. In order to determine the proper principal stress direction, the information on the direction stresses shall be preserved.

6.6.7

Hot spot point. When shell elements are used for the modelling and the overall geometry of the weld is not included in the model, the extrapolation shall be performed to the element intersection lines (in order to get results that corresponds to tests in general). However, for the hopper tank knuckle, the hot spot stress depends on the global geometry of the weld. The weld toe distance, x_{wt}, is defined as the distance from the weld toe to the intersection between the hopper plate surface and the inner bottom surface, see Figure 6.9. The extrapolation may be performed to a point x_{wt} from the element intersection lines when surface stresses are extrapolated. (This is to get correspondence with measured values on an actual geometry).

If the (overall) weld geometry is included in the model, the extrapolation is related to the weld toe as shown in Fig. 6.10.

6.6.8

Stress extrapolation procedure. First stresses are extrapolated from the gaussian integration points to the plate surface through the plate thickness. Then a further extrapolation to the line A - B is conducted. The final extrapolation of component stresses are carried out as a linear extrapolation of surface stresses along line A - B at a distance t/2 and 3t/2 from the weld toe, alternatively the element intersection line (where t denotes the plate thickness). Having determined the extrapolated stress components at the hot spot, the principal stresses are to be calculated and used for the fatigue evaluation.

The stress extrapolation procedure may be tested for similar cases based on laboratory testing and/or where results have been presented in the literature.
This procedure has been tested against known target values for a plate with a non load carrying attachment and a cut-out in a web for longitudinal transfer. Acceptable results have been achieved using 8-node shell elements and 20 node volume elements with size equal the thickness. However, this methodology is experience based and one should be cautious to use it for details very different from what it has been calibrated for. The results may also be dependent on the finite element program. It is therefore recommended that the analysis program with proposed element mesh is tested against a well known detail prior to use for fatigue assessment.

Figure 6.10 Stress distribution at an attachment and extrapolation of stresses

Figure 6.11 Examples of modelling

Structural detail

Model with 8-node or 20-node solid elements (size: $t/2 \times t/2 \times t/2$)

Model with 4-node or 8-node shell elements (size: $t \times t$)
7. Fatigue Analysis of Oil Tankers

7.1 Where to analyse

7.1.1 Fatigue damages are known to occur more frequently for some ship types and categories of hull structure elements. The fatigue life is in particular related to the magnitude of the dynamic stress level, the corrosiveness of the environment and the magnitude of notch- and stress concentration factors of the structural details, which all vary depending on ship type and structure considered. The importance of a possible fatigue damage is related to the number of potential damage points of the considered type for the ship or structure in question and to its consequences.

7.1.2 A major fraction of the total number of fatigue damages on ship structures occurs in panel stiffeners on the ship side and bottom and on the tank boundaries of ballast- and cargo tanks. However, the calculated fatigue life depends on the type of stiffeners used, and the detail design of the connection to supporting girder webs and bulkheads. In general un-symmetrical profiles will have a reduced fatigue life compared to symmetrical profiles unless the reduced effectiveness of the un-symmetrical profile is compensated by an improved design for the attachment to transverse girder webs and bulkhead structures.

7.1.3 Structural elements in the cargo area being of possible interest for fatigue evaluation are listed in Table 7.1

<table>
<thead>
<tr>
<th>Structure member</th>
<th>Structural detail</th>
<th>Load type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side-, bottom- and deck plating</td>
<td>Butt joints, deck openings and attachment to transverse webs, transverse bulkheads,</td>
<td>Hull girder bending, stiffener lateral pressure load and support deformation</td>
</tr>
<tr>
<td>and longitudinals</td>
<td>hopper knuckles and intermediate longitudinal girders</td>
<td></td>
</tr>
<tr>
<td>Transverse girder and stringer</td>
<td>Bracket toes, girder flange butt joints, curved girder flanges, knuckle of inner</td>
<td>Sea pressure load combined with cargo or ballast pressure load</td>
</tr>
<tr>
<td>structures</td>
<td>bottom and sloped hopper side and other panel knuckles including intersection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with transverse girders. Single lug slots for panel stiffeners, access and lightening holes</td>
<td></td>
</tr>
<tr>
<td>Longitudinal girders of deck and</td>
<td>Bracket termination's of abutting transverse members (girders, stiffeners)</td>
<td>Hull girder bending, and bending / deformation of longitudinal girder and</td>
</tr>
<tr>
<td>bottom structure</td>
<td></td>
<td>considered abutting member</td>
</tr>
</tbody>
</table>

Table 7.1 Tankers

7.2 Fatigue analysis

7.2.1 Depending on the required accuracy of the fatigue evaluation it may be recommended to divide the design life into a number of time intervals due to different loading conditions and limitations of durability of the corrosion protection. For example, the design life may be divided into one interval with good corrosion protection and one interval where the corrosion protection is more questionable for which different S-N data should be used, see Section 2.3. Each of these intervals should be divided into that of loaded and ballast conditions. The following guidance may be applied:

7.2.2 For vessels intended for normal, world wide trading, the fraction of the total design life spent at sea, should not be taken less than 0.85. The fraction of design life in the fully loaded cargo and ballast conditions, \(p_n \), may be taken from Table 7.2:

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Loaded conditions</th>
<th>Ballast conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tankers</td>
<td>0.45</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Table 7.2 Fraction of time at sea in loaded, ballast condition, \(p_n \) respectively

7.2.3 For preliminary calculations and as an rough approximation of relative deflection between transverse bulkheads and adjacent web frames in ship side of double hull tankers, the following values, at the probability level of \(10^{-4} \), may be used:

\[
\delta = (1-(1-2z/D)^2) \delta_m \quad (\text{mm})
\]

where

\[
\delta_m = \frac{0.35l_s^2 D}{E\sqrt{t_b} \sqrt{1+N_s}} \cdot p
\]

for designs with side stringers

\[
\delta_m = \frac{110l_s^3 D^2}{EI_s \sqrt{1+N_s}} \cdot p
\]

\(z \) = vertical distance from baseline to considered longitudinal (m)

\(l_s \) = distance between bulkhead and transverse frame

\(D \) = depth of ship (m)

\(p \) = dynamic pressure, \(p_e \), for external pressure load

\(p \) = pressure due to transverse acceleration for internal pressure load

\(S \) = sum of plate flange width on each side of the horizontal stringer
\[i_a = \frac{I_a}{S} \]
\[i_b = \frac{I_b}{l_s} \]
\[I_a = \text{moment of inertia for the longitudinal stringer} \]
\[I_b = \text{moment of inertia for the transverse frame} \]
\[N_S = \text{number of cross ties} \]

7.2.4
For similar tank filling conditions on both sides of a bulkhead, e.g. for a bulkhead between two cargo tanks, the following apply:

a) the effect of vertical acceleration is cancelled and may be set to zero
b) the pressures due to motion are added for bulkheads normal to the direction (plane) of the motions.

The net pressure range may be taken as:

\[p_1 = 2p_2 \] for longitudinal bulkheads between cargo tanks and,
\[p_1 = 2p_3 \] for transverse bulkheads between cargo tanks,

(Note that \(\Delta p = 2p_1 \) when liquid on both sides).

7.2.5
As a simplification, sloshing pressures may normally be neglected in fatigue computations. However, if sloshing is to be considered, the sloshing pressures in partly filled tanks may be taken as given in the Rules [1], Pt.3 Ch.1 Sec. 4, C306. The pressure amplitude is defined at the probability level of \(10^{-4} \). In case of partly filled tanks on both sides of a bulkhead, the pressure range may be taken as the sum of the pressure amplitudes in the two tanks. Otherwise the range may be taken equal to the amplitude.

Unless otherwise specified, it may be assumed that tanks (in tankers) are partly filled 10% of the vessel's design life.
7.3 Example of application (Simplified methods example)

7.3.1 Introduction

In this Appendix an example of the fatigue assessment of a welded connection between a longitudinal and a bracket in the shipside is considered. Before starting to calculate the stresses it may be of relevance to decide what loads and load conditions and the level of detail shall be considered for the calculation of stresses. The following observations have implication on how the calculations are made.

A) The analysis is to be performed according to simplified procedure, see Figure 1.1. The loads may be taken in accordance with Chapter 4. The local and global loads are based on the main dimensions of the vessel given in Table 7.3. Further, the Rules [1] describes what loading conditions to be considered and minimum requirements to the corrosive environment.

B) The considered detail is the termination of a bracket on top of a longitudinal. The simplified stress calculation procedure as defined in Chapter 3 is normally sufficient. In this example, the connection between a longitudinal and a frame in the shipside is considered, using the simplified method.

![Figure 7.2 View of ship and location of detail in ship](image)

Figure 7.2 View of ship and location of detail in ship

<table>
<thead>
<tr>
<th>Length of ship</th>
<th>L = 221 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth of ship</td>
<td>B = 42 m</td>
</tr>
<tr>
<td>Block coefficient</td>
<td>C_B = 0.83</td>
</tr>
<tr>
<td>Design speed</td>
<td>V = 13 knots</td>
</tr>
<tr>
<td>Depth of ship</td>
<td>D = 20.3 m</td>
</tr>
<tr>
<td>Vertical Sectional modulus at deck line</td>
<td>Z_v = 23.1 m^3</td>
</tr>
<tr>
<td>Neutral axis above keel</td>
<td>n_0 = 8.2 m</td>
</tr>
<tr>
<td>Horizontal sec. modulus in ship side</td>
<td>Z_h = 40.1 m^3</td>
</tr>
</tbody>
</table>

Table 7.3 The example ship’s main dimensions

7.3.2 Geometry of longitudinal and bracket termination.

For different load conditions it is normally only the loads that change for each load condition. It may therefore be practical to calculate the stresses per unit bending moment and per unit lateral pressure and scale these with relevant values for each load condition. It is primarily the calculation of stresses due to lateral pressures that will be simplified by such an approach. For a bracket termination on top of a stiffener, the stresses to be considered related to lateral pressure are due to

- stiffener bending (Figure 7.4)
- relative deflection between bulkhead and first frame (Figure 7.5)
- double hull bending (Figure 7.6)
Table 7.4 Geometry of stiffener considered

The stresses are to be calculated based on the reduced scantlings. Here it is assumed that the corrosion allowance is subtracted, and the dimensions given in Table 7.4 are net scantling values. The stresses are to be calculated at the considered point on the weld connection of bracket and longitudinal stiffener as shown in Figure 7.3.

7.3.3 K-factors

An important parameter in the fatigue analysis is the stress concentration factor. The stress concentration factor describes the increase in notch stress due to local geometry, weld geometry and workmanship. The value of the K-factor has to be decided for the considered detail before the notch stresses can be calculated. Reference is made to Chapter 10.
The considered geometry is an unsymmetrical L-profile exposed to lateral loading in combination with global bending moments. For unsymmetrical stiffeners there is an additional stress concentration compared to nominal stresses from symmetrical beam results when subjected to lateral pressure loads.

For the weld at the end of a triangular bracket welded on top of the stiffener flange, the K-factor for axial stresses (related to global loads) is taken according to Table 10.2

\[K_{\text{axial}} = K_g K_w = 2.1 \]

and K-factor for local stiffener bending stresses (induced by lateral pressure)

\[K_{\text{lateral}} = K_g K_w K_{n2} = 2.1 \cdot K_{n2} = 2.1 \cdot 1.485 = 3.119 \]

The factor \(K_{n2} \) due to unsymmetrical cross section is given in 10.2.13 as

\[K_{n2} = \frac{(1 + \gamma \beta^2)(1 + \gamma \beta^2 \psi)}{1 + \gamma \beta^2 \psi} = 1.485 \]

where

\[\beta = 1 - \frac{t_w}{b_f} = 0.9 \]

\[\psi = \frac{(h-t_f)^2 t_w}{4Z_s} = 0.272 \]

\[\gamma = \frac{3(1-(\mu/280))/(1+(\mu/40))}{(\text{Table 10.10})} = 1.004 \]

\[\mu = \frac{l^4}{(h_f^3 h_f^2 (4h/t_w^3 + s/h^3)} = 138.583 \]

Comment to derivation of K-factor

\[K_w = 1.5 \text{ due to weld geometry given in 10.1.2} \]

\[K_g = 2.1/K_w = 1.40 \text{ may be compared with fine mesh FEM for axial load} \]

\[K_g K_{n2} = 2.08 \text{ may be compared with fine mesh FEM for lateral pressure load} \]

7.3.4 Calculation of stresses due to lateral pressure

7.3.4.1 General

The stresses to be considered due to lateral pressure are according to 3.5.4 and 11.2.1

\[\sigma_{2A} = K_{\text{axial}} \frac{M}{Z_s} + K_{\text{axial}} \frac{m_E l^2 Z_s}{l^2} \delta = \sigma_{2A} + \sigma_{\delta} \]

\[\sigma_2 = K_{\text{axial}} \frac{K_{\text{bP}} b^2 r_b}{\sqrt{l_f^3 l_b}} \]

where
\(\sigma_{a'}\) is stress due to stiffener bending (7.3.4.2)

\(\sigma_{e}\) is stress caused by relative deflection between frame and bulkhead (7.3.4.3)

\(\sigma_{c}\) is stress caused by bending of double hull (7.3.4.4)

The main dimensions of the ship and the geometry of the stiffener are given in Tables 7.3 and 7.4, respectively. Values concerning frame and girder geometry are contained in Table 7.5. When using values not defined in either of the tables the values will be stated. When calculating the stresses and deflections, the unit lateral pressure, \(p_e\), is 1 kN/m² and Young’s modulus, \(E\), is \(2.1 \times 10^5\) N/mm².

<table>
<thead>
<tr>
<th>Sum of plate flange width on each side of the horizontal stringer nearest to D/2</th>
<th>(S) = 7000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of inner side</td>
<td>(t_{f2}) = 16 mm</td>
</tr>
<tr>
<td>Area of stiffeners of inner side</td>
<td>(A_{l2}) = 4000 mm²</td>
</tr>
<tr>
<td>Longitudinal moment of inertia about the transverse frame</td>
<td>(I_a) = (6.42 \times 10^{11}) mm⁴</td>
</tr>
<tr>
<td>Transverse moment of inertia about the longitudinal axis</td>
<td>(I_b) = (2.82 \times 10^{11}) mm⁴</td>
</tr>
<tr>
<td>Smearered out stiffness about longitudinal stringer, (i_a=I_a/S)</td>
<td>(i_a) = (91.71 \times 10^6) mm³</td>
</tr>
<tr>
<td>Smearered out stiffness about transverse frame, (i_b=I_b/I)</td>
<td>(i_b) = (82.46 \times 10^6) mm³</td>
</tr>
<tr>
<td>Distance from weld to neutral axis in double hull</td>
<td>(r_a) = 1245 mm</td>
</tr>
<tr>
<td>Longitudinal length of double skin panel of considered Section. The tank length.</td>
<td>(a) = 22500 mm</td>
</tr>
<tr>
<td>Transverse width of double skin panel of considered section. The distance from deck line to double bottom</td>
<td>(b) = 19500 mm</td>
</tr>
<tr>
<td>Number of struts</td>
<td>(N_S) = 0</td>
</tr>
<tr>
<td>Breadth of wing tank</td>
<td>(h_{db}) = 3000 mm</td>
</tr>
</tbody>
</table>

Table 7.5 Frame and girder geometry

7.3.4.2 Calculation of stresses due to stiffener bending.

The stress due to stiffener bending is calculated as described in 3.5.4, accounting for the effective span of the longitudinal and the reduction of the effective bending moment at the weld toe.

![Figure 7.4 Stress due to stiffener bending for external pressure load](image-url)
The stress per unit lateral pressure (1 kN/m²) is

$$\sigma_{zA} = K_{lateral} \frac{M}{Z_s}$$

where

$$M = \frac{psl^2}{12} r_p$$ (bending moment at the considered point)

$$r_p = 6 \left(\frac{x}{l} \right)^2 - 6 \left(\frac{x}{l} \right) + 1.0$$ (reduction in bending moment)

$$r_p = 6 \left(\frac{116.7}{2753} \right)^2 - 6 \left(\frac{116.7}{2753} \right) + 1.0 = 0.756 = 0.756$$

$$\sigma_{zA} = K_{lateral} \frac{psl^2}{12Z_s} r_p$$

$$\sigma_{zA} = 3.119 \cdot 10^{-3} \cdot 790 \cdot 2753^2 \cdot 0.756 = 2.552 \text{ N/mm}^2$$

To determine the stresses from stiffener bending in the relevant loading conditions the bending stress is to be multiplied with the relevant dynamic pressure. For an external pressure load there will be a compression at the considered point, as described in Figure 7.4.

7.3.4.3 Relative deflection between frame and bulkhead

Stresses may also be induced due to relative deflections between the transverse framing and the bulkhead. In order to determine the correct magnitude of the deflection, a finite element analysis is required. For a more detailed analysis (FEM) of double hull vessel the deflection should be seen in connection with the double hull bending stresses. As an approximation, however, the relative deflection may be taken according to the simplified formula in 7.2.3.

![Figure 7.5 Stress due to relative deflection between frame and bulkhead](image-url)
The stress due to the relative deflection is calculated for a unit pressure, to be

\[\sigma_\delta = K_{\text{axial}} \frac{m \cdot E \cdot I}{Z} \cdot r_\delta \cdot \delta \]

where

\[r_\delta = 1 - 2 \left(\frac{x}{l} \right) \]
(reduction factor for the moment at the hotspot)

\[\delta = \left(1 - \left(1 - \frac{2 \cdot \delta_s}{D} \right)^2 \right) \delta_m \]
(simplified calculation of deflection at considered point considered according to 7.2.3)

\[\delta_m = \frac{0.3 \cdot S_i \cdot D}{E \sqrt{i_z i_\delta} \sqrt{1 + N_s}} \cdot p_e \]
(for designs with side stringers)

\[Z_s = V / \zeta_{01} \]

\[m_\delta = 4.4 \]
(moment factor due to relative deflection according to 3.5.4)

\[r_\delta = 1 - 2 \left(\frac{116.7}{2753} \right) = 0.915 \]

\[\delta = \frac{0.3 \cdot 7000 \cdot 3420^2 \cdot 20.3}{2.1 \cdot 10^5 \sqrt{82.46 \cdot 10^6 \cdot 91.71 \cdot 10^6} \sqrt{1 + 0} \cdot 10^{-3}} = 0.027 \text{ mm} \]

\[\delta = \left(1 - \left(1 - \frac{2 \cdot 13.06}{20.3} \right)^3 \right) 0.0273 = 0.025 \text{ mm} \]

\[\sigma_\delta = K_{\text{axial}} \frac{m_\delta E \zeta_{01}}{l^2} \cdot r_\delta \cdot \delta \]

\[\sigma_\delta = 2.1 \frac{4.4 \cdot 2.1 \cdot 10^5 \cdot 222.6}{2753^3} \cdot 0.915 \cdot 0.0251 = 1.31 \text{ N/mm}^2 \]

To determine the stresses from relative deflection in the relevant loading conditions the deflection stress is to be multiplied with the relevant dynamic pressure. The external pressure at the height of the stiffener is applied to determine these stresses, as the vessel has horizontal frames in the shipside. For internal pressures the net outward pressure is applied.

It is seen from Figure 7.5 that the bending of the stiffener is resulting in compression at the considered point for external pressure loads. Assuming tension stress positive, a negative stress is the result in the hot spot when exposed to external lateral pressure.

7.3.4.4 Double hull stresses

The longitudinal secondary stresses in the double hull panels at the intersection with the transverse bulkhead can be assessed applying 3-d frame or finite element analyses.

In this example the stress caused by double hull bending is calculated according to the simplified procedure in Chapter 11.
Figure 7.6 Double hull stress due to external pressure

Unit lateral pressure at the shipside result in deformation of the double hull as indicated in Figure 7.6. The stress in the flange of the stiffener considered is according to 11.2.1

\[
\sigma_z = K_{aaxd} \frac{K_b b^2 r_a}{\sqrt{I_a I_b}}
\]

(double bottom longer than wide)

where

\[
I_a = 6.42 \cdot 10^{11} \text{ mm}^4
\]

(sectional moment of inertia of the longitudinal stringer)

\[
I_b = 2.82 \cdot 10^{11} \text{ mm}^4
\]

(sectional moment of inertia of the transverse frame)

\[
i_a = \frac{I_a}{S} = 6.42 \cdot 10^{11}/7000
= 91.71 \cdot 10^6 \text{ mm}^3
\]

\[
i_b = \frac{I_b}{l_k} = 2.82 \cdot 10^{11}/3420
= 82.46 \cdot 10^6 \text{ mm}^3
\]

\[K_b = 0.088\]

(support bending stress coefficient from Table 11.1, case no. 1. Assumed simply supported in deck and bottom. Linear interpolation of \(\rho\) at the \(\eta = 1.0\) column.)

\[
\rho = \frac{22500}{19500} \sqrt{\frac{82.46 \cdot 10^6}{91.71 \cdot 10^6}}
= 1.124
\]

\[
\sigma_z = 2.1 \cdot 0.088 \cdot 10^{-3} \cdot 19500^2 \cdot 1245
= 1.01 \text{ N/mm}^2
\]

To determine the stresses from the double hull bending in the relevant loading conditions the bending stress is to be multiplied with the relevant dynamic pressure. When using the simplified formulas of Chapter 11, the effective pressure to be applied is the average pressure over the double hull panel. The average pressure is calculated as the dynamic pressure amplitude, reduced according to the exposed underwater area

\[P_{\text{eff,dh}} = P_e T_{\text{act}} / D\]

It is seen from Figure 7.6 that the bending of the stiffener is resulting in tension at the considered point of the stiffener. Assuming tension stress positive, a positive stress is the result in the hot spot when exposed to external lateral pressure.
7.3.5 Load conditions

The load conditions to be considered are normally given in the Rules [1] for the specific ship types. For the considered tanker for oil, two load conditions have been used:

1) Fully loaded, with a fraction of time $p_n = 0.45$ and

2) Ballast with a fraction of time $p_n = 0.40$.

The load conditions should be defined in terms of draughts T_f and T_b, and GM and KR (or period of Roll, T_R) as given in Table 7.6 for the considered vessel. Guidance for choice of these values is given in Section 4.5. The internal and external pressure loads are dependent on the load condition. Data for the present vessel is given in Table 7.6.

<table>
<thead>
<tr>
<th>Fully loaded</th>
<th>Ballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draught</td>
<td>$T_f = 14.20$ m</td>
</tr>
<tr>
<td>Metacentric height</td>
<td>$GM = 5.04$ m</td>
</tr>
<tr>
<td>Roll radius of gyration</td>
<td>$KR = 16.38$ m</td>
</tr>
<tr>
<td>Part of time in load condition</td>
<td>$p_n = 0.45$</td>
</tr>
<tr>
<td>Density</td>
<td>$\rho_{\text{cargo}} = 1000$ kg/m3</td>
</tr>
</tbody>
</table>

Table 7.6 Definition of load conditions

7.3.6 Refining fatigue calculation parameters

7.3.6.1 SN-curve and corrosion protection

The detail is located in a coated ballast tank with cathodic protection. According to the Rules at least 5 years of corrosive environment should be applied. For a vessel with a minimum fatigue life of 20 years this implies that the S-N curve of Type I in air is applied for the first 15 years (equivalent to efficient coating lifetime of 10 years) and the curve of Type II applies for the remainder of the time. This will result in scaling factor as in 2.5.1 $\chi = 1.3$, when the calculated life is equal to the design life.

7.3.6.2 The environmental correction factor f_e

The vessel will trade in on world wide operation and thus the environmental correction factor $f_e = 0.8$ may be applied as described in 3.4.3.

7.3.6.3 The effects of mean stress

The mean stress is to be calculated based on the mean stress in each load condition. In this example the approach is simplified by assuming that the mean stress on the average is zero (half the time in compression and half the time in tension) and using $f_m = 0.85$. This may be detailed by calculating the mean stress at the notch from still water load and determining f_m from 2.2.3 or 2.3.4 for the relevant load condition.

7.3.7 Calculation for Load condition - Fully loaded (FL)

7.3.7.1 Internal pressure loads

The longitudinal is located in a ballast tank with no local bending in the fully loaded condition due to internal pressure loads. The loads due to cargo pressures will, however, act on the double hull and cause double hull stresses and frame deflections. The accelerations and pressures are calculated according to 4.4.1 for the cargo tank as
a_v = 2.43 m/s^2
a_t = 3.74 m/s^2
a_i = 1.08 m/s^2
h_s = 7.235 m
y_s = 9.00 m
x_s = 11.25 m
p_1 = 17.58 kN/m²
p_2 = 33.66 kN/m²
p_3 = 12.15 kN/m²

The effective net pressure outward from the cargo is resulting in double hull bending between bulkheads. The lateral pressure caused by the transverse acceleration, a_v, scaled to the 10^-4 level, is according to 4.4.1

\[p_{i,dh} = f_a \rho a_v |y_s| \]

where

\[f_a = 0.5^{1/h} \] (scaling factor to transform the load effect to probability level 10^-4, when the acceleration is specified at 10^-8 level)

\[h = 2.26 - 0.54 \log_{10}(L) \] (the Weibull shape parameter)

\[h = 2.26 - 0.54 \log(221) = 0.994 \]

\[f_a = 0.5^{1.0^{0.994}} = 0.4979 \]

\[p_{i,dh} = 0.4979 \cdot 1.00 \cdot 3.74 \cdot 9.00 = 16.76 \text{kN/m}^2 \]

7.3.7.2 External sea pressure loads

The sea pressure is calculated according to 4.3.1

\[p_e = f_p p_d \]

where

\[p_d = \left[\frac{1}{3} \left(\frac{\phi}{2} + C_s \frac{|y| + k_j}{16} \left(0.7 + 2 \frac{z_{sw}}{T_{sw}} \right) \right) \right] \] (dynamic pressure amplitude below the waterline dominated by roll motion)

\[r_p = \frac{T_{sw} + z_{sw} - \bar{z}}{2z_{sw}} \] (reduction of pressure amplitude to the considered point in the wave zone)

\[\phi = 50 c / (B + 75) \] (maximum roll angle as described in 4.5.1)

\[c = (1.25 - 0.025 T_R) k \]

\[T_R = 2 k R / \sqrt{GM} \] (period of roll, maximum 30 (s))
\[z_{wl} = \frac{3}{4} \frac{P_{st}}{\rho g} \]
(difference from actual water line. It is assumed that the external sea pressure above \(T_{act} + z_{wl} \) will not contribute to fatigue damage)

\[z_w = z \]
(Vertical distance from the baseline to the load point)

\[p_{zh} = p_0 \text{ at } z_w = T_{act} \]
(for ship with bilge keel)

\[k = 1.0 \]
(Vertical distance from the waterline to the top of the ship’s side)

\[f = 6.10 \text{ m} \]
(The smallest of \(T_{act} \) and \(f = 6.10 \))

\[y = 9.00 \text{ m} \]
(Horizontal distance from the centre line to the load point)

\[T_R = 2 \cdot 16.38 / \sqrt{5.04} = 14.59 \text{ sec.} \]

\[c = (1.25 - 0.025 \cdot 14.59) \cdot 1.0 = 0.885 \]

\[\phi = 50 \cdot 0.885 / (42 + 75) = 0.378 \]

\[p_x = 10 \left[21.00 \cdot \left(\frac{0.378}{2} + 0.83 \cdot \frac{21.00}{16} + 6.10 \cdot \left(\frac{0.7 + 13.06}{14.20} \right) \right) \right] = 75.39 \text{ kN/m}^2 \]

\[p_a = 10 \left[21.00 \cdot \left(\frac{0.378}{2} + 0.83 \cdot \frac{21.00}{16} + 6.10 \cdot \left(\frac{0.7 + 14.20}{14.20} \right) \right) \right] = 77.65 \text{ kN/m}^2 \]

\[z_{wl} = 3 \cdot 77.65 / (4 \cdot 1.025 \cdot 9.81) = 5.79 \text{ m} \]

\[r_p = \frac{14.20 + 5.79 - 13.06}{2 \cdot 5.79} = 0.598 \]

\[p_e = 0.598 \cdot 75.39 = 45.08 \text{ kN/m}^2 \]

The pressure \(p_0 = p_e \) is applied in the evaluation of relative deflection. The effective “smeared out” double hull pressure is estimated as

\[p_{e, dh} = p_e \cdot T_{act} / D = 45.08 \cdot 14.20 / 20.3 = 31.53 \text{ kN/m}^2 \]

7.3.7.3 Combination of stress components

The stress amplitudes due to internal and external pressures are combined considering the sign. Positive stress is defined as tension at the location of the weld

Stresses due to external pressure loads

<table>
<thead>
<tr>
<th>Component</th>
<th>(\sigma_e)</th>
<th>(\sigma_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Stiffener bending (p_s = 45.08 \text{ kN/m}^2)</td>
<td>(c \cdot 45.08 \cdot 2.552:) -115.04 \text{ N/mm}^2</td>
<td></td>
</tr>
<tr>
<td>+ Relative deflection (p_e = 45.08 \text{ kN/m}^2)</td>
<td>(c \cdot 45.08 \cdot 1.309:) -59.01 \text{ N/mm}^2</td>
<td></td>
</tr>
<tr>
<td>+ Double hull bending (p_{e, dh} = 31.53 \text{ kN/m}^2)</td>
<td>(t \cdot 31.53 \cdot 1.006:) 31.72 \text{ N/mm}^2</td>
<td></td>
</tr>
</tbody>
</table>

= Stresses from external sea pressure loads

\[\sigma_e = -142.33 \text{ N/mm}^2 \]
Stresses due to internal pressure loads

+ Stiffener bending \(p_i = 0 \) 0 N/mm²

+ Relative deflection \(p_{i,d} = 16.76 \text{ kN/m}² \) \(t \cdot 16.76 \cdot 1.309 : 21.94 \text{ N/mm}² \)

+ Double hull bending \(p_{i,dh} = 16.76 \text{ kN/m}² \) \(c \cdot 16.76 \cdot 1.006 : -16.86 \text{ N/mm}² \)

\[\sigma_i = 5.08 \text{ N/mm}² \]

\(t = 1 \) tension

\(c = -1 \) compression

The combined local stress range is determined according to 3.4.5 as

\[\Delta \sigma_i = 2 \sqrt{\sigma_e^2 + \sigma_t^2 + 2 \rho_p \sigma_e \sigma_t} \]

\[\rho_p = \frac{1}{2} \left[\frac{z}{10 LT_{act}} + \frac{|x|}{4L} + \frac{|y|}{4B} + \frac{|x| \cdot z}{5 LT_{act}} \right] \quad z \leq T_{act} \]

where

\(x, y, z \) are the coordinates of the load point, according to the coordinate system described in 3.4.5 with \(\text{origo} = \text{(midship, centreline, baseline)} \)

\(x = 0 \text{ m} \)

\(y = 21.00 \text{ m} \)

\(z = 13.06 \text{ m} \)

\[\rho_p = \frac{1}{2} \left[\frac{13.06}{10 \cdot 14.2} + \frac{1}{4 \cdot 221} + \frac{1}{4 \cdot 42} + \frac{1 \cdot 13.06}{5 \cdot 221 \cdot 14.20} \right] = 0.533 \]

\[\Delta \sigma_i = 2 \sqrt{(-142.33)^2 + 5.08^2 + 2 \cdot 0.533 \cdot (-142.33) \cdot 5.08} = 279.38 \text{ kN/m}² \]

7.3.7.4 Global hull bending moments

The vertical wave bending moments are computed according to 4.2.1 as

\[M_{w.o,h} = -0.11 f_r k_{wam} C_w L^2 B (C_B + 0.7) \] (sagging moment)

\[M_{w.o,s} = 0.19 f_r k_{wam} C_w L^2 B C_B \] (hoggling moment)

The horizontal wave bending moment is calculated according to 4.2.2 as

\[M_B = 0.22 f_r L^{9/4} (T_{act} + 0.30 B) C_B (1 - \cos(2 \pi x/L)) \]

where

\(C_w = 10.75 - [(300 - L) / 100]^{3/2} \) (wave coefficient)

\(f_r = 0.5^{1.80} \) (factor to transform the load from \(10^{-8} \) to \(10^{-2} \) probability level)

\(h_0 = 2.21 - 0.54 \log(L) \) (long term Weibull shape parameter)

\(x = L/2 \) (distance from A.P to considered point)

\(k_{wam} = 1.0 \) (moment distribution factor)
\[
\begin{align*}
C_w &= 10.75 - \left\lfloor (300 \cdot 221) / 100 \right\rfloor ^{3/2} = 10.05 \\
h_0 &= 2.21 - 0.54 \log(221) = 0.944 \\
f_r &= 0.5^{10.944} = 0.4799 \\
\text{For } f_r &= 1.0 \ (10^{-8} \text{ probability level}) \\
M_{w0,s} &= -0.11 \cdot 1.0 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot (0.83 + 0.7) = -3469.6 \cdot 10^3 \text{kNm} \\
M_{w0,h} &= 0.19 \cdot 1.0 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot 0.83 = 3251.1 \cdot 10^3 \text{kNm} \\
M_H &= 0.22 \cdot 1.0 \cdot 221^{0.41} \cdot (14.20 + 0.30 \cdot 42) \cdot 0.83 (1-\cos(\pi)) = 1843.1 \cdot 10^3 \text{kNm} \\
\text{For } f_r &= 0.4799 \ (10^{-4} \text{ probability level}) \\
M_{w0,s} &= -0.11 \cdot 0.4799 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot (0.83 + 0.7) = -1665.1 \cdot 10^3 \text{kNm} \\
M_{w0,h} &= 0.19 \cdot 0.4799 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot 0.83 = 1560.2 \cdot 10^3 \text{kNm} \\
M_H &= 0.22 \cdot 0.4799 \cdot 1.0 \cdot 221^{0.41} \cdot (14.20 + 0.30 \cdot 42) \cdot 0.83 (1-\cos(\pi)) = 884.5 \cdot 10^3 \text{kNm}
\end{align*}
\]

7.3.7.5 Stresses from global loads

The vertical and horizontal bending moments results in the following stress ranges, according to 3.5.1 and 3.5.2 at the 10^{-4} level

\[
\begin{align*}
\Delta\sigma_v &= K_{axial} (M_{w0,h} - M_{w0,s}) 10^{-3} \left(\frac{z-n_0}{I_N}\right) \\
\Delta\sigma_{hg} &= 2 K_{axial} M_H 10^{-3} \left|\frac{y}{I_C}\right| \\
\Delta\sigma_g &= \sqrt{\Delta\sigma_v^2 + \Delta\sigma_{hg}^2 + 2 \rho_{vh}\Delta\sigma_v \Delta\sigma_{hg}}
\end{align*}
\]

where

\[
\begin{align*}
I_N &= Z_v (D-n_0) \\
I_C &= Z_v B/2 \\
y &= B/2 - (h+\ell_0) \\
\rho_{vh} &= 0.1 \\
y &= 42/2 - (0.25+0.0165) = 20.73 \text{ m}
\end{align*}
\]

\[
\begin{align*}
\Delta\sigma_v &= 2.1(1560.2 \cdot 10^3 -(-1665.1 \cdot 10^3)) \left|\frac{13.06 - 8.2}{23.1 - (20.3 - 8.2)}\right| = 117.77 \text{ N/mm}^2 \\
\Delta\sigma_{hg} &= 2.1 \cdot 884.5 \cdot 10^3 \left|\frac{20.73}{40.1 - 21.00}\right| = 91.45 \text{ N/mm}^2 \\
\Delta\sigma_g &= \sqrt{117.77^2 + 91.45^2 + 2 \cdot 0.1 \cdot 117.77 \cdot 91.45} = 156.16 \text{ N/mm}^2
\end{align*}
\]
7.3.7.6 Combined hot-spot stresses

The combined stress range is corrected for an assumed zero mean stresses level, \(f_m = 0.9 \), and assumed world wide trading routes, \(f_c = 0.8 \). The combined hot spot stress at the 10\(^{-4}\) level is then calculated to be

\[
\Delta \sigma = f_c \cdot \max \left\{ \frac{\Delta \sigma_g + b \cdot \Delta \sigma_l}{a \cdot \Delta \sigma_g + \Delta \sigma_l} \right\}
\]

(the combined global and local stress range)

where

\(a, b \) Load combination factors, accounting for the correlation between the wave induced local and global stress range equal 0.6

\[
\Delta \sigma = 0.8 \cdot \max \left\{ 156.16 + 0.6 \cdot 279.38 \right\}
\]

\[
\Delta \sigma = 298.46 \text{ N/mm}^2
\]

With a correction for mean stress according to 2.2.4 assuming zero mean stress, the stress range to be used in fatigue calculations becomes

\[
\Delta \sigma_o = f_m \cdot \Delta \sigma
\]

\[
\Delta \sigma_o = 0.85 \cdot 298.46 = 253.69 \text{ N/mm}^2
\]

7.3.7.7 Long term distribution

The period of roll is found to be \(T_R = 14.59 \text{ sec} \). Using this roll period the Weibull shape parameter for the location of considered detail is calculated according to 3.2.2

\[
h = h_0 + h_s/T_{act} - 0.005(T_{act} - z) \quad \text{(for ship side below the water line)}
\]

\[
h_0 = 2.21 - 0.54 \log(L)
\]

where

\(h_s = 0.0 \) (factor depending on the motion response period)

\[
h_0 = 2.21 - 0.54 \log(221) = 0.944
\]

\[
h = 0.944 + 0.00 - 0.005(14.20 - 13.06) = 0.938
\]

(A possible check is here to consult Table 2.8 using the above Weibull parameter, \(h \), and stress range, \(\Delta \sigma_o \).)

7.3.7.8 Fatigue part damage

The part damage in the fully loaded condition over 20 years design life is calculated according to 2.1.2, for the one slope in Air curve to be

\[
D = \frac{v_o T_d}{a} p_{fail} q_{fail}^{m} \Gamma\left(1 + \frac{m}{h}\right)
\]

where

\[
v_o T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log v_0 (L)} \quad \text{(the number of cycles during 20 years)}
\]

\[
\Gamma\left(1 + \frac{m}{h}\right) \quad \text{(the value of the gamma function from Table 2.7)}
\]
\[q_{\text{full}} = \frac{\Delta \sigma_0}{(\ln n_0)^{1/\alpha}} \]
(\text{the Weibull scale parameter})

\[n_0 = 10^4 \]
(\text{total number of cycles associated with the probability level } 10^{-4} \text{ and the } \Delta \sigma_0)

\[p_n = 0.45 \]
(\text{part of time fully loaded})

\[\Delta \sigma_0 = 253.69 \text{ N/mm}^2 \]
(\text{considered stress range})

\[h = 0.938 \]
(\text{the Weibull shape parameter})

\[\bar{a} = 5.75 \cdot 10^{12} \]
(\text{S-N Curve parameter for the curve Ib})

\[m = 3.0 \]
(\text{S-N Curve parameter for the curve Ib})

\[\nu \bar{T}_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(221)} = 6.7 \cdot 10^7 \]

\[\Gamma (1 + \frac{m}{h}) = 8.024 - 8 \cdot (8.024 - 7.671) / 10 = 7.742 \]

\[q_{\text{full}} = \frac{253.69}{(\ln 10^4)^{1/0.938}} = 23.78 \text{ N/mm}^2 \]

\[D_n = \frac{6.7 \cdot 10^7}{5.75 \cdot 10^{12}} 0.45 \cdot 23.78^{1/0.938} \cdot 7.742 = 0.546 = 0.546 \]

or calculated with the two slope curve \(D_n = 0.601 \)

7.3.8 Calculation for Load condition - Ballast (BL)

7.3.8.1 Internal pressure loads

The longitudinal is located in a ballast tank using density of water, 1.025 tonn/m³. The accelerations and pressures are calculated according to 4.4.1 for the ballast tank as:

\[a_v = 4.96 \text{ m/s}^2 \]

\[a_t = 4.57 \text{ m/s}^2 \]

\[a_l = 1.13 \text{ m/s}^2 \]

\[h_t = 7.24 \text{ m} \]

\[y_s = 1.50 \text{ m} \]

\[x_s = 11.25 \text{ m} \]

\[p_1 = 36.81 \text{ kN/m}^2 \]

\[p_2 = 7.02 \text{ kN/m}^2 \]

\[p_3 = 12.71 \text{ kN/m}^2 \]

The local internal pressure amplitude at the \(10^{-4} \) probability level is then calculated according to 4.4 as:

\[
\begin{cases}
 p_1 = \rho a \cdot h \\
 p_2 = \rho a \cdot |y_s| \\
 p_3 = \rho a \cdot |x_s|
\end{cases}
\]
where
\[f_a = 0.4979 \quad \text{(from fully loaded condition in 7.3.7.1)} \]

\[
\begin{cases}
p_i = 1.025 \cdot 4.96 \cdot 7.24 \\
p_i = 0.497 \cdot \max(1.025 \cdot 4.57 \cdot 1.50) \\
p_i = 1.025 \cdot 1.13 \cdot 1.125 \\
p_i = 18.33 \text{ kN/m}^2
\end{cases}
\]

The effective net pressure outwards for calculation of double hull bending is taken from the transverse acceleration according to 7.2.4 (the pressures \(p_1 \) and \(p_3 \) do not contribute to double hull bending since they act on both inner and outer hull).

\[
p_{i,\text{dh}} = 2 \cdot p_2 = 2 \cdot f_a \cdot \rho \cdot a_y y_i
\]

\[
p_{i,\text{dh}} = 2 \cdot 0.4979 \cdot 1.025 \cdot 4.57 \cdot 1.5 = 7.00 \text{ kN/m}^2
\]

The above pressure is also applied for the stresses from relative deflection between the bulkhead and the frame as the vessel has horizontal framing in the double hull. \((p_i,\delta = p_{i,\text{dh}})\)

7.3.8.2 External sea pressure loads
The sea pressure is calculated according to 4.3.1

\[
p_e = r_p p_d
\]

where

\[
p_d = \left[\left| \frac{\phi}{2} \right| + C_d \left| \frac{y}{k_z + k_y + k_f} \right| + 0.7 + 2 \cdot \frac{\phi}{z} \cdot \frac{z}{T_{act}} \right]
\]

(dynamic pressure amplitude below the waterline dominated by roll motion)

\[
r_p = \frac{T_{act} + z_{wl} - z}{2z_{wl}}
\]

(reduction of pressure amplitude to the considered point in the wave zone)

\[
\phi = 50 c / (B + 75)
\]

(maximum roll angle as described in 4.5.1)

\[
c = (1.25 - 0.025 T_R) k
\]

\[
T_R = 2 k_k / \sqrt{GM}
\]

(distance from actual water line. It is assumed that the external sea pressure above \(T_{act} + z_{wl} \) will not contribute to fatigue damage)

\[
z_{wl} = z \text{ Maximum } T_{act}
\]

(vertical distance from the baseline to the load point)

\[
p_{wl} = p_d
\]

at \(z_{wl} = T_{act} \)

\[
k = 1.0
\]

(for ship with bilge keel)

\[
f = 13.10 \text{ m}
\]

(vertial distance from the waterline to the top of the ship’s side)

\[
k_{wl} = \min \left\{ \frac{T_{act}}{f} \right\}
\]

(the smallest of \(T_{act} \) and \(f = 7.2 \text{ m} \))

\[
y = 21.00 \text{ m}
\]

(horizontal distance from the centre line to the loadpoint)

\[
z_{wl} = T_{act} = 7.2 \text{ m}
\]
\[T_R = 2 \cdot 16.38 / \sqrt{13.86} \Rightarrow 8.80 \text{ sec} \]

\[c = (1.25 - 0.025 \cdot 8.80) \cdot 1.0 = 1.03 \]

\[\phi = 50 \cdot 1.03 / (42 + 75) = 0.440 \]

\[p_d = 10 \left[\frac{21.00}{2} + 0.83 \frac{21.00 + 7.20}{16} \left(\frac{0.7 + 7.20}{7.20} \right) \right] = 85.70 \text{ kN/m}^2 \]

\[p_{dh} = p_d = 85.70 \text{ kN/m}^2 \quad (z_w = T_{act}) \]

\[z_{ml} = 3.8570 / (4 - 1.025 - 9.81) = 6.39 \text{ m} \]

\[r_p = \frac{7.20 + 6.39 - 13.06}{2 - 6.39} = 0.041 \]

\[p_e = 0.041 \cdot 85.70 = 3.51 \text{ kN/m}^2 \]

The pressure \(p_d \) is applied in the evaluation of relative deflection as the hull has horizontal frames.

The effective “smeared out” double hull pressure is estimated as

\[p_{e,dh} = p_e \cdot T_{act} / 20.3 = 1.24 \text{ kN/m}^2 \]

7.3.8.3 Combination of stress components

The stress amplitudes due to internal and external pressures are combined considering the sign. Positive stress is defined as tension at the location of the weld.

Stresses due to external pressure loads

- Stiffener bending \(p_e = 3.51 \text{ kN/m}^2 \)
 \[c \cdot 3.51 \cdot 2.552: -8.96 \text{ N/mm}^2 \]

- Relative deflection \(p_{e,\delta} = 3.51 \text{ kN/m}^2 \)
 \[c \cdot 3.51 \cdot 1.309: -4.59 \text{ N/mm}^2 \]

- Double hull bending \(p_{e,dh} = 1.24 \text{ kN/m}^2 \)
 \[t 1.24 \cdot 1.006: 1.25 \text{ N/mm}^2 \]

= Stresses from external sea pressure loads \(\sigma_e = \)

\[-12.30 \text{ N/mm}^2 \]

Stresses due to internal pressure loads

- Stiffener bending \(p_i = 18.33 \text{ kN/m}^2 \)
 \[t \cdot 18.33 \cdot 2.552: 46.78 \text{ N/mm}^2 \]

- Relative deflection \(p_{i,\delta} = 7.00 \text{ kN/m}^2 \)
 \[t 7.00 \cdot 1.309: 9.16 \text{ N/mm}^2 \]

- Double hull bending \(p_{i,dh} = 7.00 \text{ kN/m}^2 \)
 \[c 7.00 \cdot 1.006: -7.04 \text{ N/mm}^2 \]

= Stresses from internal pressure loads \(\sigma_i = \)

\[48.90 \text{ N/mm}^2 \]

\[t = 1 \text{ tension} \]

\[c = -1 \text{ compression} \]

The combined local stress is determined according to 3.4.5 as

\[\Delta \sigma = 2 \sqrt{\sigma_t^2 + \sigma_c^2 + 2 \rho_t \sigma_t \sigma_c} \]
\[\rho_r = \frac{1}{2} - \frac{z}{10T_{act}} + \frac{|x|}{4L} + \frac{|y|}{4B} + \frac{|x|}{5LT_{act}} \]

where

\(x, y \) and \(z \) are the coordinates of the load point, according to the coordinate system described in 3.4.5 with \(\text{origo} = (\text{midship, centreline, baseline}) \)

\(x = 0 \text{ m} \)

\(y = 21.00 \text{ m} \)

\(z = T_{act} = 7.20 \text{ m} \) \((z > T_{act}) \)

\[\rho_r = \frac{1}{2} - \frac{7.20}{10 \cdot 7.20} + \frac{21.00}{4 \cdot 221} - \frac{0}{4 \cdot 42} - \frac{7.20}{5 \cdot 221} \cdot \frac{7.20}{7.20} = 0.525 \]

\[\Delta \sigma_r = 2\sqrt{(-12.30)^2 + 48.90^2} + 2 \cdot 0.525 \cdot (-12.30) \cdot 48.90 = 87.43 \text{ kN/m}^2 \]

7.3.8.4 Global hull bending moments

The vertical wave wave bending moments are computed according to 4.2.1 as

\[M_{w0,s} = -0.11 \cdot f_r \cdot k_{sn} \cdot C_w \cdot L^2 \cdot B \cdot (C_n + 0.7) \]

(sagging moment)

\[M_{w0,h} = -0.19 \cdot f_r \cdot k_{sn} \cdot C_w \cdot L^2 \cdot B \cdot C_n \]

(hogging moment)

The horizontal wave bending moment is calculated according to 4.2.2 as

\[M_H = 0.22 \cdot f_r \cdot L^{9/4} \cdot (T_{act} + 0.30 \cdot B) \cdot C_n \cdot (1 - \cos(2\pi x/L)) \]

where

\(x = L/2 \)

(distance from A.P to considered point)

\[f_r = 0.5^{1.0 \cdot 9/4} = 0.4799 \]

(calculated in 7.3.7.4)

The vertical bending moments for the \(10^{-4} \text{ level} \) are the same as calculated for the fully loaded condition in 7.3.7.4

For \(f_r = 1.0 \) (\(10^{-8} \text{ probability level} \))

\[M_{w0,s} = -0.11 \cdot 1.0 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot (0.83 + 0.7) = -3469.6 \cdot 10^3 \text{kNm} \]

\[M_{w0,h} = 0.19 \cdot 1.0 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot 0.83 = 3251.1 \cdot 10^3 \text{kNm} \]

\[M_H = 0.22 \cdot 1.0 \cdot 221^{9/4} \cdot (7.20 + 0.30 \cdot 42) \cdot 0.83 \cdot (1 - \cos(\pi)) = 1361.7 \cdot 10^3 \text{kNm} \]

For \(f_r = 0.4799 \) (\(10^{-4} \text{ probability level} \))

\[M_{w0,s} = -0.11 \cdot 0.4799 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot (0.83 + 0.7) = -1665.1 \cdot 10^3 \text{kNm} \]

\[M_{w0,h} = 0.19 \cdot 0.4799 \cdot 1.0 \cdot 10.05 \cdot 221^2 \cdot 42 \cdot 0.83 = 1560.2 \cdot 10^3 \text{kNm} \]

\[M_H = 0.22 \cdot 0.4799 \cdot 1.0 \cdot 221^{9/4} \cdot (7.20 + 0.30 \cdot 42) \cdot 0.83 \cdot (1 - \cos(\pi)) = 653.5 \cdot 10^3 \text{kNm} \]

7.3.8.5 Stresses from global loads

The vertical and horizontal bending moments results in the following stress ranges, according to 3.5.2 and 3.5.3 at the \(10^{-4} \text{ level} \)

\[\Delta \sigma_v = K_{axial} (M_{W0,h} - M_{W0,s}) \frac{(z - n_0)}{I_N} \]

(\text{vertical global stress range})
64

Classification Notes No. 30.7

February 2003

\[\Delta \sigma_{h g} = 2 K_{x, \text{axial}} M_H 10^{-3} \frac{|F|}{I_C} \]
 (horizontal global stress range)

\[\Delta \sigma_g = \sqrt{\Delta \sigma_y^2 + \Delta \sigma_{h g}^2 + 2 \rho_{vh} \Delta \sigma_y \Delta \sigma_{h g}} \]
 (combined global stress range)

where

\[I_N = Z_v (D-n_0) \]
 (moment of inertia of hull cross section)

\[I_C = Z_h B/2 \]
 (moment of inertia about the vertical neutral axis)

\[y = B/2 - (h+t_p) \]
 (distance in m from vertical neutral axis to considered member)

\[\rho_{vh} = 0.1 \]
 (taken from 7.3.7.5)

\[y = 42/2 - (0.25+0.0165) = 20.73 \text{ m} \]

\[\Delta \sigma_y = 2.1(1560.2 \cdot 10^3 - (-1665.1 \cdot 10^3)) \frac{[13.06 - 8.2]}{23.1 \cdot (20.3 - 8.2)} = 117.77 \text{ N/mm}^2 \]

\[\Delta \sigma_{h g} = 2.1 \cdot 2 \cdot 653.5 \cdot 10^3 \frac{[20.73]}{40.1 \cdot 21.00} = 67.57 \text{ N/mm}^2 \]

\[\Delta \sigma_g = \sqrt{117.77^2 + 67.57^2 + 2 \cdot 0.1 \cdot 117.77 \cdot 67.57} = 141.52 \text{ N/mm}^2 \]

7.3.8.6 Combined hot-spot stresses

The combined stress range is corrected for an assumed zero mean stresses level, \(f_m = 0.9 \), and assumed world wide trading routes, \(f_e = 0.8 \). The combined hot spot stress at the 10^-4 level is then calculated to be

\[\Delta \sigma = f_e \max \left\{ \Delta \sigma_g + b \cdot \Delta \sigma_y, a \cdot \Delta \sigma_y + \Delta \sigma_g \right\} \]
 (the combined global and local stress range)

where

\(a, b \)
 Load combination factors, accounting for the correlation between the wave induced local and global stress range = 0.6

\[\Delta \sigma = 0.8 \max \left\{ 141.52 + 0.6 \cdot 87.43, 0.6 \cdot 141.52 + 87.43 \right\} \]

\[\Delta \sigma = 155.18 \text{ N/mm}^2 \]

With a correction for mean stress according to 2.2.4 assuming zero mean stress, the stress range to be used in fatigue calculations becomes

\[\Delta \sigma_o = f_m \cdot \Delta \sigma \]

\[\Delta \sigma_o = 0.85 \cdot 155.18 = 131.9 \text{ N/mm}^2 \]
7.3.8.7 Long term distribution

The period of roll is found to be \(T_R = 8.80 \) sec. Using this roll period, the Weibull shape parameter at the considered location is, according to 3.2.2

\[h = h_0 + h_a(D-z)/(D-T_{act}) \] (for ship side above the water line)

\[h_0 = 2.21 - 0.54 \log(L) \]

where

\[h_a = 0.05 \] (factor depending on the motion response period)

\[h_0 = 2.21 - 0.54 \log(221) \]

\[= 0.944 \]

\[h = 0.944 + 0.05(20.3 - 13.06)/(20.3-7.20) \]

\[= 0.972 \]

A possible check is here to consult Table 2.8 using the above Weibull parameter, \(h \), and stress range, \(\Delta \sigma_o \).

7.3.8.8 Fatigue part damage

The part damage in the ballasted condition over 20 years design life is calculated according to 2.1.2, for the one slope in Air curve to be

\[D = \frac{v_o T_d p_{ballast} q_{ballast} \Gamma(1 + \frac{m}{h})}{a} \]

where

\[v_o T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(L)} \] (the number of cycles during 20 years)

\[\Gamma(1 + \frac{m}{h}) \] (the value of the gamma function from Table 2.7)

\[q_{ballast} = \frac{\Delta \sigma_o}{(\ln n_0)^{1/h}} \] (the Weibull scale parameter)

\[n_0 = 10^4 \] (total number of cycles associated with the probability level \(10^{-4} \) and the \(\Delta \sigma_o \))

\[p_n = 0.40 \] (part of time ballasted)

\[\Delta \sigma_o = 131.9 \text{ N/mm}^2 \] (considered stress range)

\[h = 0.972 \] (the Weibull shape parameter)

\[a = 5.75 \cdot 10^{12} \] (S-N Curve parameter for the curve Ib)

\[m = 3.0 \] (S-N Curve parameter for the curve Ib)

\[v_o T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(221)} \]

\[= 6.7 \cdot 10^7 \]

\[\Gamma(1 + \frac{m}{h}) = 6.750 - 2 \cdot (6.750-6.483)/10 \]

\[= 6.697 \]

\[q_{ballast} = \frac{131.9}{(\ln 10^4)^{1/0.972}} \]

\[= 13.43 \text{ N/mm}^2 \]

\[D_n = \frac{6.7 \cdot 10^7}{5.75 \cdot 10^{12}} \cdot 0.40 \cdot 13.43^{1.0} \cdot 6.697 \]

\[= 0.0757 \]

or calculated with the two slope curve \(D_n = 0.052 \)
7.3.9 Fatigue life calculated from the one slope S-N Curve Ib

The total fatigue damage during 20 years is found by summing the part damage from each of the loading, and checking the damage up against the criteria in 2.1.2

\[
D = \frac{V_0}{\sigma} \sum_{n=1}^{N_{\text{ref}}} p_n m_n h_n \sum_{n=1}^{N_{\text{ref}}} D_n \leq \eta
\]

Where \(\eta \) is the usage factor. If the criteria is fulfilled the fatigue damage is considered acceptable. Using the estimated values from the S-N Curve Ib

\[
D = 0.546 + 0.076 = 0.622
\]

When considering the corrosive environment the \(\chi \)-factor from 2.5.1 increased fatigue damage

\[
D = 0.622 \chi = 0.622 \cdot 1.3 = 0.809
\]

If the usage factor \(\eta = 1.0 \), the life of the considered part is

\[
T_{\text{life}} = \frac{20}{0.809} = 24.7 \text{ years}
\]

The most exactly calculated values are from the two slope S-N Curve I. The complete calculation of fatigue life in 7.3.10 is calculated based on these values.

7.3.10 Fatigue life calculated from the two slope S-N Curve I

The total fatigue damage during 20 years is found by summing the part damages from each load condition. The accumulated fatigue is then checked against the criteria in Section 2.1. Using the In-Air, curve I, the damage is

\[
D = \frac{V_0}{\sigma} \sum_{n=1}^{N_{\text{ref}}} p_n m_n h_n \sum_{n=1}^{N_{\text{ref}}} D_n = 0.601 + 0.052 = 0.653
\]

When considering the corrosive environment after the 15 years of efficient corrosion protection, the factor \(\chi = 1.3 \), may as a simplification be used to estimate fatigue life as

\[
D_{\text{cor}} = 0.653 \cdot 1.3 = 0.849
\]

\[
T_{\text{life}} = \frac{20}{0.849} = 23.6 \text{ years}
\]

A more direct approach, is to scale the damage after the efficient life of the coating, \(T_{\text{coating}} + 5 \text{ years} = 15 \text{ years} \), has passed by the difference between the In-air and corrosive environment SN-curves, which is commonly set to a factor of 2.3. In this case the difference between the in-air and corrosive SN-curves I and II are calculated to be a factor of 2.24

\[
T_{\text{life, in-air}} = \frac{20}{0.653} = 30.6 \text{ years}
\]

\[
T_{\text{life}} = T_{\text{coating}} + \frac{(T_{\text{life, in-air}} - T_{\text{coating}})}{2.24} = 15 + \frac{(30.6 - 15)}{2.24} \approx 22 \text{ years}
\]

\[
D_{\text{corr}} = 20 / 22 = 0.91
\]

Further, a direct account for the mean stress level according to 2.2.4 would give a more favourable life estimate, as the detail in this example, is under static compression in the most severe condition - the fully loaded. The resulting mean stress factors would be \(f_m = 0.74 \) for the fully loaded and \(f_m = 1.00 \) for the ballast conditions. This will result in a fatigue life of 26.3 years and will thus be acceptable by a small margin.

The conclusion is that the detail has an acceptable fatigue life.
8. Fatigue analysis of bulk carriers

8.1 Where to analyse

8.1.1
Fatigue damages are known to occur more frequently for some ship types and categories of hull structure elements. The fatigue life is in particular related to the magnitude of the dynamic stress level, the corrosiveness of the environment and the magnitude of notch- and stress concentration factors of the structural details, which all vary depending on ship type and structure considered. The importance of a possible fatigue damage is related to the number of potential damage points of the considered type for the ship or structure in question and to its consequences.

<table>
<thead>
<tr>
<th>Structure member</th>
<th>Structural detail</th>
<th>Load type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatch corners</td>
<td>Hatch corner</td>
<td>Hull girder bending, hull girder torsional deformation</td>
</tr>
<tr>
<td>Hatch side coaming</td>
<td>Termination of end bracket</td>
<td>Hull girder bending</td>
</tr>
<tr>
<td>Main frames</td>
<td>End bracket terminations, weld of main frame web to shell for un-symmetrical main frame profiles</td>
<td>External pressure load, ballast pressure load as applicable</td>
</tr>
<tr>
<td>Longitudinals of hopper tank and top wing tank</td>
<td>Connection to transverse webs and bulkheads</td>
<td>Hull girder bending, sea- and ballast pressure load</td>
</tr>
<tr>
<td>Double bottom longitudinals<sup>1)</sup></td>
<td>Connection to transverse webs and bulkheads</td>
<td>Hull girder bending stress, double bottom bending stress and sea-, cargo- and ballast pressure load</td>
</tr>
<tr>
<td>Transverse webs of double bottom, hopper and top wing tank</td>
<td>Slots for panel stiffener including stiffener connection members, knuckle of inner bottom and sloped hopper side including intersection with girder webs (floors). Single lug slots for panel stiffeners, access and lightening holes</td>
<td>Girdler shear force, and bending moment, support force from panel stiffener due to sea-cargo- and ballast pressure load</td>
</tr>
</tbody>
</table>

¹⁾ The fatigue life of bottom and inner bottom longitudinals of bulk carriers is related to the combined effect of axial stress due to hull girder- and double bottom bending, and due to lateral pressure load from sea or cargo.

<table>
<thead>
<tr>
<th>Structure member</th>
<th>Structural detail</th>
<th>Load type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper deck plating</td>
<td>Hatch corners and side coaming terminations</td>
<td>Hull girder bending</td>
</tr>
<tr>
<td>Side-, bottom- and deck longitudinals</td>
<td>Butt joints and attachment to transverse webs, transverse bulkheads, hatch opening corners and intermediate longitudinal girders</td>
<td>Hull girder bending, stiffener lateral pressure load and support deformation</td>
</tr>
<tr>
<td>Transverse girder and stringer structures</td>
<td>Bracket toes, girder flange butt joints, curved girder flanges, panel knuckles at intersection with transverse girder webs etc. Single lug slots for panel stiffeners, access and lightening holes</td>
<td>Sea pressure load combined with cargo or ballast pressure load</td>
</tr>
<tr>
<td>Transverse girders of wing tank<sup>1)</sup></td>
<td>Single lug slots for panel stiffeners</td>
<td>Sea pressure load (in particular in ore loading condition)</td>
</tr>
</tbody>
</table>

¹⁾ The transverse deck-, side- and bottom girders of the wing tanks in the ore loading condition are generally subjected to considerable dynamic shear force- and bending moment loads due to large dynamic sea pressure (in rolling) and an increased vertical racking deflection of the transverse bulkheads of the wing tank. The rolling induced sea pressure loads in the ore loading condition will normally exceed the level in the ballast (and a possible oil cargo) condition due to the combined effect of a large GM-value and a small rolling period. The fatigue life evaluation must be considered with respect to the category of the wing tank considered (cargo oil tank, ballast tank or void). For ore-oil carriers, the cargo oil loading condition should be considered as for tankers.

<table>
<thead>
<tr>
<th>Table 8.1 Bulk Carriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 8.2 Ore Carriers</td>
</tr>
</tbody>
</table>

DETO R N S K E R V E R I T A S
8.2 Fatigue analysis

The procedure below may be applicable to the simplified fatigue analysis of bulk carriers.

8.2.1

The internal loads will be calculated according to 4.4.1. It is noted that for bulk and ore cargoes, only P_1 need to be considered. The appropriate density and pressure height for bulk cargoes should specially be considered to give a hold mass according to Table 8.3.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Ore holds</th>
<th>Empty holds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate</td>
<td>M_{HD} or M_{Full} according to Pt.5 Ch.2 Sec.5</td>
<td>0</td>
</tr>
<tr>
<td>Homogenous</td>
<td>M_H according to Rules Pt.5 Ch.2 Sec.5</td>
<td>M_H according to Rules Pt.5 Ch.2 Sec.5</td>
</tr>
</tbody>
</table>

Table 8.3 Hold mass

If masses specified in the submitted loading conditions are greater than those in Table 8.3, the maximum masses shall be used for fatigue strength calculations.

The external loads shall be taken according to 4.3.1. The draught for the loaded conditions shall be taken as the scantling draught. The draught for the ballast condition shall be taken as the ballast draught given in the loading manual, or $0.35T$ if the loading manual is not available. (Where T is scantling draught).

Hull girder bending moments shall be calculated according to 4.2.1.

For vessels intended for normal trading the fraction of the total design life spent at sea, should not be taken less than 0.85. The fraction of the design life in the fully loaded and ballast conditions, p_n, may be taken from Table 8.4.

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Bulk carriers larger than Panamax (*)</th>
<th>Panamax bulk carriers and smaller (*)</th>
<th>Vessels intend to carry ore cargoes mostly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate condition</td>
<td>0.25</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Homogenous condition</td>
<td>0.25</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Ballast condition</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>

(*) Panamax vessel as defined in Classification Note 31.1 Sec.1.2.1

8.2.2

Stresses due to stiffener bending shall be taken according to 3.5.4.

For bottom and inner bottom longitudinals the effect of relative deflections shall be taken into account at locations where this effect is significant. The relative deformations is to be obtained by a direct strength analysis (Classification Note 31.1 show modelling examples).

Local secondary double bottom stresses according to 3.5.3 shall be taken into account.

The local stress ranges shall be combined according to 3.4.5.

Stress concentration factors shall be taken according to Chapter 10.

8.2.3

Global stress ranges shall be calculated according to 3.5.1 and 3.5.2.

The global stress ranges shall be combined according to 3.4.4.

8.2.4

The local and global stress ranges shall be combined according to 3.4.3 taking into account the reduction factor, f_r, in 3.4.3 and mean stress reduction factor, f_m, in 2.2.3 or 2.2.4.

Calculate the fatigue damage according to 2.1.2 for all the fatigue load cases. For effective corrosion protection periods, see 2.4.
8.3 Example of Application, Bulk Carrier (Simplified methods example)

8.3.1 Introduction

In this Appendix an example of the fatigue assessment of welded connection between a longitudinal and a flat bar in the inner bottom is considered. Before starting to calculate the stresses it may be of relevance to decide what loads and load conditions and the level of detail shall be considered for the calculation of stresses. The following observations have implications on how the calculations are made.

A) The analysis is to be performed according to the simplified procedure, see Figure 1.1, with some additional input from finite element analysis. The loads may be taken in accordance with Chapter 4. The local and global loads are based on the main dimensions of the vessel given in Table 8.5. Further the Rules [1] describes minimum requirements to the corrosive environment. Special consideration should be given to Section 8.2.

B) The considered detail is a termination of a web stiffener on top of a longitudinal. The simplified stress calculation procedure as defined in Chapter 3 is normally sufficient (reference is also made to Section 8.2). In this example, the connection between a longitudinal and a transverse floor in the ships inner bottom is considered, using the simplified method.

![Figure 8.1 View of ship and location of detail in ship](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of ship</td>
<td>275 m</td>
</tr>
<tr>
<td>Breadth of ship</td>
<td>45 m</td>
</tr>
<tr>
<td>Depth of ship</td>
<td>24.1 m</td>
</tr>
<tr>
<td>Block coefficient</td>
<td>0.85</td>
</tr>
<tr>
<td>Design speed</td>
<td>15 knots</td>
</tr>
<tr>
<td>Vertical section modulus at deck line</td>
<td>40.79 m³</td>
</tr>
<tr>
<td>Neutral axis above keel</td>
<td>10.59 m</td>
</tr>
<tr>
<td>Horizontal section modulus in ships side</td>
<td>62.66 m³</td>
</tr>
<tr>
<td>Total deadweight capacity</td>
<td>150000 t</td>
</tr>
<tr>
<td>Total hold volume</td>
<td>174420 m³</td>
</tr>
<tr>
<td>Volume hold 5</td>
<td>18410 m³</td>
</tr>
<tr>
<td>Maximum homogenous mass in hold 5</td>
<td>15833 t</td>
</tr>
<tr>
<td>Maximum alternate mass in hold 5</td>
<td>28350 t</td>
</tr>
<tr>
<td>Ore holds</td>
<td>1, 3, 5, 7, 9</td>
</tr>
<tr>
<td>Empty holds</td>
<td>2, 4, 6, 8</td>
</tr>
<tr>
<td>Ballast hold</td>
<td>6</td>
</tr>
<tr>
<td>Class notation</td>
<td>+1A1 Bulk Carrier BC-A</td>
</tr>
<tr>
<td>Target fatigue life</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Table 8.5 The example ship’s main dimensions
8.3.2 Geometry of longitudinal and bracket termination

It may be practical to calculate the stress per unit bending moment and per unit lateral pressure and scale these with the relevant values for each load condition. It is primarily the calculation of stresses due to lateral pressure that will be simplified by such an approach. For a web stiffener termination on top of a stiffener, the stresses to be considered related to lateral pressure are due to:

- stiffener bending
- relative deflection between the two floors
- double hull bending

![Diagram](image)

Figure 8.2 Description of the considered detail

Stiffener section modulus at top flange	\(Z_s \)	\(0.921\times 10^{-3} \)	m³
Distance above keel	\(z \)	\(2.088 \)	m
Effective span as defined in Figure 3.4	\(l \)	\(2600 \)	mm
Height of stiffener on top	\(b \)	\(250 \)	mm
Distance from end of stiffener to hot spot	\(x \)	\(0 \)	mm
Web frame spacing	\(l_s \)	\(2850 \)	mm
Breadth of plating	\(s \)	\(930 \)	mm
Thickness of plate	\(t_p \)	\(19.5 \)	mm
Height of stiffener	\(h \)	\(372 \)	mm
Thickness of web	\(t_w \)	\(8.5 \)	mm
Width of flange	\(b_f \)	\(96 \)	mm
Thickness of flange	\(t_f \)	\(20.5 \)	mm
Distance from neutral axis to top of flange	\(Z_{01} \)	\(233.5 \)	mm

Table 8.6 Geometry of stiffener considered, T-profile

The stresses are to be calculated based on reduced scantlings. Here it is assumed that the corrosion addition is subtracted, and the dimensions given in Table 8.6 are reduced scantling values. The stresses are calculated at the considered point on the weld connection of stiffener on top and longitudinal stiffener as shown in Figure 8.2.
8.3.3 Load conditions

The load conditions to be considered are given in 8.2. For the considered vessel, i.e. a ‘Capesized’ bulk carrier, three load cases have been taken into account.

1) Alternate loaded, with fraction of time $p_n = 0.25$
2) Homogeneously loaded, with fraction of time $p_n = 0.25$
3) Ballast, with fraction of time $p_n = 0.35$

The load conditions should be defined in terms of draughts, GM and K_R as given in Table 8.7 for the considered vessel. Guidance for choice of these values is given in Sections 4.5 and 8.2.

The density and corresponding filling height are calculated according to 8.2.1.

$$h_s = 26.3 \text{ m} \quad \text{(Filling to top of coaming)}$$

$$V_H = 18410 \text{ m}^3 \quad \text{(No 5 cargo hold volume to top of hatch)}$$

$$M_{HD} = 28350 \text{ t} \quad \text{(Maximum mass in hold no 5 in alternate condition)}$$

$$M_H = 15833 \text{ t} \quad \text{(Maximum mass in hold no 5 in homogenous condition)}$$

Homogenous condition:

$$M_H = 15833 \text{ t} \quad \text{(homogenous mass)}$$

This mass will give the following filling height and density

$$h_s = 26.3 \text{ m} \quad \rho = 15833/18410 = 0.86 \text{ t/m}^3$$

Alternate condition:

This vessel has **BC-A** notation

$$M_{HD} = 28350 \text{ t} \quad \text{(rules defined alternate mass)}$$

This mass will give the following filling height and density:

$$h_s = 26.3 \text{ m} \quad \rho = 28350 / 18410 = 1.54 \text{ t/m}^3$$

<table>
<thead>
<tr>
<th></th>
<th>Alternate</th>
<th>Homogenous</th>
<th>= Ballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draught</td>
<td>17.78 m</td>
<td>17.78 m</td>
<td>7.16 m</td>
</tr>
<tr>
<td>Metacentric height</td>
<td>9.51 m</td>
<td>9.51 m</td>
<td>14.67 m</td>
</tr>
<tr>
<td>Roll gyradius</td>
<td>17.55 m</td>
<td>17.55 m</td>
<td>17.55 m</td>
</tr>
<tr>
<td>Part time in condition</td>
<td>0.25</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>Density</td>
<td>1.54 t/m3</td>
<td>0.86 t/m3</td>
<td>1.025 t/m3</td>
</tr>
<tr>
<td>Filling height</td>
<td>26.3 m</td>
<td>26.3 m</td>
<td>24.7 m</td>
</tr>
</tbody>
</table>

Table 8.7 Definition of load conditions

8.3.4 K-factors

An important parameter in fatigue analysis is the stress concentration factor. The stress concentration factor describes the increase in notch stress due to local geometry, weld geometry and workmanship. The value of the K-factor has to be decided for the considered detail before the notch stresses can be calculated. Reference is made to Chapter 10.
For the weld at the end of a flat bar stiffener on top of the stiffener flange, the K-factor for axial stress (related to global loads) is taken according to Table 10.2.

\[K_{\text{axial}} = K_g K_w = 2.1 \]

and K-factor for local stiffener bending stresses (induced by lateral pressure)

\[K_{\text{lateral}} = K_g K_w = 2.4 \]

8.3.5 Calculation of stresses due to lateral pressure

8.3.5.1 General

The stresses to be considered due to lateral pressure are according to 3.5.4

\[\sigma_{2A} = K_{\text{lateral}} \frac{M}{Z_s} + K_{\text{axial}} \frac{m_s EI}{l^2 Z_s} r_p \cdot \delta = \sigma_{2A}' + \sigma_\delta \]

\[\sigma_2 = K_{\text{axial}} \cdot \sigma_{DB} \]

where

- \(\sigma_{2A}' \) is stresses due to stiffener bending (8.3.5.2)
- \(\sigma_\delta \) is stresses caused by relative deflection between two adjacent frames (8.3.5.3)
- \(\sigma_2 \) is stresses caused by bending of double hull (8.3.5.4)

The main particulars of the ship and the geometry of the stiffener are given in Tables 8.5 and 8.6 respectively. When using values not defined in either of the tables the values will be stated. When calculating the stresses and deflections, the unit lateral pressure, \(p_r \), is 1 kN/m\(^2\) and Young’s modulus, \(E \), is \(2.1 \times 10^5 \) N/mm\(^2\).

8.3.5.2 Calculation of stresses due to stiffener bending

The stress due to stiffener bending is calculated as described in 3.5.5, accounting for the effective span of the longitudinal and the reduction of the effective bending moment at the weld toe.

The stress per unit lateral pressure (1 kN/m\(^2\)) is

\[\sigma_{2A}' = K_{\text{lateral}} \frac{M}{Z_s} \]

where

\[M = \frac{psl^2}{12} r_p \] (bending moment at the considered point)

\[r_p = 6 \left(\frac{x}{l} \right)^2 - 6 \left(\frac{x}{l} \right) + 1 \] (reduction in bending moment)

\[r_p = 6 \left(\frac{0}{2600} \right)^2 - 6 \left(\frac{0}{2600} \right) + 1 = 1 \]

\[\sigma_{2A}' = \frac{psl^2}{12Z_s} r_p \]

\[\sigma_{2A}' = 2.4 \frac{10^{-3} \cdot 930 \cdot 2600^2}{12 \cdot 0.921 \cdot 10^6} \cdot 1.0 = 1.365 \text{ N/mm}^2 \]
To determine the stresses from the stiffener bending in the relevant loading conditions the bending stress is to be multiplied with the relevant dynamic pressure. For pressure load from cargo in hold there will be compression at the considered point and for pressure load from ballast there will be tension.

8.3.5.3 Relative deflection between frame and bulkhead

Stresses may also be induced due to relative deflections between the two adjacent frames. In order to determine the correct magnitude of the deflection, a finite element analysis is required. For a more detailed analysis of double hull vessel the relative deflection should be seen in connection with the double hull bending stresses.

\[
\sigma_\delta = K_{\text{axial}} \frac{m_\delta EI}{l^2 Z_s} r_\delta \cdot \delta
\]

where

\[
r_\delta = 1 - 2 \left(\frac{x}{l} \right) \quad \text{(reduction factor for the moment at hotspot)}
\]

\[
r_\delta = 1 - 2 \left(\frac{0}{2600} \right) = 1
\]

\[
\delta \quad \text{(relative deflection between the frames, taken from finite element analysis)}
\]

\[
\delta_{\text{alternate, external}} = +0.55 \text{ mm (Alternate condition, see 8.3.3)}
\]
\[
\delta_{\text{homogenous, external}} = +0.55 \text{ mm (Homogenous condition, see 8.3.3)}
\]
\[
\delta_{\text{ballast, external}} = +0.29 \text{ mm (Ballast condition, see 8.3.3)}
\]
\[
\delta_{\text{alternate, internal}} = -1.93 \text{ mm (Alternate condition, see 8.3.3)}
\]
\[
\delta_{\text{homogenous, internal}} = -1.08 \text{ mm (Homogenous condition, see 8.3.3)}
\]
\[
\delta_{\text{ballast, internal}} = +0.00 \text{ mm (Ballast condition, see 8.3.3)}
\]

\[
l = Z_s \cdot z_{01}
\]

\[
\sigma_\delta = K_{\text{axial}} \frac{m_\delta E z_{01}}{l^2} r_\delta \cdot \delta
\]

\[
\sigma_\delta = 2.1 \cdot \frac{4.4 \cdot 2.1 \cdot 10^5 \cdot 233.5}{2600^2} \cdot 1.0 \cdot \delta
\]

\[
\sigma_{\delta, \text{alternate, external}} = +36.86 \text{ N/mm}^2 \quad \text{(Tension)}
\]
\[
\sigma_{\delta, \text{homogenous, external}} = +36.86 \text{ N/mm}^2 \quad \text{(Tension)}
\]
\[
\sigma_{\delta, \text{ballast, external}} = +19.44 \text{ N/mm}^2 \quad \text{(Tension)}
\]
\[
\sigma_{\delta, \text{alternate, internal}} = -129.36 \text{ N/mm}^2 \quad \text{(Compression)}
\]
\[
\sigma_{\delta, \text{homogenous, internal}} = -72.39 \text{ N/mm}^2 \quad \text{(Compression)}
\]
\[
\sigma_{\delta, \text{ballast, internal}} = +0.00 \text{ N/mm}^2
\]

Since the deflection values are taken from a finite element analysis these stresses are reflecting the relevant dynamic pressure and are not based on 1 kN/m².
8.3.5.4 **Double hull stresses**

The longitudinal secondary stresses in the double bottom can be assessed by applying 3-D frame or finite element analyses. In this case the values are taken from the cargo hold finite element analysis.

\[
\begin{align*}
\sigma_{DB,\text{alternate,external}} &= -2.91 \text{ N/mm}^2 \text{ (Compression)} \\
\sigma_{DB,\text{homogenous,external}} &= -2.91 \text{ N/mm}^2 \text{ (Compression)} \\
\sigma_{DB,\text{ballast,external}} &= -1.72 \text{ N/mm}^2 \text{ (Compression)} \\
\sigma_{DB,\text{alternate,internal}} &= +3.28 \text{ N/mm}^2 \text{ (Tension)} \\
\sigma_{DB,\text{homogenous,internal}} &= +2.54 \text{ N/mm}^2 \text{ (Tension)} \\
\sigma_{DB,\text{ballast,internal}} &= +0.00 \text{ N/mm}^2
\end{align*}
\]

This gives us the following notch stresses:

\[
\begin{align*}
\sigma_{2,\text{alternate,external}} &= -2.91 K_{\text{axial}} = -6.11 \text{ N/mm}^2 \text{ (Compression)} \\
\sigma_{2,\text{homogenous,external}} &= -2.91 K_{\text{axial}} = -6.11 \text{ N/mm}^2 \text{ (Compression)} \\
\sigma_{2,\text{ballast,external}} &= -1.72 K_{\text{axial}} = -3.61 \text{ N/mm}^2 \text{ (Compression)} \\
\sigma_{2,\text{alternate,internal}} &= +3.28 K_{\text{axial}} = +6.89 \text{ N/mm}^2 \text{ (Tension)} \\
\sigma_{2,\text{homogenous,internal}} &= +2.54 K_{\text{axial}} = +5.33 \text{ N/mm}^2 \text{ (Tension)} \\
\sigma_{2,\text{ballast,internal}} &= +0.00 K_{\text{axial}} = +0.00 \text{ N/mm}^2
\end{align*}
\]

Since the double bottom stress values are taken from a finite element analysis these stresses are reflecting the relevant dynamic pressure and are not based on 1 kN/m².

8.3.6 **Refining fatigue calculation parameters**

8.3.6.1 **SN-curve and corrosion protection**

The detail is located in a coated ballast tank with cathodic protection. For a vessel with a minimum fatigue life of 20 years this implies that the SN-curve of Type I in air is applied for the first 15 years and the curve of Type II applies for the remainder of the time. This will result in a scaling of, \(\chi = 1.3 \), when the calculated life is equal to the design life.

8.3.6.2 **The environmental factor \(f_e \)**

The vessel will trade in world wide operation and thus the environmental correction factor \(f_e = 0.8 \) may be applied as described in 3.4.3.

8.3.6.3 **The effects of mean stress**

The mean stress is to be calculated based on the mean stress of each load condition. In this example the approach is simplified by assuming that the stress is tension over the whole cycle for the ballast condition, \(f_m = 1.0 \), and compression for the loaded conditions, \(f_m = 0.7 \). This may be detailed by calculating the mean stress at the notch from still water loads and determining \(f_m \) from 2.2.3 or 2.3.4 for the relevant load condition.

8.3.7 **Calculation for Load condition - Alternate**

8.3.7.1 **Internal pressure loads**

Since the longitudinal is positioned in the double bottom ballast tank, which is empty in the loaded conditions, there will be no pressure from the ballast tank, giving rise to stiffener bending. The cargo in the hold will however cause local bending of the longitudinal. The accelerations and pressures are calculated according to 4.4.1 for the cargo hold.

For bulk and ore cargoes, only \(p_1 \) need to be considered this means that only vertical accelerations are of interest.
February 2003

\[a_v = 2.43 \text{ m/s}^2 \]
\[h_s = 26.3 \text{ m} \]
\[\rho = 1.54 \text{ t/m}^3 \]
\[p_i = 94.42 \text{ kN/m}^2 \]

The lateral pressure caused by the vertical acceleration, \(a_v \), scaled to the \(10^{-4} \) level, is according to 4.4.1

\[p_i = f_a \rho a_v h_s \]

where

\[f_a = 0.5^{1/h} \] (scaling factor to transform the load effect from probability level \(10^{-4} \), when the acceleration is specified at \(10^{-8} \) level)

\[h = h_0 + h_u \] (Weibull shape parameter, the shape parameter for bulkheads are used since this is an internal member)

\[h_0 = 2.21 - 0.54 \log_{10}(L) \]
\[h_0 = 2.21 - 0.54 \log_{10}(275) = 0.893 \]
\[h = 0.893 + 0.05 = 0.943 \]
\[f_a = 0.5^{1.943} = 0.479 \]
\[p_i = 0.479 \cdot 1.54 \cdot 2.43 \cdot 26.3 = 47.14 \]

8.3.7.2 *External sea pressure loads*

Since the considered longitudinal is an internal member there will be no contribution from seapressure.

8.3.7.3 *Combination of stress components*

The stress amplitude due to internal pressures is combined considering the sign. Positive stress is defined as tension at the location of the weld.

Stresses due to external pressure loads

+ Stiffener bending (\(p = 0 \)) = 0 N/mm\(^2\)
+ Relative deflection = +36.86 N/mm\(^2\)
+ Double hull bending = -6.11 N/mm\(^2\)
= Stresses from external sea loads \(\sigma_e = +30.75 \text{ N/mm}^2 \)

Stresses due to internal pressure loads

+ Stiffener bending (\(p = 47.14 \)) \(\times 47.14 \times 1.365 \) = -65.35 N/mm\(^2\)
+ Relative deflection = -129.36 N/mm\(^2\)
+ Double hull bending = +6.88 N/mm\(^2\)
= Stresses from internal pressure loads \(\sigma_i = -186.83 \text{ N/mm}^2 \)

\(t = 1 \) tension
\(c = -1 \) compression

The combined local stress range is determined according to 3.4.5 as

\[\Delta \sigma_i = 2 \sqrt{\sigma_e^2 + \sigma_i^2 + 2 \rho_p \sigma_e \sigma_i} \]
\[\rho_p = \frac{1}{2} \frac{z}{10T_{act}} + \frac{|x|}{4L} + \frac{|y|}{4B} - \frac{|x|}{5LT_{act}} \leq T_{act} \]

where

\(x, y \) and \(z \) are the co-ordinates for the load point, according to the co-ordinate system described in 3.4.5 with origo = (midship, centreline, baseline)

\(x = 23.75 \text{ m} \)
\(y = 3.72 \text{ m} \)
\(z = 2.088 \text{ m} \)

\[\rho_p = \frac{1}{2} \frac{2.088}{10-17.78} + \frac{23.78}{4-275} + \frac{3.72}{4-45} - \frac{23.75}{5-275-17.78} = 0.528 \]

\[\Delta \sigma_t = 2 \sqrt{(30.75)^2 + (-186.83)^2} + 2 \cdot 0.526 \cdot 30.75 \cdot (-186.83) = 345.16 \text{ kN/mm}^2 \]

8.3.7.4 Global hull bending moments

The vertical wave bending moment are computed according to 4.2.1 as

\[M_{wv,s} = -0.11 \cdot f_r \cdot k_{um} \cdot C_w \cdot L^2 \cdot B \cdot (C_B + 0.7) \quad \text{(Sagging)} \]

\[M_{wv,h} = 0.19 \cdot f_r \cdot k_{um} \cdot C_w \cdot L^2 \cdot B \cdot C_B \quad \text{(Hogging)} \]

The horizontal wave bending moment is calculated according to 4.2.2 as

\[M_H = 0.22 \cdot f_r \cdot L^{3/4} (T_{act} + 0.30B) C_B (1 - \cos(2\pi x/L)) \]

where

\(C_w = 10.75 - \left(\frac{300 - L}{100} \right)^{3/2} \) (wave coefficient)
\(f_r = 0.5^{1/10} \) (factor to transform from 10^-5 to 10^-4 probability level)
\(h_0 = 2.21 - 0.54 \log_{10} L \) (long term Weibull shape parameter)
\(x = 161.25 \) (distance from AP to considered point)
\(k_{um} = 1.0 \) (moment distribution factor)

\[C_w = 10.75 - \left(\frac{300 - 275}{100} \right)^{3/2} = 10.625 \]
\[h_0 = 2.21 - 0.54 \log_{10} (275) = 0.893 \]
\[f_r = 0.5^{1/10.893} = 0.4601 \]
\[M_{wv,s} = -0.11 \cdot 0.4601 \cdot 1.0 \cdot 10.625 \cdot 275^2 \cdot 45 \cdot (0.85 + 0.7) = -2836.2 \text{ kNm} \]
\[M_{wv,h} = 0.19 \cdot 0.4601 \cdot 1.0 \cdot 10.625 \cdot 275^2 \cdot 45 \cdot 0.85 = 2686.5 \text{ kNm} \]
\[M_H = 0.22 \cdot 0.4601 \cdot 275^{3/4} \left(17.78 + 0.30 \cdot 45 \right) 0.85 \left(1 - \cos(2\pi \cdot 161.25/275) \right) = 1538.4 \text{ kNm} \]

8.3.7.5 Stresses from global loads

The vertical and horizontal bending moments result in the following stress ranges, according to 3.5.2 and 3.5.3 at the 10^-4 level
\[\Delta \sigma_v = K_{\text{axial}} \left(M_{W,0} - M_{W,d} \right) \left(z - n_0 \right) / I_N \] (vertical global stress range)

\[\Delta \sigma_{hg} = K_{\text{axial}} 2M_H / I_C \] (horizontal global stress range)

\[\Delta \sigma_g = \sqrt{\Delta \sigma_v^2 + \Delta \sigma_{hg}^2 + 2 \rho_{vh} \Delta \sigma_v \Delta \sigma_{hg}} \] (combined global stress range)

where

\[I_N = Z_N (D - n_0) \] (moment of inertia of hull cross section)

\[I_C = Z_C B/2 \] (moment of inertia about the vertical neutral axis)

\[\rho_{vh} = 0.1 \] (average correlation between vertical and horizontal wave induced bending stress from 3.4.4)

\[\Delta \sigma_v = 2.1 \left(2686.5 \cdot 10^3 - \left(-2836.2 \cdot 10^3 \right) \right) \left[2.088 - 10.59 \over 40.79 \left(24.1 - 10.59 \right) \right] = 178.93 \text{ N/mm}^2 \]

\[\Delta \sigma_{hg} = 2.1 \cdot 2 \cdot 1538.4 \cdot 10^3 \cdot \frac{3.72}{62.66 \cdot 45/2} = 17.05 \text{ N/mm}^2 \]

\[\Delta \sigma_g = \sqrt{178.93^2 + 17.05^2 + 2 \cdot 0.1 \cdot 178.93 \cdot 17.05} = 181.43 \text{ N/mm}^2 \]

8.3.7.6 Combined hot spot stresses
The combined stress range is corrected for an assumed zero mean stress level, \(f_m = 0.7 \), and assumed world wide trading routes, \(f_e = 0.8 \). The combined hot spot stress at the \(10^{-4} \) level is then calculated to be

\[\Delta \sigma = f_e \max \left(\frac{\Delta \sigma_g + b \cdot \Delta \sigma_l}{a \cdot \Delta \sigma_g + \Delta \sigma_l} \right) \] (the combined global and local stress range)

where

\[a, b \text{ Load combination factors, accounting for the correlation between the wave induced local and global stress range equal } 0.6 \]

\[\Delta \sigma = 0.8 \max \left[181.43 + 0.6 \cdot 345.16 = 388.53 \right. \left. 0.6 \cdot 181.43 + 345.16 = 454.02 \right] \]

\[\Delta \sigma = 363.21 \text{ N/mm}^2 \]

With a correction for mean stress according to 2.2.4 assuming compression over the whole cycle, the stress range to be used in fatigue calculations become,

\[\Delta \sigma_o = f_m \cdot \Delta \sigma \]

\[\Delta \sigma_o = 0.7 \cdot 363.21 = 254.25 \text{ N/mm}^2 \]

8.3.7.7 Long term distribution
The Weibull shape parameter for the location of the considered detail is calculated according to 3.2.2

\[h = h_0 + h_u \]

\[h_0 = 2.21 - 0.54 \log_{10} (L) \]

\[h_0 = 2.21 - 0.54 \log_{10} (275) = 0.893 \]

\[h = 0.893 + 0.05 = 0.943 \]

(A possible check is here to consult Table 2.8 using the above Weibull parameter, \(h \), and the stress range, \(\Delta \sigma_o \).)
8.3.7.8 Fatigue part damage

The part damage in the alternate condition over 20 years fatigue life is calculated according to 2.1.2, for the one slope in Air curve to be

\[D_{\text{alternate}} = \frac{\nu_0 T_d}{a} p_{\text{alternate}} \times q_{\text{alternate}}^n \times \Gamma \left(1 + \frac{m}{h} \right) \]

where

\[\nu_0 T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(L)} \] (the number of cycles during 20 years)

\[\Gamma \left(1 + \frac{m}{h} \right) \] (the value of the gamma function from table 2.7)

\[q_{\text{alternate}} = \frac{\Delta \sigma_o}{(\ln n_0)^\frac{1}{h}} \]

\[n_0 = 10^4 \] (the total number of cycles associated with 10^4 level and stress range)

\[p_h = 0.25 \] (part of time alternate)

\[\Delta \sigma_o = 254.25 \text{ N/mm}^2 \]

\[h = 0.943 \]

\[a = 5.75 \times 10^{12} \] (SN Curve parameter for the curve Ib)

\[m = 3.0 \] (SN Curve parameter for the curve Ib)

\[\nu_0 T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(275)} = 6.46 \times 10^7 \]

\[\Gamma \left(1 + \frac{m}{h} \right) = 7.671 - 3(7.671 - 7.342)/10 = 7.572 \]

\[q_{\text{alternate}} = \frac{254.25}{(\ln 10^4)^\frac{1}{0.943}} = 24.12 \text{ N/mm}^2 \]

\[D_{\text{alternate}} = \frac{6.46 \times 10^7}{5.75 \times 10^{12}} \times 0.25 \times 234.12^{1.7} \times 7 - 572 = 0.299 \]

8.3.8 Calculation for Load condition - Homogenous

8.3.8.1 Internal pressure loads

Since the longitudinal is positioned in the double bottom ballast tank, which is empty in the loaded conditions, there will be no pressure from the ballast tank, giving rise to stiffener bending. The cargo in the hold will however cause local bending of the longitudinal. The accelerations and pressures are calculated according to 4.4.1 for the cargo hold.

For bulk and ore cargoes, only \(p_1 \) need to be considered this means that only vertical accelerations are of interest.

\[a_v = 2.43 \text{ m/s}^2 \]

\[h_v = 26.3 \text{ m} \]

\[\rho = 0.86 \text{ t/m}^3 \]

\[p_1 = 54.96 \text{ kN/m}^2 \]

The lateral pressure caused by the vertical acceleration, \(a_v \), scaled to the 10^4 level, is according to 4.4.1
\[p_i = f_a \rho \alpha_i h_i \]

where

\[f_a = 0.5^{1/h} \] (scaling factor to transform the load effect from probability level 10^{-4}, when the acceleration is specified at 10^{-8} level)

\[h = h_0 + h_u \] (Weibull shape parameter)

\[h_0 = 2.21 - 0.54 \log_{10}(L) \]

\[h_0 = 2.21 - 0.54 \log_{10}(275) = 0.893 \]

\[h = 0.893 + 0.05 = 0.943 \]

\[f_a = 0.5^{10.943} = 0.479 \]

\[p_i = 0.479 \cdot 0.86 \cdot 2.43 \cdot 26.3 = 26.33 \]

8.3.8.2 External sea pressure loads

Since the considered longitudinal is an internal member there will be no contribution from sea pressure.

8.3.8.3 Combination of stress components

The stress amplitude due to internal pressures is combined considering the sign. Positive stress is defined as tension at the location of the weld.

Stresses due to external pressure loads

\[+ \text{Stiffener bending (} p_c=0 \text{)} = 0 \text{ N/mm}^2 \]

\[+ \text{Relative deflection} = +36.86 \text{ N/mm}^2 \]

\[+ \text{Double hull bending} = -6.11 \text{ N/mm}^2 \]

\[= \text{Stresses from external sea loads} \quad \sigma_e = +30.75 \text{ N/mm}^2 \]

Stresses due to internal pressure loads

\[+ \text{Stiffener bending (} p_i=26.33 \text{)} \times 26.33 \times 1.365 = -35.94 \text{ N/mm}^2 \]

\[+ \text{Relative deflection} = -72.39 \text{ N/mm}^2 \]

\[+ \text{Double hull bending} = +5.33 \text{ N/mm}^2 \]

\[= \text{Stresses from internal pressure loads} \quad \sigma_i = -103.0 \text{ N/mm}^2 \]

\(t=1 \text{ tension} \)

\(c=-1 \text{ compression} \)

The combined local stress range is determined according to 3.4.5 as

\[\Delta \sigma_i = 2 \sqrt{\sigma_e^2 + \sigma_i^2 + 2 \rho_p \sigma_e \sigma_i} \]

\[\rho_p = \frac{1}{2} - \frac{z}{10T_{act}} + \frac{|y|}{4L} + \frac{|y|}{4B} - \frac{|y| \cdot z}{5LT_{act}} \quad z \leq T_{act} \]

where
x, y and z are the co-ordinates for the load point, according to the co-ordinate system described in 3.4.5 with origo = (midship, centreline, baseline)

\[x = 23.75 \text{ m} \]
\[y = 3.72 \text{ m} \]
\[z = 2.088 \text{ m} \]

\[\rho_p = \frac{1}{2} \frac{2.088}{10 \cdot 17.78} + \frac{23.75}{4 \cdot 275} + \frac{3.72}{4 \cdot 45} - \frac{23.75 \cdot 2.088}{5 \cdot 275 \cdot 17.78} = 0.528 \]

\[\Delta \sigma_t = 2 \sqrt{(30.75)^2 + (-103)^2 + 2 \cdot 0.528 \cdot 30.75 \cdot (-103)} = 181.22 \text{ kN/mm}^2 \]

8.3.8.4 Global hull bending moments

The vertical wave bending moment are computed according to 4.2.1 as, same as for alternate condition

\[M_{w,0,s} = -0.11 \cdot f_r \cdot k_{w_m} \cdot C_w \cdot L^2 \cdot B \cdot (C_B + 0.7) \] \hspace{1cm} \text{(Sagging)}

\[M_{w,0,h} = 0.19 \cdot f_r \cdot k_{w_m} \cdot C_w \cdot L^2 \cdot B \cdot C_B \] \hspace{1cm} \text{(Hogging)}

The horizontal wave bending moment is calculated according to 4.2.2 as

\[M_H = 0.22 \cdot f_r \cdot L^{9/4} \left(T_{\text{wet}} + 0.30B \right) C_B \left(1 - \cos(2\pi f/L) \right) \]

where

\[C_w = 10.75 - \left([300 - L]/100 \right)^{3/2} \] \hspace{1cm} \text{(wave coefficient)}

\[f_r = 0.5^{1/0.893} \] \hspace{1cm} \text{(factor to transform from 10^-8 to 10^-4 probability level)}

\[h_0 = 2.21 - 0.54 \log_{10}(L) \] \hspace{1cm} \text{(long term Weibull shape parameter)}

\[x = 161.25 \] \hspace{1cm} \text{(distance from AP to considered point)}

\[k_{w_m} = 1.0 \] \hspace{1cm} \text{(moment distribution factor)}

\[C_w = 10.75 - \left([300 - 275]/100 \right)^{3/2} = 10.625 \]

\[h_0 = 2.21 - 0.54 \log_{10}(275) = 0.893 \]

\[f_r = 0.5^{1/0.893} = 0.4601 \]

\[M_{w,0,s} = -0.11 \cdot 0.4601 \cdot 1.0 \cdot 10.625 \cdot 275^2 \cdot 45 \cdot (0.85 + 0.7) = -2836.2 \times 10^3 \text{ kNm} \]

\[M_{w,0,h} = 0.19 \cdot 0.4601 \cdot 1.0 \cdot 10.625 \cdot 275^2 \cdot 45 \cdot 0.85 = 2686.5 \times 10^3 \text{ kNm} \]

\[M_H = 0.22 \cdot 0.4601 \cdot 275^{9/4} \left(17.78 + 0.30 \cdot 45 \right) 0.85 \left(1 - \cos(2\pi f/L) \right) = 1538.4 \times 10^3 \text{ kNm} \]

8.3.8.5 Stresses from global loads

The vertical and horizontal bending moments result in the following stress ranges, according to 3.5.2 and 3.5.3 at the 10^-4 level

\[\Delta \sigma_v = K_{\text{axial}} \left(M_{w,0,h} - M_{w,0,s} \right) \frac{(z - n_0)}{I_N} \] \hspace{1cm} \text{(vertical global stress range)}
\[\Delta \sigma_{hg} = K_{axial} \frac{2M}{I_C} \]
(horizontal global stress range)

\[\Delta \sigma_g = \sqrt{\Delta \sigma_v^2 + \Delta \sigma_{hg}^2 + 2\rho_{sh} \Delta \sigma_v \Delta \sigma_{hg}} \]
(combined global stress range)

where

\[I_N = Z_N (D - n_0) \]
(moment of inertia of hull cross section)

\[I_C = Z_C B/2 \]
(moment of inertia about the vertical neutral axis)

\[\rho_{sh} = 0.1 \]
(average correlation between vertical and horizontal wave induced bending stress from 3.4.4)

\[\Delta \sigma_v = 2.1 \left[2686.5 \cdot 10^3 - \left(-2836.2 \cdot 10^3 \right) \right] \frac{[2.088 - 10.59]}{40.79(24.1 - 10.59)} = 178.93 \text{ N/mm}^2 \]

\[\Delta \sigma_{hg} = 2.1 \cdot 1.5384 \cdot 10^3 \cdot \frac{3.72}{62.66 \cdot 45/2} = 17.05 \text{ N/mm}^2 \]

\[\Delta \sigma_g = \sqrt{178.93^2 + 17.05^2 + 2 \cdot 0.1 \cdot 178.93 \cdot 17.05} = 181.43 \text{ N/mm}^2 \]

8.3.8.6 Combined hot spot stresses

The combined stress range is corrected for an assumed zero mean stress level, \(f_m = 0.7 \), and assumed world wide trading routes, \(f_e = 0.8 \). The combined hot spot stress at the 10^{-4} level is then calculated to be

\[\Delta \sigma = f_e \max \left(\Delta \sigma_g + b \cdot \Delta \sigma_l \right) \]
\[a \cdot \Delta \sigma_g + \Delta \sigma_l \]
(the combined global and local stress range)

where

\[a, b \]
Load combination factors, accounting for the correlation between the wave induced local and global stress range equal 0.6

\[\Delta \sigma = 0.8 \max \left[181.43 + 0.6 \cdot 181.22 = 290.16 \right] \]

\[0.6 \cdot 181.43 + 181.22 = 290.08 \]

\[\Delta \sigma = 232.11 \text{ N/mm}^2 \]

With a correction for mean stress according to 2.2.4 assuming compression over the whole cycle, the stress range to be used in fatigue calculations become.

\[\Delta \sigma_o = f_m \cdot \Delta \sigma \]

\[\Delta \sigma_o = 0.7 \cdot 232.11 = 162.48 \text{ N/mm}^2 \]

8.3.8.7 Long term distribution

The Weibull shape parameter for the location of the considered detail is calculated according to 3.2.2

\[h = h_0 + h_x \]

\[h_0 = 2.21 - 0.54 \log_{10} (L) \]

\[h_0 = 2.21 - 0.54 \log_{10} (275) = 0.893 \]

\[h = 0.893 + 0.05 = 0.943 \]
8.3.8.8 Fatigue part damage

The part damage in the homogenous condition over 20 years fatigue life is calculated according to 2.1.2, for the one slope in Air curve to be

\[D_{\text{homogenous}} = \frac{v_0 T_d}{a} P_{\text{homogenous}} \cdot q_{\text{homogenous}}^{m} \cdot \Gamma \left(1 + \frac{m}{h} \right) \]

where

\[v_0 T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(L)} \]

(the number of cycles during 20 years)

\[\Gamma \left(1 + \frac{m}{h} \right) \]

(the value of the gamma function from table 2.7)

\[q_{\text{homogenous}} = \frac{\Delta \sigma_o}{(\ln n_0)^{\frac{1}{h}}} \]

\[n_0 = 10^4 \] (the total number of cycles associated with 10^4 level and stress range)

\[\rho_n = 0.25 \] (part of time homogenous)

\[\Delta \sigma_o = 162.48 \text{ N/mm}^2 \]

\[h = 0.943 \]

\[a = 5.75 \cdot 10^{12} \] (SN Curve parameter for the curve Ib)

\[m = 3.0 \] (SN Curve parameter for the curve Ib)

\[v_0 T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(275)} = 6.46 \cdot 10^7 \]

\[\Gamma \left(1 + \frac{m}{h} \right) = 7.671 - 3(7.671 - 7.342)/10 = 7.572 \]

\[q_{\text{homogenous}} = \frac{162.48}{(\ln 10^4)^{\frac{1}{0.943}}} = 15.42 \text{ N/mm}^2 \]

\[D_{\text{homogenous}} = \frac{6.46 \cdot 10^7 \cdot 0.25 \cdot 15.42^3 \cdot 7.572}{5.75 \cdot 10^{12}} = 0.078 \]

8.3.9 Calculation for Load condition - Ballast

8.3.9.1 Internal pressure loads

In this load case the ballast water will cause the internal loads. The accelerations and pressures are calculated according to 4.4.1 for the cargo hold.

\[a_v = 2.43 \text{ m/s}^2 \]

\[a_t = 5.54 \text{ m/s}^2 \]

\[a_l = 1.25 \text{ m/s}^2 \]
hs = 24.1 m
y_s = 12.68 m
x_s = 0 m
ρ = 1.025 t/m³

The local internal pressure pressure amplitude at the 10⁻⁴ probability level is then calculated according to 4.4 as

\[
p_i = f_a \max \left\{ p_1 = \rho \cdot a_s \cdot h_s, p_2 = \rho \cdot a_l \cdot y_s, p_3 = \rho \cdot a_l \cdot x_s \right\}
\]

where

\[
f_a = 0.5^{1/0.943} = 0.479 \quad \text{(From 8.3.7.3)}
\]

\[
p_i = 0.479 \max \left\{ p_1 = 1.025 \cdot 2.43 \cdot 24.1 = 60.03, p_2 = 1.025 \cdot 5.54 \cdot 12.68 = 72.00, p_3 = 1.025 \cdot 1.25 \cdot 0 = 0 \right\}
\]

\[p_i = 34.49 \text{kN/m}^2\]

8.3.9.2 External sea pressure loads
Since the considered longitudinal is an internal member there will be no contribution from sea pressure.

8.3.9.3 Combination of stress components
The stress amplitude due to internal pressures is combined considering the sign. Positive stress is defined as tension at the location of the weld.

Stresses due to external pressure loads
+ Stiffener bending (p_e=0) = 0 N/mm²
+ Relative deflection = +19.44 N/mm²
+ Double hull bending = -3.61 N/mm²

= Stresses from external sea loads \(\sigma_e \) = +15.83 N/mm²

Stresses due to internal pressure loads
+ Stiffener bending (p_i=34.49) \(\times 34.49 \times 1.365 \) = +47.08 N/mm²
+ Relative deflection = 0 N/mm²
+ Double hull bending = 0 N/mm²

= Stresses from internal pressure loads \(\sigma_i \) = +47.08 N/mm²

t=1 tension
c=-1 compression

The combined local stress range is determined according to 3.4.5 as

\[
\Delta \sigma_l = 2\sqrt{\sigma_e^2 + \sigma_i^2 + 2\rho_\sigma \sigma_e \sigma_i}
\]

\[
\rho_\sigma = \frac{1}{2} - \frac{z}{10T_{act}} + \frac{|x|}{4L} + \frac{|y|}{4B} - \frac{|x| \cdot |z|}{5LT_{act}} \quad z \leq T_{act}
\]
where

\(x,\, y \) and \(z \) are the co-ordinates for the load point, according to the co-ordinate system described in 3.4.5 with origo = (midship, centreline, baseline)

\(x = 23.75 \, \text{m} \)

\(y = 3.72 \, \text{m} \)

\(z = 2.088 \, \text{m} \)

\[
\rho_p = \frac{1}{2} \left(\frac{2.088}{10 \cdot 17.78} + \frac{23.75}{4 \cdot 275} + \frac{3.72}{4 \cdot 45} - \frac{23.75}{5 \cdot 275} \cdot 7.16 \right) = 0.525
\]

\[
\Delta \sigma_i = 2\sqrt{(+15.83)^2 + (+47.08)^2} = 113.57 \, \text{kN/mm}^2
\]

8.3.9.4 Global hull bending moments

The vertical wave bending moment are computed according to 4.2.1 as

\[
M_{wo,s} = -0.11 \cdot f_r \cdot k_{wm} \cdot C_w \cdot L^2 \cdot B \cdot (C_B + 0.7) \quad \text{(Sagging)}
\]

\[
M_{wo,h} = 0.19 \cdot f_r \cdot k_{wm} \cdot C_w \cdot L^2 \cdot B \cdot C_B \quad \text{(Hogging)}
\]

The horizontal wave bending moment is calculated according to 4.2.2 as

\[
M_H = 0.22 \cdot f_r \cdot L^{9/4} \left(T_{air} + 0.30B \right) C_B \left(1 - \cos(2\pi x/L) \right)
\]

where

\(C_w = 10.75 - \left[\left(300 - L \right)/100 \right]^{3/2} \quad \text{(wave coefficient)} \)

\(f_r = 0.5^{1/60} \quad \text{(factor to transform from 10^-8 to 10^-4 probability level)} \)

\(h_0 = 2.21 - 0.54 \log_{10} (L) \quad \text{(long term Weibull shape parameter)} \)

\(x = 161.25 \quad \text{(distance from AP to considered point)} \)

\(k_{wm} = 1.0 \quad \text{(moment distribution factor)} \)

\[
C_w = 10.75 - \left[\left(300 - 275 \right)/100 \right]^{3/2} = 10.625
\]

\[
h_0 = 2.21 - 0.54 \log_{10} (275) = 0.893
\]

\[
f_r = 0.5^{1/0.893} = 0.4601
\]

The vertical bending moments are the same as calculated for the loaded conditions

\[
M_{wo,s} = -0.11 \cdot 0.4601 \cdot 1.0 \cdot 10.625 \cdot 275^2 \cdot 0.45 \cdot (0.85 + 0.7) = -2836.2 \, 10^3 \, \text{kNm}
\]

\[
M_{wo,h} = 0.19 \cdot 0.4601 \cdot 1.0 \cdot 10.625 \cdot 275^2 \cdot 0.45 \cdot 0.85 = 2686.5 \, 10^3 \, \text{kNm}
\]

\[
M_H = 0.22 \cdot 0.4601 \cdot 275^{9/4} \left(7.16 + 0.30 \cdot 45 \right) 0.85 \left(1 - \cos(2\pi x/275) \right) = 1016.1 \, 10^3 \, \text{kNm}
\]

8.3.9.5 Stresses from global loads

The vertical and horizontal bending moments result in the following stress ranges, according to 3.5.1 and 3.5.2 at the 10^-4 level
\[
\Delta \sigma_v = K_{axial} \left(M_{W0,h} - M_{W0,l} \right) \left(\frac{z-n_0}{I_N} \right) \quad \text{(vertical global stress range)}
\]
\[
\Delta \sigma_{hg} = K_{axial} \frac{M_H}{I_C} \quad \text{(horizontal global stress range)}
\]
\[
\Delta \sigma_g = \sqrt{\Delta \sigma_v^2 + \Delta \sigma_{hg}^2 + 2 \rho_{vb} \Delta \sigma_v \Delta \sigma_{hg}} \quad \text{(combined global stress range)}
\]

where
\[
I_N = Z_N (D-n_0) \quad \text{(moment of inertia of hull cross section)}
\]
\[
I_C = Z_C B/2 \quad \text{(moment of inertia about the vertical neutral axis)}
\]
\[
\rho_{vb} = 0.1 \quad \text{(average correlation between vertical and horizontal wave induced bending stress from 3.4.4)}
\]

\[
\begin{align*}
\Delta \sigma_v &= 2.1 \left[2686.5 \cdot 10^3 - \left(-2836.2 \cdot 10^3 \right) \right] \left(\frac{2.088 - 10.59}{40.79(24.1 - 10.59)} \right) = 178.93 \text{ N/mm}^2 \\
\Delta \sigma_{hg} &= 2.1 \cdot 2 \cdot 1016.1 \cdot 10^3 \cdot \frac{3.72}{62.66 \cdot 45/2} = 11.26 \text{ N/mm}^2 \\
\Delta \sigma_g &= \sqrt{178.93^2 + 11.26^2 + 2 \cdot 0.1 \cdot 178.93 - 11.26} = 180.41 \text{ N/mm}^2
\end{align*}
\]

8.3.9.6 Combined hot spot stresses

The combined stress range is corrected for an assumed zero mean stress level, \(f_m = 1.0 \), and assumed world wide trading routes, \(f_e = 0.8 \). The combined hot spot stress at the \(10^{-4} \) level is then calculated to be

\[
\Delta \sigma = f_e \max \left[a \cdot \Delta \sigma_g + b \cdot \Delta \sigma_l \right] \quad \text{(the combined global and local stress range)}
\]

where
\[
a, b \quad \text{Load combination factors, accounting for the correlation between the wave induced local and global stress range equal 0.6}
\]
\[
\begin{align*}
\Delta \sigma &= 0.8 \max \left[180.41 + 0.6 \cdot 113.57 = 248.51 \right] \\
&\quad \left[0.6 \cdot 180.41 + 113.57 = 221.82 \right]
\end{align*}
\]
\[
\Delta \sigma = 198.84 \text{ N/mm}^2
\]

With a correction for mean stress according to 2.2.4 assuming tension over the whole cycle, the stress range to be used in fatigue calculations become.

\[
\begin{align*}
\Delta \sigma_o &= f_m \cdot \Delta \sigma \\
\Delta \sigma_o &= 1.0 \cdot 198.84 = 198.84 \text{ N/mm}^2
\end{align*}
\]

8.3.9.7 Long term distribution

The Weibull shape parameter for the location of the considered detail is calculated according to 3.2.2

\[
\begin{align*}
h &= h_0 + h_u \\
h_0 &= 2.21 - 0.54 \log_{10}(L)
\end{align*}
\]
\[h_0 = 2.21 - 0.54 \log_{10}(275) = 0.893 \]

\[h = 0.893 + 0.05 = 0.943 \]

(A possible check is here to consult Table 2.8 using the above Weibull parameter, \(h \), and the stress range, \(\Delta \sigma_o \).)

8.3.9.8 Fatigue part damage

The part damage in the ballast condition over 20 years fatigue life is calculated according to 2.1.2, for the one slope in Air curve to be

\[
D_{\text{ballast}} = \frac{V_0 T_d}{a} p_{\text{ballast}} \cdot q_{\text{ballast}} \cdot \Gamma\left(1 + \frac{m}{h}\right)
\]

where

\[
v_0 T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(L)} \quad \text{(the number of cycles during 20 years)}
\]

\[
\Gamma\left(1 + \frac{m}{h}\right) \quad \text{(the value of the gamma function from Table 2.7)}
\]

\[
q_{\text{ballast}} = \frac{\Delta \sigma_o}{(\ln n_0)^{1/4}}
\]

\(n_0 = 10^4 \quad \text{(the total number of cycles associated with } 10^{-4} \text{ level and stress range)} \)

\(p_n = 0.35 \quad \text{(part of time ballast)} \)

\(\Delta \sigma_o = 198.84 \text{ N/mm}^2 \)

\(h = 0.943 \)

\(\bar{a} = 5.75 \cdot 10^{12} \quad \text{(SN Curve parameter for the curve Ib)} \)

\(m = 3.0 \quad \text{(SN Curve parameter for the curve Ib)} \)

\[
v_0 T_d = \frac{20 \cdot 365 \cdot 24 \cdot 3600}{4 \log_{10}(275)} = 6.46 \cdot 10^7
\]

\[
\Gamma\left(1 + \frac{m}{h}\right) = 7.671 - 3(7.671 - 7.342)/10 = 7.572
\]

\[
q_{\text{ballast}} = \frac{198.84}{(\ln 10^4)^{V_0^{1/4}}} = 18.87 \text{ N/mm}^2
\]

\[
D_{\text{ballast}} = \frac{V_0 T_d}{a} p_{\text{ballast}} \cdot q_{\text{ballast}} \cdot \Gamma\left(1 + \frac{m}{h}\right)
\]

\[
D_{\text{ballast}} = \frac{6.46 \cdot 10^7}{5.75 \cdot 10^{12}} 0.35 \cdot 18.87^3 \cdot 7.572 = 0.200
\]

8.3.10 Fatigue life calculated from the one slope SN Curve Ib

The total fatigue damage during 20 years is found by summing the part damage from each of the loading conditions and checking the damage against the criteria in 2.1.2.
February 2003

\[
D = \frac{v_0 T_d}{a} \sum_{n=1}^{N_{\text{tot}}} p_n q_n^n \left(1 + \frac{m}{h_n}\right) = \sum_{n=1}^{N_{\text{tot}}} D_n \leq \eta
\]

Where \(\eta \) is the usage factor. If the criterion is fulfilled the fatigue damage is considered acceptable. Using the estimated values from the SN Curve Ib.

\[D = 0.299 + 0.078 + 0.200 = 0.577 \]

When considering the corrosive environment the \(\chi \)-factor increases the fatigue damage

\[D = 0.577 \chi = 0.577 \times 1.3 = 0.750 \]

If the usage factor \(\eta = 1.0 \), the fatigue life of the considered part is

\[T_{\text{life}} = 20 \div 0.750 = 26.7 \text{ years} \]
9. Fatigue Analysis of Containerships and Other Ship Types

9.1 Where to analyse

9.1.1
Fatigue damages are known to occur more frequently for some ship types and categories of hull structure elements. The fatigue life is in particular related to the magnitude of the dynamic stress level, the corrosiveness of the environment and the magnitude of notch- and stress concentration factors of the structural details, which all vary depending on ship type and structure considered. The importance of a possible fatigue damage is related to the number of potential damage points of the considered type for the ship or structure in question and to its consequences.

9.1.2
A major fraction of the total number of fatigue damages on ship structures occurs in panel stiffeners on the ship side, in bottom and upper deck. However, the calculated fatigue life depends on the type of stiffeners used, and the detail design of the connection to supporting girder webs, bulkheads, hatch corner and hatch coaming. In general un-symmetrical profiles will have a reduced fatigue life compared to symmetrical profiles unless the reduced effectiveness of the un-symmetrical profile is compensated by an improved design for the attachment to transverse girder webs and bulkhead structures.

9.1.3
Structural elements in the cargo area being of possible interest for fatigue evaluation are listed in Tables 9.1 and 9.2.

<table>
<thead>
<tr>
<th>Hull member</th>
<th>Structural detail</th>
<th>Load type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side- and bottom longitudinal</td>
<td>Butt joints and attachment to transverse webs, transverse bulkheads and intermediate longitudinal girders</td>
<td>Hull girder bending, stiffener lateral pressure load and support deformation</td>
</tr>
<tr>
<td>Upper deck</td>
<td>Plate and stiffener butt joints, hatch corner curvatures and support details welded on upper deck for container pedestals etc.</td>
<td>Hull girder bending- and torsional warping stress</td>
</tr>
</tbody>
</table>

1) Torsion induced warping stresses in the bilge region may be of significance from the forward machinery bulkhead to the forward quarter length.

2) The fatigue assessment of upper deck structures must include the combined effect of vertical and horizontal hull girder bending and the torsional warping response. For hatch corners, additional stresses introduced by the bending of transverse (and longitudinal) deck structures induced by the torsional hull girder deformation must be included in the fatigue assessment.

Table 9.2 Roll on / Roll off- and Car carriers

9.2 Fatigue analysis

Depending on the required accuracy of the fatigue evaluation it may be recommended to divide the design life into a number of time intervals due to different loading conditions and limitations of durability of the corrosion protection. For example, the design life may be divided into one interval with good corrosion protection and one interval where the corrosion protection is more questionable for which different S-N data should be used, see Section 2.3. Each of these intervals should be divided into that of loaded and ballast conditions. The following guidance may be applied:

For vessels intended for normal, world wide trading, the fraction of the total design life spent at sea, should not be taken less than 0.85. The fraction of design life in the homogeneous design load and ballast conditions, \(p_n \), may be taken from Table 9.3;

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Container vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loaded conditions</td>
<td>0.65</td>
</tr>
<tr>
<td>Ballast conditions</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 9.3 Fraction of time at sea in loaded, ballast condition, \(p_n \), respectively
9.3 Simplified Calculation of the Combined Longitudinal Stress in Ships with Large Hatch Openings

9.3.1
The combined longitudinal stress, σ_g, due to horizontal and vertical hull girder bending and torsion, may in general be determined in accordance with the following procedure. The horizontal wave moment and the horizontal wave bending moment are to be defined as given in [1]. The combined stress is generally to be determined for a load combination where the torsional wave moment and the horizontal wave bending moment are combined with a reduced vertical wave bending moment. All are generally to be defined with a positive sign in relation to the axis system and sign convention defined in Figure 9.1.

9.3.2
The combined longitudinal stress range, $\Delta \sigma_g$, is to be determined for both port and starboard side for every member of the cross-section and location for which the fatigue life is to be evaluated. Based on this, the fatigue damage; D_g & D_p, for the port and starboard member respectively is to be determined separately in accordance with 2.1.3. The fatigue damage, D, for the member is then obtained according to the following formula:

$$D = \frac{D_g + D_p}{2}$$

9.3.3
The combined longitudinal stress range, $\Delta \sigma_g$, is determined according to the following formula:

$$\Delta \sigma_g = 2 \left[\sigma_h + \sigma_{swt} + \sigma_{gt} + 0.45 \sigma_v \right]$$

σ_h = horizontal wave bending stress

$$\sigma_h = -\frac{M_{WH} \ y}{I_C}$$

M_{WH} = horizontal wave bending moment at 10^{-4} probability level is according to (1) given as:

$$M_{WH} = 0.022 f_r \sqrt{\frac{C_s^2 L^2 B C_{SWP}}{18000 T_{swt}^2}} L^{11} (T_{swt} + 0.3 B) C_B \left[1 - \cos \left(\frac{2 \pi x}{L} \right) \right] \text{ (kNm)}$$

f_r = as defined in 4.2.1 inserting $h = 0.95$

I_C = moment of inertia of hull cross-section about the vertical axis.

y = distance from centre line to considered member, defined in accordance with Figure 9.1

σ_v = stress due to hull girder vertical bending as given in 3.5.1.

σ_{swt} = warping stress at position considered.

$$\sigma_{swt} = -\frac{M_{BWT} \ Omega}{I_{DWT}}$$

σ_{gt} = bending stress of (upper) deck structure due to torsional deformation of hatch openings.

$= 0$ for members other than (upper) deck.

$$\sigma_{gt} = -\frac{M_D \ y_D}{I_D}$$

M_D = the bending moment of considered upper deck at side structure induced by the torsional deformation of the deck due to wave torque M_{WT}.

I_D = moment of inertia of considered upper deck at side about vertical axis.

y_D = transverse distance positive in the global y-axis direction from neutral axis of the upper deck structure to considered member.
\[M_{BWT} = \text{warping bimoment at section considered due to wave torque } M_{WT}, \text{ in accordance with 9.3.5 (with sign as defined in Figure 9.1).} \]

\[I_{\Omega} = \text{sectorial moment of inertia of considered cross-section.} \]

\[\Omega = \text{Sectorial co-ordinate (unit warping) for the considered member of the cross-section.} \]

\[M_{WT} = \text{wave torsional moment at } 10^{-4} \text{ probability level is according to [1] given by:} \]

\[= 0.26 f, \sin^2 \left(\frac{\pi x}{L} \right) \cos \left(\frac{\pi x}{3C B} \right) L^2 B^2 \frac{C_{SWP}}{C_B} \]

\[+ 0.14 f, \sqrt{\frac{C_B^2 L^2 B C_{SWP}}{18000 T_{act}^2}} \frac{7}{7} \left(T_{act} + 0.3 B \right) C_B \sin \left(\frac{2 \pi x}{L} \right) z_e (\text{kNm}) \]

\[z_e = \text{distance in m from the shear centre of the midship section to a level } 0.7 T_{act} \text{ above the vessel base line.} \]

\[C_{SWP} = \frac{A_{WP}}{L B} \]

\[A_{WP} = \text{water plane area in } \text{m}^2 \text{ of vessel at draught } = T_{act}. \]

\[T_{act} = \text{vessel draught in m in considered condition. (Note a draught equal to the design draught may in general be assumed as representative for a condition to be applied for a fatigue analysis related to the ship’s cargo conditions)} \]

\[x = \text{distance in m from A.P. to section considered.} \]

\[9.3.4 \]

For evaluation of the combined stress of particular stress concentration areas, such as hatch corners, each of the stress components of the formula for \(\Delta \sigma_g \) given in 9.3.3 must be adjusted according to its appropriate stress concentration factor.

\[9.3.5 \]

The torsional constants, \(I_T, I_{\Omega\Omega}, z_\circ \) and \(\Omega \) of the considered hull cross-sections may be determined according to the DNV program Nauticus Hull Section Scantling. Note that \(\Omega \)-values calculated by the Section Scantling program refer to the half cross-section of the positive y-axis.

The warping bimoment, \(M_{BWT} \), may in general be determined according to calculations based on prismatic beam theory.

For wave torsional moment distributions as defined in [1], the maximum warping bimoments are generally found at the forward machinery bulkhead and in the midship region, and are seen to be mainly related to the warping characteristics of the hull. For container carriers with a normal cargo hold arrangement, the approximate warping bimoment at midship, \(M_{BWT}(L/2) \), and at the forward machinery bulkhead, \(M_{BWT}(x_m) \), for the wave torque \(M_{WT} \) are therefore (tentatively) expressed as:

\[M_{BWT}(L/2) = 0.8 M_{BF} - 0.3 (M_{RA} + 1.8 M_{BF}) \text{ (kNm)} \]

\[= -0.4 M_{RA}, \text{ maximum} \]

\[M_{BWT}(x_m) = 0.8 M_{RA} + M_{BWT}(L/2) \text{ (kNm)} \]

\[M_{RA} = \int_{x_m}^{L/2} M_{WT} \, dx \]

\[= K_B \left\{ \sin \left(\frac{\pi}{6C_B} \right) - \frac{\sin \left(\frac{6C_B - 1}\pi \right)}{2(6C_B - 1)} \sin \left(\frac{6C_B + 1}\pi \right) \right\} \]
February 2003

\[
-K_b \left(\sin\left(\frac{\pi x_b}{3 C_b L}\right) - \sin\left(\frac{(6 C_b - 1)\pi x_b}{3 C_b L}\right) - \sin\left(\frac{(6 C_b + 1)\pi x_b}{3 C_b L}\right) \right)
\]

\[
+ 0.0223 \sqrt{1 - \frac{C_b^2 L^3 B C_{SWP}}{18000 T^2} \left(\frac{11}{T + 0.3B} \right) C_b \left(1 + \cos\left(\frac{2\pi x_b}{L}\right) \right)}
\]

\[
M_{BF} = \int_{L/2}^L M_{wT} \, dx
\]

\[
= K_b \left(\sin\left(\frac{\pi}{3 C_b}\right) - \sin\left(\frac{(6 C_b - 1)\pi}{3 C_b}\right) - \sin\left(\frac{(6 C_b + 1)\pi}{3 C_b}\right) \right)
\]

\[
- K_b \left(\sin\left(\frac{\pi}{6 C_b}\right) - \sin\left(\frac{(6 C_b - 1)\pi}{6 C_b}\right) - \sin\left(\frac{(6 C_b + 1)\pi}{6 C_b}\right) \right)
\]

\[
- 0.0446 \sqrt{1 - \frac{C_b^2 L^3 B C_{SWP}}{18000 T^2} \left(\frac{11}{T + 0.3B} \right) C_b \left(1 + \cos\left(\frac{2\pi x_b}{L}\right) \right)}
\]

\[
K_b = 0.1241 L^2 B^2 C_{SWP}
\]

9.3.6

The bending moment of the upper deck member, \(M_D\), may preferably be calculated based on a direct calculation of the deck structure subjected to prescribed transverse- and longitudinal displacements determined according to the prismatic beam torsional response calculation.

Reference:

1) DNVC Report No.: 95-0453 “Rule Calibration and Comparison of Direct Calculations and Rule Values of Torsional and Horizontal Wave induced Moments”.
10. Appendix A Stress Concentration Factors

10.1 General

10.1.1 Stress concentration factors or K-factors may be determined based on fine mesh finite element analyses as described in Section 6.6. Alternatively, K-factors may be obtained from the following selection of factors for typical details in ships.

10.1.2 The fatigue life of a detail is governed by the notch stress range. For components other than smooth specimens the notch stress is obtained by multiplication of the nominal stress by K-factors. The K-factors in this document are thus defined as

\[K = \frac{\sigma_{\text{notch}}}{\sigma_{\text{nominal}}} \]

The S-N curves in Section 2.3 are given for smooth specimens where the notch stress is equal the nominal stress: \(K = 1.0 \).

The relation between the notch stress range to be used together with the S-N-curve and the nominal stress range is

\[\Delta \sigma = K \cdot \Delta \sigma_{\text{nominal}} \]

All stress risers have to be considered when evaluating the notch stress. This can be done by multiplication of K-factors arising from different causes. The resulting K-factor to be used for calculation of notch stress is derived as

\[K = K_g \cdot K_w \cdot K_{te} \cdot K_{\alpha \alpha} \cdot K_n \]

where

- \(K_g \) = stress concentration factor due to the gross geometry of the detail considered
- \(K_w \) = stress concentration factor due to the weld geometry. \(K_w = 1.5 \) if not stated otherwise
- \(K_{te} \) = additional stress concentration factor due to eccentricity tolerance (normally used for plate connections only)
- \(K_{\alpha \alpha} \) = additionally stress concentration factor due to angular mismatch (normally used for plate connections only)
- \(K_n \) = additional stress concentration factor for unsymmetrical stiffeners on laterally loaded panels, applicable when the nominal stress is derived from simple beam analyses.

10.2 Examples of K-factors for typical details in ships

10.2.1 The K-factors presented in the following covers typical details in ships. Local stress concentration factors in way of welds depend on level of workmanship. The default values on workmanship tolerances given in the following tables, are based on what appears to be normal shipyard practise. If greater tolerances are used, the K-factors should be calculated based on actual tolerances, see also 10.4

10.2.2 K-factors for flange connections.

K-factors for flange connections are given in Table 10.1.
Table 10.1 K-factors for flange connections

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.a
Flange connection with softening toe</td>
<td>$K_g \cdot K_u = 2.2$</td>
</tr>
<tr>
<td>10.1.b
Crossing of flanges</td>
<td>$K_g \cdot K_u = 2.2$</td>
</tr>
<tr>
<td></td>
<td>$R \geq 1.25t$ (ground)</td>
</tr>
<tr>
<td></td>
<td>welded from both sides</td>
</tr>
<tr>
<td></td>
<td>$t =$ thickness of flange</td>
</tr>
<tr>
<td>10.1.c
R/b > 0.15</td>
<td>$K_g = 1.9$</td>
</tr>
<tr>
<td></td>
<td>To be used together with S-N curve for base material.</td>
</tr>
<tr>
<td>10.1.d
Overlap connection</td>
<td>$K_g = \left(\frac{4t_0}{t_f} + 3 \left(\frac{t_0}{t_f} \right)^2 + 6 \frac{\Delta t}{t_f^2} \right)$</td>
</tr>
<tr>
<td></td>
<td>$\Delta = \text{gap} = \text{tolerance}$</td>
</tr>
<tr>
<td></td>
<td>Default: $\Delta = 1.0 \text{ mm}$</td>
</tr>
<tr>
<td></td>
<td>$K_u = 15$</td>
</tr>
</tbody>
</table>
10.2.3
K-factors for stiffener supports.

K-factors for stiffener supports are given in Table 10.2. The factors are applicable to stiffeners subject to axial- and lateral loads. Note that the weld connection area between supporting members and stiffener flange must fulfill the requirements in DNV Rules for Classification of Ships.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.a</td>
<td>For supporting members welded to stiffener flange:</td>
</tr>
<tr>
<td></td>
<td>Axial stress in the longitudinal direction</td>
</tr>
<tr>
<td></td>
<td>At point A:</td>
</tr>
<tr>
<td></td>
<td>$K_s \cdot K_w = 2.0$ for $d \leq 150$</td>
</tr>
<tr>
<td></td>
<td>$K_s \cdot K_w = 2.1$ for $d > 150$</td>
</tr>
<tr>
<td></td>
<td>At point B:</td>
</tr>
<tr>
<td></td>
<td>$K_s \cdot K_w = 2.0$ for $d \leq 150$</td>
</tr>
<tr>
<td></td>
<td>$K_s \cdot K_w = 2.1$ for $d > 150$</td>
</tr>
<tr>
<td></td>
<td>Point A denotes the side of the supporting member and point B denotes the opposite side.</td>
</tr>
<tr>
<td></td>
<td>For supporting members welded to stiffener web by overlap weld as given in Table 10.5a, the above factors are to be multiplied by a factor 1.15</td>
</tr>
</tbody>
</table>

10.2.b	For supporting members welded to stiffener flange:
	Axial stress in the longitudinal direction
	$K_s \cdot K_w = 2.2$
	Bending due to lateral load
	$K_s \cdot K_w = 2.7$
	For supporting members welded to stiffener web by overlap weld as given in Table 10.5a, the above factors are to be multiplied by a factor 1.15

10.2.c	For supporting members welded to stiffener flange:
	Axial stress in the longitudinal direction
	$K_s \cdot K_w = 1.8$
	Bending due to lateral load
	$K_s \cdot K_w = 1.8$
10.2.d

For supporting members welded to stiffener flange:

<table>
<thead>
<tr>
<th>Axial stress in the longitudinal direction</th>
<th>Bending due to lateral load</th>
</tr>
</thead>
<tbody>
<tr>
<td>At point A:</td>
<td>At point A:</td>
</tr>
<tr>
<td>$K_g \cdot K_u = 2.1$</td>
<td>$K_g \cdot K_u = 2.1$</td>
</tr>
<tr>
<td>At point B:</td>
<td>At point B:</td>
</tr>
<tr>
<td>$K_g \cdot K_u = 2.1$</td>
<td>$K_g \cdot K_u = 2.1$</td>
</tr>
</tbody>
</table>

Point A denotes the side of the supporting member and point B denotes the opposite side.

For supporting members welded to stiffener web by overlap weld as given in Table 10.5a, the above factors are to be multiplied by a factor 1.15.

10.2.e

For soft nose bracket toes with a radius greater than 200 mm and soft heels in scallops with a radius greater than 30 mm:

<table>
<thead>
<tr>
<th>Axial stress in the longitudinal direction</th>
<th>Bending due to lateral load</th>
</tr>
</thead>
<tbody>
<tr>
<td>At point A:</td>
<td>At point A:</td>
</tr>
<tr>
<td>$K_g \cdot K_u = 2.0 \cdot \left(\frac{60}{R} \right)^{0.05}$</td>
<td>$K_g \cdot K_u = 1.8$</td>
</tr>
<tr>
<td>At point B:</td>
<td>At point B:</td>
</tr>
<tr>
<td>$K_g \cdot K_u = 2.1 \cdot \left(\frac{60}{R} \right)^{0.05}$</td>
<td>$K_g \cdot K_u = 2.6 \cdot \left(\frac{60}{R} \right)^{0.05}$</td>
</tr>
</tbody>
</table>

Point A denotes the side of the supporting member and point B denotes the opposite side.

For supporting member welded to stiffener, flange only. It is assumed that the weld is kept clear of flange edge.

10.2.f

For soft nose bracket toes with a radius greater than 200 mm:

$$K_g \cdot K_u = 2.0 \cdot \left(\frac{60}{R} \right)^{0.05}$$

R = radius in mm of soft nose or heel

For supporting member welded to stiffener, flange only. It is assumed that the weld is kept clear of flange edge.

Table 10.2 K-factors for stiffener supports

DET NORSKE VERITAS
The following should be noted when the value of the K-factor in bending is considered. The K-factors have been determined based on finite element analyses of actual geometries. The hot spot stress has been determined by extrapolation of stresses as defined in Section 6.6. Then the procedure for stress calculation given in 3.5.4 has been followed in a reverse direction to establish the K-factors. Effective plate flange and effective span width between supports are included in the calculation. This will assure that the same hot spot stress is derived using the K-factors based on the specified procedure for the same geometric conditions. Thus the value of the K-factor will depend on the calculation procedure used to obtain the hot spot stress. Therefore, a direct comparison of K-factors from different sources should not be performed without considering how they are defined and derived. A more proper way for comparison is to compare the hot spot stresses due to a specific load.

The K-factors in bending have been evaluated for different boundary conditions for the stiffener at the transverse frames. It was found that the K-factors were not very sensitive to whether free support or fixed condition were used. (It might be added that the effect of boundary conditions would be a function of length of stiffener analysed in relation to geometry of longitudinal and distance between transverse frames. Here, the following geometry has been used: distance from top of longitudinal to end of supporting member equal 560 mm, frames spacing of 3200 mm, plate thickness of 12.5 mm, T-profile 350x12 + 100x17 and spacing 800 mm).

10.2.4

K-factors for termination of stiffeners on plates.

K-factors for termination of stiffeners on plates are given in Table 10.3.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.a</td>
<td></td>
</tr>
<tr>
<td>Local elements and stiffeners welded to</td>
<td></td>
</tr>
<tr>
<td>plates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>t_w</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td></td>
</tr>
<tr>
<td>l_p</td>
<td></td>
</tr>
<tr>
<td>$K_s \cdot K_w = 2 \left(1 + \frac{t_w \theta}{t_p 160}\right)$</td>
<td></td>
</tr>
<tr>
<td>θ = angle in degrees of sloping</td>
<td></td>
</tr>
<tr>
<td>termination</td>
<td></td>
</tr>
<tr>
<td>10.3.b</td>
<td></td>
</tr>
<tr>
<td>Sniping of top flanges:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>A_f</td>
<td></td>
</tr>
<tr>
<td>$\theta_{\text{max}} = 15$</td>
<td></td>
</tr>
<tr>
<td>t_s</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td></td>
</tr>
<tr>
<td>$K_s \cdot K_w = \frac{3 A_f}{l t_s}$</td>
<td></td>
</tr>
<tr>
<td>and $K_s \cdot K_w = \min 3.0$</td>
<td></td>
</tr>
</tbody>
</table>

Table 10.3 K-factors for termination of stiffeners on plates
10.2.5 K-factors for butt welds

K-factors for butt welds are given in Table 10.4. For some geometries, default values have been established for normal design fabrication of the connections and should be used if not otherwise documented. See also 10.4.1.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
</table>
| **10.4.a** | Angular mismatch in joints between flat plates results in additional stresses at the butt weld and the stiffener. \[K_{sw} = 1 + \frac{\lambda_s\alpha s}{4t} \] where:
\(\lambda_s = 6 \) for pinned ends
\(\lambda_s = 3 \) for fixed ends
\(\alpha = \) angular mismatch in radians
\(s = \) plate width
\(t = \) plate thickness |

Default: \(e = 6 \text{ mm} \)

| **10.4.b** | Welding from both sides
\[K_f = 1.0 \]
\[K_n = 1.0 + 0.5(tan\theta)^{\lambda_f} \]
Default value \(K_n = 1.5 \) for \(\theta = 45\text{deg}. \)
\(K_{sw} \) from 10.4.a
\[K_{te} = 1 + \frac{3e}{t} \] |
| **10.4.c** | Plate not restricted in out-of-plane movement
\[\Delta r = t_2 - t_1 \]
\[K_g = 1 + \frac{\Delta r}{3t_1} \]
\[K_u = 1.4\left(1 + \frac{\Delta r + e}{2x}\right) \]
\[K_{sw} = 1 + \frac{6e}{t_1} \]
\(\Delta r \) from 10.4.a
\(K_{sw} \) from 10.4.a
\[a = \min(3(\Delta r + e)) \]
\[e = 0.15 t_1 \] |

DET NORSKE VERITAS
10.4.d
Plate restricted in out-of-plane movement (e.g. flanges)

![Diagram](image)

Defaults:

\[
a = \min(3(\Delta t + e))
\]

\[
e = 0.15 t_1
\]

\[
\Delta t = t_2 - t_1
\]

\[
K_e = 1.0
\]

\[
K_w = 1.4 \left(1 + \frac{\Delta t + e}{2a}\right)
\]

\[
K_w = 1.0
\]

\[
K_w = 1.0
\]

10.4.e
Welding from one side

![Diagram](image)

Welding from one side is not recommended in areas prone to fatigue due to sensitivity of workmanship and fabrication

\[
K_e = 1.0
\]

Default value: \(K_w = 2.2\)

\[
K_w = 1 + \frac{3e}{t}
\]

\[
K_w \text{ from 10.4.a}
\]

Table 10.4 K-factors for butt-welds
K-factors for doubling plates are given in Table 10.5.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.a</td>
<td>Welded at its end with throat thickness a</td>
</tr>
<tr>
<td>Cover plates on beams</td>
<td>$K_g \cdot K_w = 18$ $d \leq 50$</td>
</tr>
<tr>
<td></td>
<td>$K_g \cdot K_w = 19$ $50 < d \leq 100$</td>
</tr>
<tr>
<td></td>
<td>$K_g \cdot K_w = 2.0$ $100 < d \leq 150$</td>
</tr>
<tr>
<td></td>
<td>$K_g \cdot K_w = 2.2$ $d > 150$</td>
</tr>
</tbody>
</table>

For larger doublers, a more detailed analysis should be performed based on the actual geometry.

10.5.b	
Doubling plates welded to plates	$K_g \cdot K_w = 18$ $d \leq 50$
	$K_g \cdot K_w = 19$ $50 < d \leq 100$
	$K_g \cdot K_w = 2.0$ $100 < d \leq 150$

Note: If the welds of the doubling plates are placed closer to the member (flange, plate) edges than 10 mm, the K-factors in Table 10.5 should be increased by a factor 1.3.
10.2.7 K-factors for cruciform joints.

K-factors for cruciform joints are given in Table 10.6.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$K_{te} = 1 + \frac{6t^2 \cdot e}{l_1 \left(\frac{t_1^3}{l_1} + \frac{t_2^3}{l_2} + \frac{t_3^3}{l_3} + \frac{t_4^3}{l_4} \right)}$</td>
</tr>
<tr>
<td></td>
<td>$K_f \cdot K_w = 0.90 + 0.90 \cdot \tan(\theta)^{1/4}$
 Default value: $K_f \cdot K_w = 1.8$
 K_{te} from 10.6.a with $t_1 \leq t_2$
 $e_0 \leq 0.3t_1$</td>
</tr>
<tr>
<td></td>
<td>$K_f \cdot K_w = 0.90 + 0.90 \cdot \tan(\theta)^{1/4}$
 Default value: $K_f \cdot K_w = 1.8$
 $K_{te} = 1$
 $K_{tu} = 1.0$
 Applicable also for fillet welds</td>
</tr>
<tr>
<td></td>
<td>$K_f \cdot K_w = 1.2 + 1.3(\tan(\theta))^{1/4}$
 Default value: $K_f \cdot K_w = 2.5$
 K_{te} from 10.6.a with e as given in 10.6.b
 $K_{te} = 1.0$</td>
</tr>
</tbody>
</table>
Based on nominal stress in member with thickness t_1

$$K_f \cdot K_{\alpha} = 1.8 \frac{t_1}{a}$$

K_f from 10.6.a with e as given in 10.6.b

$K_{\alpha} = 1.0$

Table 10.6 K-factors for cruciform joints

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6.e</td>
<td>Based on nominal stress in member with thickness t_1</td>
</tr>
<tr>
<td></td>
<td>$$K_f \cdot K_{\alpha} = 1.8 \frac{t_1}{a}$$</td>
</tr>
<tr>
<td></td>
<td>K_f from 10.6.a with e as given in 10.6.b</td>
</tr>
<tr>
<td></td>
<td>$K_{\alpha} = 1.0$</td>
</tr>
<tr>
<td>10.6.f</td>
<td>$$K_f \cdot K_{\alpha} = 1.8 \frac{t_1}{a}$$</td>
</tr>
<tr>
<td></td>
<td>K_f from 10.6.a with e as given in 10.6.b</td>
</tr>
<tr>
<td></td>
<td>$K_{\alpha} = 1.0$</td>
</tr>
</tbody>
</table>

10.2.8

K-factors for transverse frames.

For designs with a supporting member welded on top of the longitudinal, it is not likely that the the cut-out in the transverse frame will be initiation point for fatigue as long as normal procedures for design of cut-out geometry are followed and K-factors for stiffener supports should be used.

For designs without a supporting member welded on top of the longitudinal, K-factors are given in Table 10.7. If the geometry is different from the geometries shown in the table, it is recommended to perform a stress concentration analysis.

If a sniped stiffener is welded to a transverse frame, the stiffener may generally be located at a distance of about 50 mm or more away from the edge of web cutout depending on the maximum principal stress level of web frame and the stress concentration factor of the sniped stiffener end.
Geometry

<table>
<thead>
<tr>
<th>K-factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For stiffener heights between 220 mm and 280 mm:</td>
<td></td>
</tr>
<tr>
<td>Axial stress in the longitudinal direction</td>
<td>Bending due to lateral load</td>
</tr>
<tr>
<td>$K_g \cdot K_w = 1.8$</td>
<td>$K_g \cdot K_w = 1.9$</td>
</tr>
<tr>
<td>Note that the K_{sh}-factor for un-symmetrical stiffeners on laterally loaded panels should be included when the bending stress is calculated.</td>
<td></td>
</tr>
</tbody>
</table>

10.7.a

![Diagram](image1)

<table>
<thead>
<tr>
<th>K-factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For stiffener heights above 300 mm:</td>
<td></td>
</tr>
<tr>
<td>Axial stress in the longitudinal direction</td>
<td>Bending due to lateral load</td>
</tr>
<tr>
<td>$K_g \cdot K_w = 1.8$</td>
<td>$K_g \cdot K_w = 1.9$</td>
</tr>
<tr>
<td>Note that the K_{sh}-factor for un-symmetrical stiffeners on laterally loaded panels should be included when the bending stress is calculated.</td>
<td></td>
</tr>
</tbody>
</table>

10.7.b

![Diagram](image2)

Table 10.7 K-factors for transverse frames
10.2.9
K-factors for scallops.

The factors are applicable to stiffeners subject to axial loads. For dynamic pressure loads on the plate these details are susceptible to fatigue cracking ref. /16/ and other design solutions should be considered to achieve a proper fatigue life.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
</table>
| ![Geometry1](image1) | $K_g \cdot K_w = 3.0$ at point A
$K_g \cdot K_w = 1.8$ at point B
An eccentricity of 0.15 t included |
| ![Geometry2](image2) | $K_g \cdot K_w = 1.7$ at point A
$K_g \cdot K_w = 1.8$ at point B
An eccentricity of 0.15 t included |
| ![Geometry3](image3) | $K_g \cdot K_w = 1.6$ at point A
$K_g \cdot K_w = 1.8$ at point B
An eccentricity of 0.15 t included |

For scallops without transverse welds, the K-factor at point B will be governing for the design.

Table 10.8 K–factors for scallops
10.2.10

K-factors for lower hopper knuckles.

Hot-spot stresses in panel knuckles should in general be calculated case by case by a stress concentration model, see e.g. Figure 6.8. However, for a yard standard geometry, a K-factor related to nominal stress in a frame and girder model may be established using the stress concentration model.

The knuckle between inner bottom and hopper plate in oil carriers is called lower hopper knuckle. For this knuckle, the nominal stress should be the transversal membrane stress, \(\frac{1}{2} \) a stiffener spacing from the knuckle in the inner bottom plate, and averaged between two floors. For hopper knuckles with angles between inner bottom and hopper plate between 30° and 75° K-factors are given in Table 10.9. It is assumed that brackets are fitted in ballast tanks in line with inner bottom. Geometrical eccentricity in the knuckle should be avoided or kept to a minimum.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.a</td>
<td></td>
</tr>
</tbody>
</table>
| ![Diagram](image1.png) | \(K_g = 7.0 \)
| | \(K_w = 1.5 \) |
| 10.9.b | |
| ![Diagram](image2.png) | Insert plate of 2.0 times the thickness normally required. Insert plates should be provided in inner bottom, hopper tank top, and web frame. The insert plates should extend approximately 400 mm along inner bottom and hopper plate, approximately 800 mm in longitudinal direction, and 400 mm in the depth of the web.
| | \(K_g = 4.5 \)
| | \(K_w = 1.5 \) |
| 10.9.c | |
| ![Diagram](image3.png) | Bracket inside cargo tank. The bracket should extend approximately to the first longitudinals and the bracket toe should have a soft nose design.
| | \(K_g = 2.5 \)
| | \(K_w = 1.5 \) |

Table 10.9 K-factors for lower hopper knuckles
10.2.11
K-factors for cut-outs.

K-factors for rounded rectangular holes are given in Figure 10.1. The factors may be used for hatch opening corners in conventional ships, but not in container carriers.

![Figure 10.1 Stress concentration factors for rounded rectangular holes](image)

Figure 10.1 Stress concentration factors for rounded rectangular holes

10.2.12
K-factors at the flange of un-symmetrical stiffeners on laterally loaded panels.

The nominal bending stress of laterally loaded panel stiffeners is generally given by:

\[\sigma = \frac{psl^2}{m_bZ} \]

- \(p \) = lateral pressure load
- \(m_b \) = moment parameter for stiffener
 - = 12 for continuous stiffeners at stiffener support
 - = 24 for continuous stiffeners at stiffener midspan
 - = 8 at midspan for stiffener with simply supported ends

The stress concentration factors at the flange of un-symmetrical stiffeners on laterally loaded panels as defined in Figure 10.2, are calculated as follows.

At the flange edge

\[K_{ni} = \frac{1+\gamma \beta}{1+\gamma \beta \psi} \]

and at the web

\[K_{n2} = \frac{1+\gamma \beta^2}{1+\gamma \beta^2 \psi} \]

where

\[\beta = 1 - \frac{2b_a}{b_f} \] for built up sections .

For definition of \(b_g \), see Figure 10.3

\[\beta = 1 - \frac{t_b}{b_f} \] for rolled angles

\[\psi = \frac{(h-t_x) t_x}{4Z} \] may be used as an approximate value.

\[Z = \text{section modulus of panel stiffener including plate flange with respect to a neutral axis normal to the stiffener web.} \]

\(\gamma \) is derived from Table 10.10.

![Figure 10.2 Bending stress in symmetrical and un-symmetrical panel stiffener with same web and flange areas.](image)
Figure 10.3 Un-symmetrical profile dimensions

Figure 10.4 Bulb section and equivalent built up flange.

Table 10.10 \(\gamma \)-factor

The formulations are not directly applicable for bulb profiles. For these the equivalent built up section should be considered, see Figure 10.4, where the assumed built up flange shall have same cross-sectional area, moment of inertia about the vertical axis and neutral axis position as the bulb flange. For the so-called “HP” bulb profiles, the equivalent built up profile dimensions have been determined and are tabulated in Table 10.11.

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Web thickness (t_w) (mm)</th>
<th>(b_f)</th>
<th>(t_f)</th>
<th>(b_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>9 - 13</td>
<td>(t_w + 24.5)</td>
<td>(22.9)</td>
<td>((t_w + 0.9)/2)</td>
</tr>
<tr>
<td>220</td>
<td>9 - 13</td>
<td>(t_w + 27.6)</td>
<td>(25.4)</td>
<td>((t_w + 1.0)/2)</td>
</tr>
<tr>
<td>240</td>
<td>10 - 14</td>
<td>(t_w + 30.3)</td>
<td>(28.0)</td>
<td>((t_w + 1.1)/2)</td>
</tr>
<tr>
<td>260</td>
<td>10 - 14</td>
<td>(t_w + 33.0)</td>
<td>(30.6)</td>
<td>((t_w + 1.3)/2)</td>
</tr>
<tr>
<td>280</td>
<td>10 - 14</td>
<td>(t_w + 35.4)</td>
<td>(33.3)</td>
<td>((t_w + 1.4)/2)</td>
</tr>
<tr>
<td>300</td>
<td>11 - 16</td>
<td>(t_w + 38.4)</td>
<td>(35.9)</td>
<td>((t_w + 1.5)/2)</td>
</tr>
<tr>
<td>320</td>
<td>11 - 16</td>
<td>(t_w + 41.0)</td>
<td>(38.5)</td>
<td>((t_w + 1.6)/2)</td>
</tr>
<tr>
<td>340</td>
<td>12 - 17</td>
<td>(t_w + 43.3)</td>
<td>41.3</td>
<td>((t_w + 1.7)/2)</td>
</tr>
<tr>
<td>370</td>
<td>13 - 19</td>
<td>(t_w + 47.5)</td>
<td>45.2</td>
<td>((t_w + 1.9)/2)</td>
</tr>
<tr>
<td>400</td>
<td>14 - 19</td>
<td>(t_w + 51.7)</td>
<td>49.1</td>
<td>((t_w + 2.1)/2)</td>
</tr>
<tr>
<td>430</td>
<td>15 - 21</td>
<td>(t_w + 55.8)</td>
<td>53.1</td>
<td>((t_w + 2.3)/2)</td>
</tr>
</tbody>
</table>

Table 10.11 "HP" equivalent built up profile dimensions.

10.2.13

K-factors in web of un-symmetrical stiffener on laterally loaded panels.
The nominal web stress of laterally loaded panel stiffeners is generally given by:

\[\sigma = \frac{s}{tw} \]

Where:
- \(\sigma \) = lateral pressure load
- \(s \) = stiffener spacing
- \(tw \) = web thickness

It should be noted that the bending stress in the stiffener web may be significant at the middle of stiffeners with unsymmetrical flange, see Figure 10.2. The stress concentration factor due to this bending is calculated as:

\[K_e = 1 + \frac{\alpha_1 \alpha_2}{1 + \frac{\mu}{\alpha_2}} \]

Where:
- \(\alpha_1 = 0.42 \) for stiffener with simply supported (or sniped) flange at support
- \(\alpha_1 = 0.094 \) for continuous stiffener
- \(\alpha_2 = 8 \) for stiffener with simply supported (or sniped) flange at support
- \(\alpha_2 = 40 \) for continuous stiffener

\[\alpha_e = \frac{b_e t_e \beta \psi}{t_e A_e} \]

where \(\gamma \) is taken from Table 10.10 for the midspan position. Parameters in the expression are defined in Section 10.2.12.

For calculation of hot spot stress also the stress concentration due to the weld, \(K_{we} \), as derived from 10.1.2 with \(K_{te} = 1.0 \) has to be included, i.e. \(K = K_w K_{th} \)

Fabrication tolerances for stiffeners allow for some deviation from straightness. This deviation will introduce some bending in the stiffener when subjected to an axial force.

If not otherwise specified, the following deviations from straightness of flanges should be considered for fatigue analysis:

\[e = 6 + \frac{2l}{1000} \] (mm)

where,
- \(e_{min} = 8 \) mm
- \(e_{max} = 13 \) mm

Reference is made to Figure 10.2 for description of position at stiffener considered and to Figure 10.3 for geometry notations. Notation numbers \(i = 1-3 \) are used for calculation of the stress concentration factors.

Stress concentration factors due to fabrication tolerances are calculated as,

\[K_{si} = 1 + \frac{e_{bt} t_f + e_w (h - 3t_f)}{2Z_{ei}} \]

where

\[Z_{ei} = \frac{b_e t_e \left(1 + \frac{B^2}{\beta^2} \right)}{12b_{ei} \left(\frac{1}{3} + \frac{A_f}{A_e} \right)} \]

\[\beta = \frac{b_f - t_f}{b_f} \]

\[A_f = (h - t_f) t_f \]

\[A_e = (h - t_f) t_e \]

\[b_{ei} = b_f \left(1 - \frac{3A_f}{A_e} + 1 \right) \] for position 1, see Figure 10.2

\[b_{ei} = b_{ei} - b_f \] for position 2, see Figure 10.2

\[b_{ei} = \frac{b_f}{2} \left(1 + \frac{\beta}{\beta + 1} \right) \] for position 3, see Figure 10.2

\[\beta = \text{as given in 10.2.12} \]

\[\beta = 0 \] for unsymmetrical flanged profiles.

\[\beta = 0 \] for symmetrical profiles.

Figure 10.5 Bending stress in webs of unsymmetrical stiffeners subjected to lateral loading.

10.2.14

K-factors due to fabrication tolerances for stiffeners on plates subjected to axial stress variation.
10.3 K-factors for holes with edge reinforcement

10.3.1

K-factors for holes with edge reinforcement.

K-factors for holes with reinforcement are given in 10.3.2. For stresses parallel with the weld the notch stress is obtained with \(K_g \) from 10.3.2 and \(K_w = 1.0 \). For stresses normal to the weld the resulting notch stress is obtained with \(K_g \) from 10.3.2 and \(K_w = 1.5 \).

At some locations of the welds there are stress in the plate transverse to the fillet weld, \(\sigma_w \), and shear stress in the plate parallel with the weld \(\tau_{11} \). Then the fillet weld is designed for a combined stress obtained as

\[
\sigma_{\text{comb}} = \frac{t}{a} \sqrt{(180\sigma_w)^2 + (0.65\tau_{11})^2}
\]

Where

\(t = \) plate thickness
\(a = \) throat thickness for a double sided fillet weld.

10.3.2 K-factors for holes with edge reinforcement

K-factors at holes in plates with inserted tubular are given in Figures 10.6 to 10.17. K-factors at holes in plates with ring reinforcement are given in Figures 10.18 to 10.22. K-factors at holes in plates with double ring reinforcement given in Figures 10.23 to 10.26.
Figure 10.6 K_F at hole with inserted tubular. Stress at outer surface of tubular, parallel with weld. $H/t_e = 2$

Figure 10.7 K_F at hole with inserted tubular. Stress at outer surface of tubular, parallel with weld. $H/t_e = 5$

Figure 10.8 K_F at hole with inserted tubular. Stress in plate, parallel with weld. $H/t_e = 2$

Figure 10.9 K_F at hole with inserted tubular. Stress in plate, parallel with weld. $H/t_e = 5$
Figure 10.10 K_e at hole with inserted tubular. Stress in plate, normal to weld. $H/t_r = 2$

Table 10.12 Angle to principal stress. $H/t_r=2$

Figure 10.11 K_e at hole with inserted tubular. Stress in plate, normal to weld. $H/t_r = 5$

Table 10.13 Angle to principal stress. $H/t_r=5$
Figure 10.14 K_p at hole with inserted tubular. Shear stress in plate. $H/t_p = 2$

Figure 10.15 K_p at hole with inserted tubular. Shear stress in plate. $H/t_p = 5$

Figure 10.16 K_p at hole with inserted tubular. Stress in plate, normal to weld. $H/t_p = 2$

Figure 10.17 K_p at hole with inserted tubular. Stress in plate, normal to weld. $H/t_p = 5$
The following relation applies (a = throat-thickness):

- \(tR/tp \) to \(a/t_R \)
 - 0.5 to 0.71
 - 1.0 to 0.40
 - 1.5 to 0.33

Figure 10.18 \(K_g \) at hole with ring reinforcement. Max stress concentration

Figure 10.19 \(K_g \) at hole with ring reinforcement. Stress at inner edge of ring

Figure 10.20 \(K_g \) at hole with ring reinforcement. Stress in plate, parallel with weld

Figure 10.21 \(K_g \) at hole with ring reinforcement. Shear stress in weld
The following relation applies
\(a = \text{throat-thickness} \):

\[
\frac{t_R}{t_p} \quad \frac{a}{t_R} \\
0.5 \quad 0.71 \\
1.0 \quad 0.40 \\
1.5 \quad 0.33
\]

Figure 10.22 \(K_y \) at hole with ring reinforcement. Stress in plate, normal to weld

Figure 10.23 \(K_y \) at hole with double ring reinforcement. Stress at inner edge of ring

Figure 10.24 \(K_y \) at hole with double ring reinforcement. Stress in plate, parallel with weld

Figure 10.25 \(K_y \) at hole with double ring reinforcement. Shear stress in weld
Figure 10.26 K_g at hole with double ring reinforcement. Stress in plate, normal to weld

10.4 Workmanship

10.4.1

The fatigue life of a welded joint is much dependent on the local stress concentrations factors arising from surface imperfections during the fabrication process, consisting of weld discontinuities and geometrical deviations.

Surface weld discontinuities are weld toe undercuts, cracks, overlaps, porosity, slag inclusions and incomplete penetration. Geometrical imperfections are defined as misalignment, angular distortion, excessive weld reinforcement and otherwise poor weld shapes.

Embedded weld discontinuities like porosity and slag inclusion are less harmful for the fatigue strength when kept below normal workmanship levels.

Section 10.2 gives equations for calculation of K_g-factors due to fabrication tolerances for alignment of butt joints and cruciform joints, and the local weld geometry. Normally the default values given in the tables in 10.2 should be used if not otherwise defined. These normal default values are estimated assuming geometrical imperfections within limits normally accepted according to good shipbuilding practices, see Table 10.14. The S-N curves given in this note are assumed to include the effect of surface weld discontinuities representative for normal, good workmanship.

In special cases, K-factors may be calculated based on a specified, higher standard of workmanship. However, care should be taken not to underestimate the stress concentration factors by assuming a quality level which is difficult to achieve and follow up during production.
<table>
<thead>
<tr>
<th>TYPE OF IMPERFECTION</th>
<th>TYPE OF IMPERFECTION</th>
<th>EMBEDDED IMPERFECTIONS</th>
<th>SURFACE IMPERFECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POROSITY, ISOLATED 2)</td>
<td>Weld Discontinuities</td>
<td>t/4, max. 4 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5d</td>
<td>2.5d</td>
</tr>
<tr>
<td>POROSITY, CLUSTERED</td>
<td>Weld Discontinuities</td>
<td>3 mm</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 mm</td>
<td></td>
</tr>
<tr>
<td>SLAG INCLUSIONS 1(2)(3)</td>
<td>Weld Discontinuities</td>
<td>3.0 mm</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t, max. 25 mm</td>
<td></td>
</tr>
<tr>
<td>UNDERCUT</td>
<td>Weld Discontinuities</td>
<td>Not applicable</td>
<td>0.6 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERFILL 1(2)</td>
<td>Weld Discontinuities</td>
<td>Not applicable</td>
<td>1.5 mm t/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCESSIVE WELD</td>
<td>Geometrical</td>
<td>Not applicable</td>
<td>b/5, max. 6 mm</td>
</tr>
<tr>
<td>REINFORCEMENT 2(4)</td>
<td>Imperfections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERLAP 1(2)</td>
<td>Weld Discontinuities</td>
<td>Not applicable</td>
<td>t</td>
</tr>
<tr>
<td>CRACKS</td>
<td>Weld Discontinuities</td>
<td>Not accepted</td>
<td>Not accepted</td>
</tr>
<tr>
<td>LACK OF FUSION</td>
<td>Weld Discontinuities</td>
<td>Not accepted</td>
<td>Not accepted</td>
</tr>
<tr>
<td>LINEAR MISALIGNMENT 2)</td>
<td>Geometrical</td>
<td>Not applicable</td>
<td>0.15t, max. 3 mm</td>
</tr>
<tr>
<td></td>
<td>Imperfections</td>
<td></td>
<td>0.3t</td>
</tr>
<tr>
<td>ANGULAR MISALIGNMENT</td>
<td>Geometrical</td>
<td>Not applicable</td>
<td>6 mm</td>
</tr>
<tr>
<td></td>
<td>Imperfections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCOMPLETE PENETRATION 1(2)</td>
<td>Weld Discontinuities</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 mm</td>
<td>t/10, max. 1.5 mm</td>
</tr>
</tbody>
</table>

Notes:
1) Defects on a line where the distance between the defects is shorter than the longest defect are to be regarded as one continuous defect.
2) t: Plate thickness of the thinnest plate in the weld connection.
3) If the distance between parallel slag inclusions, measured in the transverse direction of welding is less than 3 times the width of the largest slag inclusion, the slag inclusions are regarded as one defect.
4) b: Width of weld reinforcement

Table 10.14 Assumed normal tolerance limits for fabrication imperfections
10.4.2 Effect of grinding of welds.

For welded joints involving potential fatigue cracking from the weld toe an improvement in strength by a factor of at least 2 on fatigue life can be obtained by controlled local machining or grinding of the weld toe. The final grinding should be carried out by a rotary burr. The treatment should produce a smooth concave profile at the weld toe with the depth of the depression penetrating into the plate surface to at least 0.5 mm below the bottom of any visible undercut (Figure 10.27). The maximum depth of grinding of parent plate should not exceed 2 mm or 5% of the plate thickness, whichever is smaller. It is recommended that the diameter of rotary burr is 6 mm or greater.

By additional grinding and polishing of the weld profile such that a circular transition between base material and weld surface is achieved, the stress concentration is further reduced (as the grinding radius is increased). This may lead to additional improvement of the joint connection (reduced K-factor).

The benefit of grinding may be claimed only for welded joints which are adequately protected from sea water corrosion.

In the case of partial penetration welds; when failure from the weld root is considered, grinding of the weld toe will not give an increase in fatigue strength.

Figure 10.27 Grinding of the weld toe tangential to the plate surface, (as at A) will produce only limited improvement in the fatigue strength. The grinding must extend below the plate surface, (as at B) in order to remove toe defects.
11. Appendix B Assessment of Secondary Bending Stresses

11.1 Objective

When neither 3D-FEM analyses and/or frame analyses results as described in Chapters 6 and 3 respectively, nor experimental data, are available, secondary bending stresses may be assessed by the approximate equations given in 11.2. The method presented is suitable for a first assessment of secondary bending stresses of large stiffened panels and double skin constructions due to the action of transverse pressure loads. The formulas are intended for

1) double bottom structures between transverse bulkheads and longitudinal bulkheads and/or side structures, Figure 11.1
2) double sides and longitudinal bulkheads between transverse bulkheads and bottom and deck panels.

11.2 Assessment of secondary bending stresses in double hulls

11.2.1 Longitudinal secondary bending stresses in double bottom panels at the intersection with transverse bulkheads may be assessed from the following formulas.

In case the double bottom is longer than wide (a is greater than b) the stresses in the longitudinal direction (longitudinal direction, short end, Case 1 and 2, Table 11.1) is found as:

$$\sigma_z = K_\beta K_b \frac{p_e b^2 r_a}{\sqrt{i_a i_b}} \quad \rho = a \sqrt{\frac{i_b}{i_a}}$$

In case the double bottom is wider than long (b is greater than a) the stresses in the longitudinal direction (longitudinal direction, long end, Case 3 and 4, Table 11.1) is found as:

$$\sigma_z = K_\beta K_b \frac{p_e a^2 r_a}{i_a} \quad \rho = b \sqrt{\frac{i_a}{i_b}}$$

where:

- $K_\beta =$ stress concentration factor as given in Chapter 10 for axial loading
- $K_b =$ coefficient dependent on apparent aspect ratio "p", $\eta = 1.0$, and actual boundary condition in Table 11.1.
- $p_e =$ effective average lateral pressure
- $r_a =$ distance from point considered to neutral axis of panel
- $i_a, i_b =$ smeared out stiffness per longitudinal double panel girder about transverse neutral axis of the girder
- $i_a = \frac{I_a}{s_a}$
- $i_b = \frac{I_b}{s_b}$

Figure 11.1 Double skin configuration

- $a =$ longitudinal length of double bottom panel or double side panel, Figure 11.1
- $b =$ Transverse width of double bottom panel or double side panel, Figure 11.1
- $i_a =$ smeared out stiffness per longitudinal double panel girder about transverse neutral axis of the girder
- $i_a = \frac{I_a}{s_a}$
- $I_a, I_b =$ Longitudinal and transverse sectional moment of inertia about the double bottom neutral axis in transverse and longitudinal axes respectively, per girder including effective width of plating. In computation of I_a, the area of the longitudinal stiffeners may be added to the plate as a smeared out thickness, conserving the sectional moment of inertia about the double bottom neutral axis.
- $s_a, s_b =$ Spacing between girders in longitudinal and transverse directions respectively, Figure 11.1.
11.2.1.1

Transverse secondary bending stresses in double bottom panels at the intersection with longitudinal bulkheads may be assessed from the following formulas.

In case the double bottom is longer than wide (a is greater than b) the stresses in the transverse direction (transverse direction, long end, Case 3 and 4, Table 11.1) is found as:

\[\sigma_2 = K_\beta \frac{K_p b^2 r_b}{i_b} \]

\[\rho = \frac{a}{b} \sqrt{\frac{i_b}{i_a}} \]

In case the double bottom is wider than long (b is greater than a) the stresses in the transverse direction (transverse direction, short end, Case 1 and 2, Table 11.1) is found as:

\[\sigma_2 = K_\beta \frac{K_p a^2 r_b}{i_a i_b} \]

\[\rho = \frac{b}{a} \sqrt{\frac{i_a}{i_b}} \]

11.2.1.2

With double sides, the same formulation as in 11.2.1-11.2.3 can be used. It is, however, important at all times to apply the appropriate boundary conditions.

<table>
<thead>
<tr>
<th>Case no. & Stress location</th>
<th>Boundary conditions</th>
<th>(\rho)</th>
<th>(\eta=0.0)</th>
<th>(\eta=0.5)</th>
<th>(\eta=1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case no.: 1</td>
<td>Support bending stress in long direction at middle of short end</td>
<td>Long edges:</td>
<td>1.00</td>
<td>0.0952</td>
<td>0.0845</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simply supported</td>
<td>1.25</td>
<td>0.1243</td>
<td>0.1100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short ends:</td>
<td>1.50</td>
<td>0.1413</td>
<td>0.1261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clamped</td>
<td>1.75</td>
<td>0.1455</td>
<td>0.1342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All edges:</td>
<td>2.00</td>
<td>0.1439</td>
<td>0.1374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clamped</td>
<td>2.50</td>
<td>0.1388</td>
<td>0.1381</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
<td>0.1371</td>
<td>0.1376</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.50</td>
<td>0.1371</td>
<td>0.1373</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
<td>0.1373</td>
<td>0.1374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& up</td>
<td>0.1374</td>
<td>0.1374</td>
<td>0.1374</td>
</tr>
<tr>
<td>Case no.: 2</td>
<td>Support bending stress in long direction at middle of short end</td>
<td>All edges:</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clamped</td>
<td>1.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& up</td>
<td>-</td>
<td>-</td>
<td>0.0627</td>
</tr>
<tr>
<td>Case no.: 3</td>
<td>Support bending stress in short direction at middle of long edge</td>
<td>Long edges:</td>
<td>1.00</td>
<td>0.0952</td>
<td>0.0845</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clamped</td>
<td>1.33</td>
<td>0.1026</td>
<td>0.0949</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short edges:</td>
<td>2.00</td>
<td>0.0972</td>
<td>0.0950</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simply supported</td>
<td>2.66</td>
<td>0.0920</td>
<td>0.0925</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
<td>0.0912</td>
<td>0.0915</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& up</td>
<td>0.0916</td>
<td>0.0916</td>
<td>0.0916</td>
</tr>
</tbody>
</table>
11.3 Assessment of secondary panel stresses in single skin vessels.

11.3.1

The stresses at transverse bulkheads may be assessed from the formulas as for double bottom. However the parameters for aspect ratios \(\rho \) and torsion coefficient \(\eta \) shall be taken as given in Table 11.3 and the parameters \(K_b \) to be taken as given in Table 11.2.

11.3.2

For longitudinal bulkheads, Section 11.2.1 still applies taking the appropriate boundary condition from Tables 11.2 and 11.3 defines the geometric and stiffness properties to be used.

Table 11.1 Support bending stress coefficients \(K_b \), \(n = 0.3 \), (for intermediate values use linear interpolation)

<table>
<thead>
<tr>
<th>Case no. & Stress location</th>
<th>Boundary conditions</th>
<th>(\rho)</th>
<th>(\eta = 0.0)</th>
<th>(\eta = 0.5)</th>
<th>(\eta = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case no. 4:</td>
<td>All edges:</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>0.0564</td>
</tr>
<tr>
<td>Support bending stress in short direction at middle of long edge</td>
<td>Clamped</td>
<td>1.10</td>
<td>-</td>
<td>-</td>
<td>0.0638</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.20</td>
<td>-</td>
<td>-</td>
<td>0.0702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30</td>
<td>-</td>
<td>-</td>
<td>0.0755</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.40</td>
<td>-</td>
<td>-</td>
<td>0.0798</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50</td>
<td>-</td>
<td>-</td>
<td>0.0832</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.60</td>
<td>-</td>
<td>-</td>
<td>0.0857</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.70</td>
<td>-</td>
<td>-</td>
<td>0.0878</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.80</td>
<td>-</td>
<td>-</td>
<td>0.0892</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.90</td>
<td>-</td>
<td>-</td>
<td>0.0903</td>
</tr>
<tr>
<td></td>
<td>& up</td>
<td>2.00</td>
<td>-</td>
<td>-</td>
<td>0.0911</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>& up</td>
<td></td>
<td>0.0911</td>
</tr>
</tbody>
</table>

Table 11.2 Support bending stress coefficients \(K_b \) in free flanges (single skin) \(n = 0.0 \), Figure 11.3 (for intermediate values use linear interpolation)

<table>
<thead>
<tr>
<th>Case no. & Stress location</th>
<th>Boundary conditions</th>
<th>(\rho)</th>
<th>(\eta = 0.0)</th>
<th>(\eta = 0.5)</th>
<th>(\eta = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case no. 5:</td>
<td>Long edges:</td>
<td>1.00</td>
<td>0.0866</td>
<td>0.0769</td>
<td>0.0698</td>
</tr>
<tr>
<td>Support bending stress in long direction at middle of short end</td>
<td>Simply supported</td>
<td>1.25</td>
<td>0.1140</td>
<td>0.1001</td>
<td>0.0904</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50</td>
<td>0.1285</td>
<td>0.1148</td>
<td>0.1049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td>0.1324</td>
<td>0.1221</td>
<td>0.1139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>0.1310</td>
<td>0.1250</td>
<td>0.1191</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>0.1263</td>
<td>0.1257</td>
<td>0.1234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>0.1248</td>
<td>0.1253</td>
<td>0.1246</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.50</td>
<td>0.1248</td>
<td>0.1250</td>
<td>0.1246</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.00</td>
<td>0.1240</td>
<td>0.1250</td>
<td>0.1250</td>
</tr>
<tr>
<td></td>
<td>& up</td>
<td></td>
<td>0.1250</td>
<td>0.1250</td>
<td>0.1250</td>
</tr>
<tr>
<td>Case no. 6:</td>
<td>Long edges:</td>
<td>1.00</td>
<td>0.0866</td>
<td>0.0769</td>
<td>0.0698</td>
</tr>
<tr>
<td>Support bending stress in short direction at middle of long edge</td>
<td>Clamped</td>
<td>1.33</td>
<td>0.0934</td>
<td>0.0858</td>
<td>0.0799</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>0.0885</td>
<td>0.0865</td>
<td>0.0843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.66</td>
<td>0.0837</td>
<td>0.0842</td>
<td>0.0839</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.00</td>
<td>0.0830</td>
<td>0.0832</td>
<td>0.0835</td>
</tr>
<tr>
<td></td>
<td>& up</td>
<td></td>
<td>0.0834</td>
<td>0.0834</td>
<td>0.0834</td>
</tr>
<tr>
<td>Type</td>
<td>Sketch</td>
<td>Formulas for ρ and η</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| A: Cross stiffening | ![A: Cross stiffening](image1) | $i_a = \frac{I_{aa}}{S_a} + 2 \left(\frac{I_a - I_{aa}}{b} \right)$
$\rho = \frac{\sqrt{I_b}}{b} \sqrt{\frac{I_a}{I_b}}$
$\eta = \frac{I_{ab} I_{bb}}{I_{aa} I_{bb}}$ |
| B: Modified cross stiffening | ![B: Modified cross stiffening](image2) | $i_a = \frac{2 I_a}{b}$
$\rho = 0.124 \sqrt{\frac{I_{ab} b}{I_{aa} I_{bb} I_{bb}}}$ |
| C: Single stiffening | ![C: Single stiffening](image3) | $i_a = 0$
$\rho = \text{infinite}$
$\eta = \text{indeterminate}$ |
| D: Unstiffened plate | ![D: Unstiffened plate](image4) | $i_a = i_b = \frac{t^3}{12(1 - \nu^2)}$
$\rho = \frac{a}{b}$
$\eta = 1.0$ |

Table 11.3 Definition of geometry and stiffness parameters
The following notation is applied:

\(a \) = Length of panel

\(b \) = Width of panel

\(s_a \) (\(s_b \)) = spacing of long (short) girders in case of double hull and stiffeners in case of single skin.

\(I_{na} \) (\(I_{nb} \)) = moment of inertia, including effective width of plating, of long (short) repeating less stiff girders or stiffeners (as distinguished from the central girder / stiffener, which may be different).

\(I_{nu} \) (\(I_{nw} \)) = moment of inertia w.r.t the neutral axis in a (b) direction of effective width of plating only for the central girder.

\(I_a \) (\(I_b \)) = moment of inertia, including effective width of plating, of central long (short) girder / stiffener.

\(A_a \) (\(A_b \)) = web area of central long (short) stiffener

\(r_a \) (\(r_b \)) = bending lever arm about the combined neutral axis of the stiffened panel combination in a (b) direction respectively, to the stress point of interest

\(t \) = plate thickness

\(i_a \) (\(i_b \)) = unit (smeared out) stiffness

\(\eta \) = torsion coefficient

\(\rho \) = (virtual) side ratio

NOTE
The different moment of inertia in the above list are evaluated about the panel neutral axis.
12. Appendix C Simplified Loads for Direct Strength Analysis

12.1 In combination with the loads related to the simplified method described in Chapter 3., direct strength analysis may be applied to determine the stresses in the hull. Each of the load components should then be considered separately and combined according to the formulas in Section 3.4. The stresses from global loads in Section 3.5 are then substituted with those determined from the loads given in 12.2 and 12.3. The local internal and external load induced stress components are to be combined as described in 3.4.

12.2 For direct global finite element calculation purpose, the range of vertical hull girder wave bending moment given in 4.2 may be expressed in terms of counteracting vertical forces, see also Figure 12.1:

At A.P. and 0.4L forward of A.P.:
\[F_1 = \pm \left(\frac{M_{W0,h} - M_{W0,s}}{0.4L} \right) \]

At 0.65L forward of A.P. and at F.P.:
\[F_2 = \pm \left(\frac{M_{W0,h} - M_{W0,s}}{0.35L} \right) \]

\[M_{W0,h}, M_{W0,s} = \text{as given in 4.2.1.} \]

12.3 The combined horizontal wave bending- and wave torsion load at \(10^{-4}\) probability level may (in accordance with ref. [1] of 9.3), in a global finite element calculation, be defined as a horizontal line load, \(q_h\), acting at a level 0.7 \(T\) above the vessel base line and a line moment load acting in the ship’s centreline, \(m_t\), given as:

\[q_h = -0.88f_r \sqrt{1 - \frac{C_B^2 L^2 B C_{SWP}}{18000T_{act}^2} \left(\frac{T_{act} + 0.3B}{C_B} \right) \cos \left(\frac{2\pi x}{L} \right)} \quad \text{(kN/m)} \]

\[m_t = 1.63 f_r \sin \left(\frac{2\pi x}{L} \right) \cos \left(\frac{\pi x}{3C_B} \right) \left(\frac{1}{L^3 B^2} \right) C_{SWP} \]
\[-0.27 f_r \sin^3 \left(\frac{\pi x}{L} \right) \cos \left(\frac{\pi x}{3C_B} \right) \left(\frac{1}{L^3 B^2} \right) C_{SWP} \quad \text{(kNm/m)} \]

\[C_{SWP} = \frac{A_{WP}}{LB} \]

\[A_{WP} = \text{water plane area in m}^2 \text{ of vessel at draught } = T. \]

\[T_{act} = \text{vessel draught in m in considered condition. (Note a draught equal to the design draught may in general be assumed as representative for a condition to be applied for a fatigue analysis related to the ship’s cargo conditions)} \]

\[x = \text{Distance in m from A.P. to considered position on hull girder.} \]

\[f_r = \text{as defined in 4.2.1 inserting } h = 0.95 \]

Note in this connection that the first term of the formula for \(M_{WT}\) given in 9.3 is based on an expression for the horizontal wave shear force which is compatible with the formula for the horizontal wave bending moment \(M_{WH}\) defined in 9.3.
13. Appendix D Two-Slope S-N Curve Fatigue Damage Expression

13.1 Weibull distributed stress range

When the long-term stress range distribution is defined applying Weibull distributions for the different load conditions, and a one-slope S-N curves is used, the fatigue damage is given by,

\[
D = \frac{v_a T_d}{a} \sum_{n=1}^{N_{\text{load}}} p_n q_n^m \Gamma(1 + \frac{m}{h_n}) \leq \eta
\]

where

- \(N_{\text{load}} \) = total number load conditions considered
- \(p_n \) = fraction of design life in load condition \(n \), \(\sum p_n \leq 1 \), but normally not less than 0.85
- \(T_d \) = design life of ship in seconds (20 years = \(6.3 \times 10^8 \) sec.)
- \(a, m \) = S-N fatigue parameters
- \(h \) = Weibull stress range shape distribution parameters, see Section 3.2
- \(q \) = Weibull stress range scale distribution parameters
- \(v_0 \) = average zero-crossing frequency
- \(\Gamma(1 + \frac{m}{h_n}) \) = gamma function. Values of the gamma function are listed in Table 2.7

When a bi-linear or two-slope S-N curve is used, the fatigue damage expression is given by,

\[
D = \sum_{n=1}^{N_{\text{load}}} D_n = v_0 T_d \sum_{n=1}^{N_{\text{load}}} p_n \left[a_1 \Gamma \left(1 + \frac{m_1}{h_n} \left(\frac{S_0}{q_n} \right)^{h_n} \right) + a_2 \Gamma \left(1 + \frac{m_2}{h_n} \left(\frac{S_0}{q_n} \right)^{h_n} \right) \right] \leq \eta
\]

where,

- \(S_0 \) = Stress range for which change of slope occur
- \(a_1, m_1 \) = S-N fatigue parameters for \(N < 10^7 \) cycles
- \(a_2, m_2 \) = S-N fatigue parameters for \(N > 10^7 \) cycles
- \(\gamma(\cdot) \) = Incomplete Gamma function, to be found in standard tables
- \(\Gamma(\cdot) \) = Complementary Incomplete Gamma function, to be found in standard tables

S-N parameters are given in Section 2.
13.2 Rayleigh distributed stress range

When the long term stress range distribution is defined through a short term Rayleigh distribution within each short term period for the different loading conditions, and a one-slope S-N curve is applied, the fatigue criterion reads,

\[
D = \frac{V_0 T_d}{\Delta} \Gamma(1 + \frac{m}{2}) \sum_{n=1}^{N_{\text{load}}} p_n \sum_{i=1}^{N_{\text{all headings}}} \sum_{j=1}^{N_{\text{all states}}} r_{ij} (2 \sqrt{2m_{ijn}})^n \leq \eta
\]

where

\[
r_{ij} = \text{the relative number of stress cycles in short-term condition } i, j
\]

\[
m_{ij} = \text{zero spectral moment of stress response process}
\]

The Gamma function, \(\Gamma \left(1 + \frac{m}{2}\right)\) is equal to 1.33 for \(m = 3.0\).

When a bi-linear or two-slope S-N curve is applied, the fatigue damage expression is given as,

\[
D = \sum_{n=1}^{N_{\text{load}}} D_n = \nu_0 T_d \sum_{n=1}^{N_{\text{load}}} \sum_{i=1}^{N_{\text{all headings}}} \sum_{j=1}^{N_{\text{all states}}} r_{ij} \left[\frac{2 \sqrt{2m_{ij0n}}}{a_1} \right]^{m_1} \Gamma \left(1 + \frac{m_1}{2} \left[\frac{S_0}{2 \sqrt{2m_{ij0n}}} \right]^{m_2} \right) \leq \eta
\]

\[
D = \sum_{n=1}^{N_{\text{load}}} D_n = \nu_0 T_d \sum_{n=1}^{N_{\text{load}}} \sum_{i=1}^{N_{\text{all headings}}} \sum_{j=1}^{N_{\text{all states}}} r_{ij} \left[\frac{2 \sqrt{2m_{ij0n}}}{a_1} \right]^{m_1} \Gamma \left(1 + \frac{m_1}{2} \left[\frac{S_0}{2 \sqrt{2m_{ij0n}}} \right]^{m_2} \right) \leq \eta
\]
14. Appendix E Background for the S-N curves

14.1 Introduction

Several of the traditional fatigue design codes divide structural details into classes, each with a corresponding design S-N curve. A large number of ship structural details are different from the details the traditional S-N curves have been derived for. It may therefore be difficult to separate the calculated stress into the stress level that is embedded in the S-N curves and the stress level that must be applied together with the S-N curves.

Due to this, it was considered more convenient to develop a basic S-N curve that could be used for fatigue analysis of all welded structural details. This could be achieved by developing appropriate stress concentration factors to be used to obtain the local notch stress used together with the basic S-N curve.

Inherent in the S-N curves for classified details (such as ref. [F1]) are both the notch stress and also the stress field over the crack growth area giving the actual crack growth development. This may be considered to give more accurate fatigue lives than the use of a single S-N curve and stress concentration factors. However, the difference between these two concepts is evaluated to be of minor importance for practical fatigue design of ship structural details, as the main portion of the fatigue life is within the initial stage of the crack size development.

14.2 S-N curves for welded connections

14.2.1 Stresses to be Associated with S-N curves

It is important that there is consistency between the way the S-N curves are derived and defined and the way the stress in the structure is calculated. It is necessary to know what stress is inherent in the considered S-N curve, how this stress is determined and how the corresponding stress from numerical analysis should be evaluated.

Definition of stresses used in the Classification Note is as follows (Ref. also Section 6, Figure 6.1):

- Nominal stresses are those derived from beam models or from coarse mesh FEM models. Stress concentrations resulting from the gross shape of the structure are included in the nominal stress.
- Geometric (hot spot) stresses include nominal stresses and stresses due to structural discontinuities and presence of attachments, but excluding stresses due to presence of welds. Stresses derived from fine mesh FEM models are geometric stresses. Effects caused by fabrication imperfections as e.g. misalignment of structural parts, are, however, normally not included in FEM analyses, and must be separately accounted for. The greatest value of the extrapolation to the weld toe of the geometric stress distribution immediately outside the region affected by the geometry of the weld, is commonly denoted hot spot stress.
- Notch stresses are the total stresses at the weld toe (hot spot location) and include the geometric stresses and the stresses due to the presence of the weld. The notch stress may be calculated by multiplying the hot spot stress by a stress concentration factor, or more precisely the theoretical notch factor, Kwa. FEM may be used to determine the notch stress. However, because of the small notch radius and the steep stress gradient at a weld, a very fine mesh is needed.

Traditionally fatigue calculations are based on the nominal stresses and the use of geometry dependent S-N curves. S-N curves may also be developed based on the concept of hot spot stresses saying that the effect of the notch stress due to the local weld detail is imbedded in the curve, or alternatively, based on the notch stress where the influence of the weld is included. All concepts have their advantages and disadvantages:

Nominal Stress Approach

Advantages: Inherent in the S-N curves for classified details accounts for both the notch stress and the stress field over the crack growth area.

Disadvantages: It is difficult in practical design of ship structural details to define the nominal stress level to be applied together with the geometry specific S-N curves. Further, the use of a limited number of established S-N curves in the fatigue design, complicates the utilisation of improved local design and workmanship in the fatigue life assessment.

Geometric Stress (Hot Spot Stress) Approach

Advantages: Using the hot spot stress method the local notch effect is embedded in the S-N data, and one may say that the large variation in local notch geometry is accounted for in the scatter of the S-N data.

Disadvantages: The hot spot stress has to be determined by extrapolation of stresses outside the notch region. The finite element mesh has to be fine enough to represent the geometric stress in this region. Extrapolation should be performed from points at least 0.3t outside the notch. Practise for extrapolation has varied as its basis is founded on experience from test measurements and numerical analysis of stress distributions at the hot spot region.

Notch Stress Approach

Advantages: The notch stress need not be separated from the geometric stress, and the notch stress is derived as the finite element size approaches a small value provided the notch root radius is modelled.
Disadvantages: The geometry of the local notch at a weld varies along the weld profile, and it may be difficult to find a geometry to base the analysis on. However, considering that the scatter in local notch geometry is accounted for in the scatter of the S-N data the geometry for local analysis may be based on mean geometry data.

During evaluation of these two concepts, a basic S-N curve was selected for welded connections that was also applicable for smooth machined specimens having a stress concentration factor $K_w = 1.0$ by definition. This corresponds then to the notch stress concept. However, a default value $K_w = 1.5$ is introduced such that the hot spot stress method may be used. The calculated hot spot stress must then be multiplied by the K_w value before the S-N curve is entered.

A procedure that allows the effects of fabrication methods and workmanship to be explicitly accounted for in the fatigue analyses is believed to contribute to improved local geometry and workmanship in shipbuilding. In this way one may say that the advantages of both the concepts described above have been utilised.

14.2.2 Basic S-N Curves

The S-N curves in ref.[F1] was used as basis for derivation of S-N curves for this Classification note.

The S-N curves in ref. [F1] is the same as in ref.[F5] in air (frequently referred to as Department of Energy curves), and with some adjustment for $N \geq 10^7$ for sea water cathodic protection.

The S-N curves are established as mean minus two standard deviation for relevant experimental data.

14.2.3 Basic Transformation to One S-N Curve

The negative inverse slope of S-N curves for typical ship details is $m = 3.0$. Thus, also the basic curve should have this slope. The slope of the C curve which was considered as a first choice for a basic S-N curve is $m = 3.5$ (Stress concentration factor 1.0).

The S-N curve with slope $m = 3.5$ (the C-curve from ref.[F1]) was transferred into a S-N curve with slope $m = 3.0$ in the following way: A long term stress range distribution for a typical ship was considered that gave fatigue damage equal 1.0 during 20 years service life. A Weibull distribution of the stress ranges with $h = 0.95$ was used. Then a new curve was established with inverse negative slope $m = 3.0$ that resulted in the same fatigue damage for the same stress range distribution.

According to Dr. T.R. Gurney of TWI, the S-N data for the C curve are not comprehensive. Therefore the basis for the curve has also been checked for other details such as F and F2 details (Ref.[F1] terminology) and for butt welds, see 14.2.5, and fracture mechanics, see 14.2.6. Also other standards with S-N curves have been looked at.

The F and the F2 curves may be considered as the most reliable S-N curves in the design standards (based on in-house experience). It has been checked that the proposed S-N curve together with proposed procedure for estimation of hot spot stress (determination of K-factors based on FEM ref. Section 6.6) gives fatigue lives corresponding to that obtained by using these curves together with appropriate K-factors.

14.2.4 Thickness Effect

The thickness effect is mainly included as in ref. [F1], but for welds with a small stress concentration (SCF less than 1.3) the thickness effect is negligible. This is substantiated by simple fracture mechanics calculations, and is also in line with experimental data.

14.2.5 Butt Welds

A basic stress concentration factor equal $K_w = 1.5$ is suggested as a default value for welds. This corresponds to $\rho = 0.15$ and $\theta = 45^\circ$ for a butt weld. With thickness $t = 22$ mm this correspond to a radius at the toe of the weld $\rho = 2$ mm applying an equation for the stress concentration factor K_w from Ref.[F14]:

$$K_w = 1 + 0.27 \times (\tan \theta)^{0.25} \left(\frac{t}{\rho} \right)^{0.25}$$

where θ denotes the angle between the base plate and the weld face.

This K_w factor together with the basic S-N curve gives appropriate fatigue lives for butt welds. This weld geometry corresponds with that measured (Ref.[F4]), but it should be noted that the scatter of weld toe radius ρ is significant and that this scatter should be accounted for in the design S-N curve.

14.2.6 Fracture Mechanics

It has been verified that the proposed basic S-N curve for welded connections does not result in a fatigue life less than that derived by fracture mechanics assuming a rather shallow crack and with use of relevant crack growth parameters, ref.[F1] (fracture mechanics do not include cycles for initiation):

With reference to Section 4 of ref. [F1], setting $I = 9.3$, ref. Fig. 4.1a, $m = 3.1$, $C = 1.1 \times 10^{-13}$, (mean data); $w = 22$ mm is assumed. Transformation of fracture mechanics into a S-N curve then gives

$$\log N = 13.19 - 3.1 \log S$$

with initial crack depth $a_i = 0.03$ mm (very small surface crack).

Transformation to slope $m = 3.0$ assuming a long term Weibull distribution with parameters $n_0 = 10^7$ and $h = 1.0$

$$\log N = 12.99 - 3.0 \log S$$

Assuming standard deviation in $\log N$ equal 0.20 then gives $\log \bar{N} = 12.59$ as mean minus two standard deviations.
14.2.7 S-N curve for Corrosive Environment

The S-N curve for corrosive environment is based on ref. [F1] with a reduction on fatigue life equal 2.0, and a removal of cut-off as compared with cathodic protected structures in sea water.

14.2.8 Comparison of S-N curves

A comparison of S-N curves for welded connections is shown in Table 14.1. It is noted that the basic S-N curve lately proposed by HSE, the D curve, (Ref. [F6]) is 4.9% more optimistic with respect to fatigue strength than that of the basic DNV curve.

<table>
<thead>
<tr>
<th>S-N curve</th>
<th>Allowable stress range at 2*10^6 cycles (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNV curve I *</td>
<td>87.03</td>
</tr>
<tr>
<td>HSE curve D (Ref. [F1,F5,F6])</td>
<td>91.27</td>
</tr>
<tr>
<td>HSE curve E (Ref. [F1,F5,F6])</td>
<td>80.60</td>
</tr>
<tr>
<td>Fracture mechanics with crack growth parameters from Ref. [F1] with initial defect size approaching zero.*</td>
<td>83.22</td>
</tr>
</tbody>
</table>

* The K_w (stress concentration factor due to the local weld geometry) is here taken into account for the DNV curve and the fracture mechanics curve (the allowable stress range has been divided by 1.5) in order to get comparable basis.

Table 14.1 Comparison of S-N curves for welded connections

14.3 S-N curves for the base material

14.3.1 Background

It is realised that the steepness of S-N curves for base materials is less than that of curves for welded connections. At an early stage of the development of this Classification Note a negative inverse slope equal 4.0 was suggested which is the same as used in ref. [F1]. For structures subject to few dynamic load cycles this led to greater fatigue strength for welded connections than for base material since the curve for base material was crossing the curve for welded connections. It was therefore decided to establish a S-N curve for the base material along similar lines as for the welded joints, i.e. establish a curve that would represent a relatively reliable curve for typical long term distribution of load effects in ships.

It should be noted that the fatigue life of the base material is very dependant on surface finish and how this surface is retained during service life.

14.3.2 S-N Curves by the Japanese Society for Steel Construction

Japanese Society for Steel Construction (JSSC) specify an A grade curve for machined and ground surface, while a B grade curve is given for as-flame-cut surface or that with mill-scale. These curves are considered applicable to all kinds of steels intended for welded structures (The yield stress level of steels are not a parameter). From the test data a design A curve is derived as log N = 13.14 - 3.0 log S, and a B curve is derived as log N = 12.87 - 3.0 log S.

In Table 14.2, the estimated fatigue strength and fatigue life are presented for the DNV III curve (Base Material) and the JSSC curves. Based on the definition of the JSSC B grade curve, this curve is to be compared with the DNV III curve, accounting for traditional workmanship. The JSSC A grade curve is to be compared with the DNV III curve modified as per Section 2.3.6 for machined or ground smooth base material. As is seen from the table, the JSSC and DNV results are comparable.

<table>
<thead>
<tr>
<th>S-N curve</th>
<th>Allowable stress range (2*10^6 cycles)</th>
<th>Fatigue Life (relative to DNV III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNV curve III</td>
<td>157.1 (MPa)</td>
<td>1.0</td>
</tr>
<tr>
<td>JSSC B grade</td>
<td>155.0 (MPa)</td>
<td>0.96</td>
</tr>
<tr>
<td>DNV curve III</td>
<td>198.0 (MPa)</td>
<td>2.0</td>
</tr>
<tr>
<td>JSSC A grade</td>
<td>190.0 (MPa)</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Table 14.2 Comparison of S-N curves for base materials

14.4 References

The references [F1] to [F17] in this appendix are:

8. Germanischer Lloyds. Section 20 Fatigue Strength.

15. References

1) Det Norske Veritas, Rules for Classification of Ships, Part 3, Chapter 1, *Hull Structural Design, Ships with Length 100 Meters and above*, Høvik, January 1993

2) Hovem, L., Loads and Load Combinations for Fatigue Calculations - Background for the Wave Load Section for the DNVC Classification Note: Fatigue Assessment of Ships, DNVC Report No. 93-0314, Høvik, 1993

5) Det Norske Veritas, Classification Note no. 30.2, *Fatigue Strength Analysis for Mobile Offshore Units*, Høvik, August 1984

6) Recommendations for the Fatigue Design of Steel Structures, ECCS - Technical Committee 6 - Fatigue, First Edition, 1985

