DRAFT

Lecture Notes in:

MATRIX STRUCTURAL ANALYSIS

with an

Introduction to Finite Elements

CVEN4525/5525

©VICTOR E. SAOUMA,

Fall 1999

Dept. of Civil Environmental and Architectural Engineering
University of Colorado, Boulder, CO 80309-0428
Contents

I Matrix Structural Analysis of Framed Structures 1–15

1 INTRODUCTION 1–1
 1.1 Why Matrix Structural Analysis? 1–1
 1.2 Overview of Structural Analysis 1–2
 1.3 Structural Idealization 1–4
 1.3.1 Structural Discretization 1–5
 1.3.2 Coordinate Systems 1–6
 1.3.3 Sign Convention 1–6
 1.4 Degrees of Freedom 1–9
 1.5 Course Organization 1–11

2 ELEMENT STIFFNESS MATRIX 2–1
 2.1 Introduction .. 2–1
 2.2 Influence Coefficients 2–1
 2.3 Flexibility Matrix (Review) 2–2
 2.4 Stiffness Coefficients 2–4
 2.5 Force-Displacement Relations 2–7
 2.5.1 Axial Deformations 2–7
 2.5.2 Flexural Deformation 2–7
 2.5.3 Torsional Deformations 2–9
 2.5.4 Shear Deformation 2–10
 2.6 Putting it All Together, \([k]\) 2–13
 2.6.1 Truss Element 2–14
 2.6.2 Beam Element 2–14
 2.6.2.1 Euler-Bernoulli 2–15
 2.6.2.2 Timoshenko Beam 2–15
 2.6.3 2D Frame Element 2–17
 2.6.4 Grid Element 2–18
 2.6.5 3D Frame Element 2–18
 2.7 Remarks on Element Stiffness Matrices 2–19
CONTENTS

3 STIFFNESS METHOD; Part I: ORTHOGONAL STRUCTURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>3–1</td>
</tr>
<tr>
<td>3.2</td>
<td>The Stiffness Method</td>
<td>3–2</td>
</tr>
<tr>
<td>3.3</td>
<td>Examples</td>
<td>3–4</td>
</tr>
<tr>
<td>E 3-1</td>
<td>Beam</td>
<td>3–4</td>
</tr>
<tr>
<td>E 3-2</td>
<td>Frame</td>
<td>3–6</td>
</tr>
<tr>
<td>E 3-3</td>
<td>Grid</td>
<td>3–9</td>
</tr>
<tr>
<td>3.4</td>
<td>Observations</td>
<td>3–13</td>
</tr>
</tbody>
</table>

4 TRANSFORMATION MATRICES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Derivations</td>
<td>4–1</td>
</tr>
<tr>
<td>4.1.1</td>
<td>$[k_e] [K_e]$ Relation</td>
<td>4–1</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Direction Cosines</td>
<td>4–2</td>
</tr>
<tr>
<td>4.2</td>
<td>Transformation Matrices For Framework Elements</td>
<td>4–6</td>
</tr>
<tr>
<td>4.2.1</td>
<td>2D cases</td>
<td>4–6</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>2D Frame, and Grid Element</td>
<td>4–6</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>2D Truss</td>
<td>4–8</td>
</tr>
<tr>
<td>4.2.2</td>
<td>3D Frame</td>
<td>4–8</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Simple 3D Case</td>
<td>4–9</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>General Case</td>
<td>4–12</td>
</tr>
<tr>
<td>4.2.3</td>
<td>3D Truss</td>
<td>4–15</td>
</tr>
</tbody>
</table>

5 STIFFNESS METHOD; Part II

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>5–1</td>
</tr>
<tr>
<td>5.2</td>
<td>$[ID]$ Matrix</td>
<td>5–2</td>
</tr>
<tr>
<td>5.3</td>
<td>LM Vector</td>
<td>5–3</td>
</tr>
<tr>
<td>5.4</td>
<td>Assembly of Global Stiffness Matrix</td>
<td>5–3</td>
</tr>
<tr>
<td>E 5-1</td>
<td>Global Stiffness Matrix Assembly</td>
<td>5–4</td>
</tr>
<tr>
<td>5.5</td>
<td>Skyline Storage of Global Stiffness Matrix, $MAXA$ Vector</td>
<td>5–6</td>
</tr>
<tr>
<td>5.6</td>
<td>Augmented Stiffness Matrix</td>
<td>5–9</td>
</tr>
<tr>
<td>E 5-2</td>
<td>Direct Stiffness Analysis of a Truss</td>
<td>5–14</td>
</tr>
<tr>
<td>E 5-3</td>
<td>Assembly of the Global Stiffness Matrix</td>
<td>5–19</td>
</tr>
<tr>
<td>E 5-4</td>
<td>Analysis of a Frame with MATLAB</td>
<td>5–21</td>
</tr>
<tr>
<td>5.7</td>
<td>Computer Program Flow Charts</td>
<td>5–25</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Input</td>
<td>5–26</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Element Stiffness Matrices</td>
<td>5–26</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Assembly</td>
<td>5–29</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Decomposition</td>
<td>5–32</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Load</td>
<td>5–32</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Backsubstitution</td>
<td>5–32</td>
</tr>
<tr>
<td>5.7.7</td>
<td>Internal Forces and Reactions</td>
<td>5–32</td>
</tr>
<tr>
<td>5.8</td>
<td>Computer Implementation with MATLAB</td>
<td>5–36</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Program Input</td>
<td>5–36</td>
</tr>
</tbody>
</table>
5.8.1.1 Input Variable Descriptions ... 5–37
5.8.1.2 Sample Input Data File .. 5–38
5.8.1.3 Program Implementation .. 5–40
5.8.2 Program Listing .. 5–40
5.8.2.1 Main Program .. 5–40
5.8.2.2 Assembly of ID Matrix ... 5–43
5.8.2.3 Element Nodal Coordinates .. 5–44
5.8.2.4 Element Lengths .. 5–45
5.8.2.5 Element Stiffness Matrices .. 5–45
5.8.2.6 Transformation Matrices .. 5–46
5.8.2.7 Assembly of the Augmented Stiffness Matrix 5–47
5.8.2.8 Print General Information .. 5–48
5.8.2.9 Print Load ... 5–49
5.8.2.10 Load Vector .. 5–50
5.8.2.11 Nodal Displacements .. 5–52
5.8.2.12 Reactions ... 5–53
5.8.2.13 Internal Forces .. 5–54
5.8.2.14 Sample Output File .. 5–55

6 EQUATIONS OF STATICS and KINEMATICS 6–1
6.1 Statics Matrix [B] ... 6–1
 E6–1 Statically Determinate Truss Statics Matrix 6–2
 E6–2 Beam Statics Matrix ... 6–4
 E6–3 Statically Indeterminate Truss Statics Matrix 6–6
 6.1.1 Identification of Redundant Forces 6–9
 E6–4 Selection of Redundant Forces 6–9
6.1.2 Kinematic Instability ... 6–12
6.2 Kinematics Matrix [A] ... 6–12
 E6–5 Kinematics Matrix of a Truss ... 6–14
6.3 Statics-Kinematics Matrix Relationship 6–15
 6.3.1 Statically Determine ... 6–15
 6.3.2 Statically Indetermine .. 6–16
6.4 Kinematic Relations through Inverse of Statics Matrix 6–16
6.5 Congruent Transformation Approach to [K] 6–17
 E6–6 Congruent Transformation ... 6–18
 E6–7 Congruent Transformation of a Frame 6–20

7 FLEXIBILITY METHOD .. 7–1
7.1 Introduction ... 7–1
7.2 Flexibility Matrix ... 7–2
 7.2.1 Solution of Redundant Forces .. 7–3
 7.2.2 Solution of Internal Forces and Reactions 7–3
 7.2.3 Solution of Joint Displacements 7–3
II Introduction to Finite Elements

8 REVIEW OF ELASTICITY

8.1 Stress

8.2 Strain

8.3 Fundamental Relations in Elasticity

8.4 Stress-Strain Relations in Elasticity

8.5 Strain Energy Density

8.6 Summary

9 VARIATIONAL AND ENERGY METHODS

9.1 † Variational Calculus; Preliminaries

9.1.1 Euler Equation

9.1.2 Boundary Conditions

9.2 Work, Energy & Potentials; Definitions

9.2.1 Introduction

9.2.2 Internal Strain Energy

9.2.3 External Work

9.2.4 Virtual Work

9.2.5 Complementary Virtual Work

9.2.5.1 Internal Complementary Virtual Strain Energy δU^*

9.2.5.1.1 Arbitrary System
9.2 Linear Elastic Systems

9.2.5.1.2 Linear Elastic Systems .. 9–17
9.2.5.2 External Complementary Virtual Work δW^* 9–18

9.2.6 Potential Energy

9.2.6.1 Potential Functions .. 9–18
9.2.6.2 Potential of External Work 9–19
9.2.6.3 Potential Energy .. 9–19

9.3 Principle of Virtual Work and Complementary Virtual Work

9.3.1 Principle of Virtual Work .. 9–20

9.3.1.1 Derivation ... 9–20

E 9-3 Tapered Cantiliver Beam, Virtual Displacement 9–23

9.3.2 Principle of Complementary Virtual Work 9–25

9.3.2.1 Derivation ... 9–25

E 9-4 Tapered Cantilivered Beam; Virtual Force 9–27

E 9-5 Three Hinged Semi-Circular Arch 9–29

E 9-6 Cantilivered Semi-Circular Bow Girder 9–31

9.4 Potential Energy

9.4.1 Derivation .. 9–32

9.4.2 Epidemiology of the Potential Energy 9–35

9.4.3 Castigliano’s First Theorem 9–37

E 9-7 Fixed End Beam, Variable I 9–37

9.4.4 Rayleigh-Ritz Method .. 9–40

E 9-8 Uniformly Loaded Simply Supported Beam; Polynomial Approximation 9–41

E 9-9 Uniformly Loaded Simply Supported Beam; Fourier Series 9–43

E 9-10 Tapered Beam; Fourier Series 9–44

9.5 Complementary Potential Energy

9.5.1 Derivation ... 9–46

9.5.2 Castigliano’s Second Theorem 9–46

E 9-11 Cantilivered beam .. 9–47

9.5.2.1 Distributed Loads .. 9–47

E 9-12 Deflection of a Uniformly loaded Beam using Castigliano’s Theorem 9–48

9.6 Comparison of Alternate Approximate Solutions 9–48

E 9-13 Comparison of MPE Solutions 9–48

9.7 Summary ... 9–49

10 INTERPOLATION FUNCTIONS

10.1 Introduction ... 10–1

10.2 Shape Functions .. 10–1

10.2.1 Axial/Torsional .. 10–2

10.2.2 Generalization .. 10–3

10.2.3 Flexural ... 10–4

10.2.4 Constant Strain Triangle Element 10–7

10.3 Interpolation Functions ... 10–8
CONTENTS

10.3.1 C^0: Lagrangian Interpolation Functions ... 10–8
 10.3.1.1 Constant Strain Quadrilateral Element ... 10–9
 10.3.1.2 Solid Rectangular Trilinear Element .. 10–11
10.3.2 C^1: Hermite Interpolation Functions ... 10–11
10.4 Interpretation of Shape Functions in Terms of Polynomial Series 10–12
10.5 Characteristics of Shape Functions .. 10–12

11 FINITE ELEMENT FORMULATION ... 11–1
 11.1 Strain Displacement Relations ... 11–1
 11.1.1 Axial Members .. 11–1
 11.1.2 Flexural Members .. 11–2
 11.2 Virtual Displacement and Strains ... 11–2
 11.3 Element Stiffness Matrix Formulation .. 11–2
 11.3.1 Stress Recovery ... 11–4

12 SOME FINITE ELEMENTS .. 12–1
 12.1 Introduction ... 12–1
 12.2 Truss Element ... 12–1
 12.3 Flexural Element ... 12–2
 12.4 Triangular Element ... 12–3
 12.4.1 Strain-Displacement Relations ... 12–3
 12.4.2 Stiffness Matrix ... 12–4
 12.4.3 Internal Stresses ... 12–4
 12.4.4 Observations .. 12–5
 12.5 Quadrilateral Element ... 12–5

13 GEOMETRIC NONLINEARITY .. 13–1
 13.1 Strong Form .. 13–1
 13.1.1 Lower Order Differential Equation ... 13–1
 13.1.2 Higher Order Differential Equation .. 13–3
 13.1.3 Slenderness Ratio .. 13–5
 13.2 Weak Form .. 13–6
 13.2.1 Strain Energy ... 13–6
 13.2.2 Euler Equation ... 13–9
 13.2.3 Discretization ... 13–9
 13.3 Elastic Instability .. 13–11
 E 13-1 Column Stability ... 13–12
 E 13-2 Frame Stability ... 13–15
 13.4 Geometric Non-Linearity .. 13–18
 E 13-3 Effect of Axial Load on Flexural Deformation 13–18
 E 13-4 Bifurcation ... 13–22
 13.5 Summary ... 13–25
CONTENTS

A REFERENCES A–1

B REVIEW of MATRIX ALGEBRA B–1
B.1 Definitions .. B–1
B.2 Elementary Matrix Operations B–3
B.3 Determinants .. B–4
B.4 Singularity and Rank B–5
B.5 Inversion .. B–5
B.6 Eigenvalues and Eigenvectors B–5

C SOLUTIONS OF LINEAR EQUATIONS C–1
C.1 Introduction C–1
C.2 Direct Methods C–2
C.2.1 Gauss, and Gaus-Jordan Elimination C–2
C.2.2 LU Decomposition C–4
C.2.2.1 Algorithm C–5
C.2.3 Cholesky’s Decomposition C–6
C.2.4 Pivoting .. C–7
C.3 Indirect Methods C–9
C.3.1 Gauss Seidel C–9
C.4 Ill Conditioning C–10
C.4.1 Condition Number C–10
C.4.2 Pre Conditioning C–10
C.4.3 Residual and Iterative Improvements C–10

D TENSOR NOTATION D–1
D.1 Engineering Notation D–1
D.2 Dyadic/Vector Notation D–2
D.3 Indicial/Tensorial Notation D–2

E INTEGRAL THEOREMS E–1
E.1 Integration by Parts E–1
E.2 Green-Gradient Theorem E–1
E.3 Gauss-Divergence Theorem E–1
List of Figures

1.1 Global Coordinate System ... 1–7
1.2 Local Coordinate Systems .. 1–8
1.3 Sign Convention, Design and Analysis 1–9
1.4 Total Degrees of Freedom for various Type of Elements 1–10
1.5 Independent Displacements ... 1–11
1.6 Examples of Global Degrees of Freedom 1–13
1.7 Organization of the Course ... 1–14

2.1 Example for Flexibility Method 2–3
2.2 Definition of Element Stiffness Coefficients 2–5
2.3 Stiffness Coefficients for One Dimensional Elements 2–6
2.4 Flexural Problem Formulation 2–7
2.5 Torsion Rotation Relations .. 2–9
2.6 Deformation of an Infinitesimal Element Due to Shear 2–11
2.7 Effect of Flexure and Shear Deformation on Translation at One End 2–13
2.8 Effect of Flexure and Shear Deformation on Rotation at One End 2–14

3.1 Problem with 2 Global d.o.f. θ_1 and θ_2 3–3
3.2 *Frame Example (correct K_{23}) 3–6
3.3 Grid Example ... 3–10

4.1 Arbitrary 3D Vector Transformation 4–2
4.2 3D Vector Transformation ... 4–4
4.3 2D Frame Element Rotation ... 4–7
4.4 Grid Element Rotation .. 4–7
4.5 2D Truss Rotation .. 4–8
4.6 Simple 3D Rotation .. 4–10
4.7 Arbitrary 3D Rotation; Rotation with respect to β 4–10
4.8 Arbitrary 3D Rotation; Rotation with respect to γ 4–11
4.9 Special Case of 3D Transformation for Vertical Members 4–12
4.10 Arbitrary 3D Rotation; Rotation with respect to α 4–13
4.11 Rotation of Cross-Section by α 4–14
4.12 Arbitrary 3D Element Transformation 4–15
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Example for [ID] Matrix Determination</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2</td>
<td>Flowchart for Assembling Global Stiffness Matrix</td>
<td>5-5</td>
</tr>
<tr>
<td>5.3</td>
<td>Example of Bandwidth</td>
<td>5-7</td>
</tr>
<tr>
<td>5.4</td>
<td>Numbering Schemes for Simple Structure</td>
<td>5-7</td>
</tr>
<tr>
<td>5.5</td>
<td>Beam Element</td>
<td>5-10</td>
</tr>
<tr>
<td>5.6</td>
<td>ID Values for Simple Beam</td>
<td>5-20</td>
</tr>
<tr>
<td>5.7</td>
<td>Simple Frame Analyzed with the MATLAB Code</td>
<td>5-20</td>
</tr>
<tr>
<td>5.8</td>
<td>Simple Frame Analyzed with the MATLAB Code</td>
<td>5-22</td>
</tr>
<tr>
<td>5.9</td>
<td>Program Flowchart</td>
<td>5-27</td>
</tr>
<tr>
<td>5.10</td>
<td>Program’s Tree Structure</td>
<td>5-28</td>
</tr>
<tr>
<td>5.11</td>
<td>Flowchart for the Skyline Height Determination</td>
<td>5-30</td>
</tr>
<tr>
<td>5.12</td>
<td>Flowchart for the Global Stiffness Matrix Assembly</td>
<td>5-31</td>
</tr>
<tr>
<td>5.13</td>
<td>Flowchart for the Load Vector Assembly</td>
<td>5-33</td>
</tr>
<tr>
<td>5.14</td>
<td>Flowchart for the Internal Forces</td>
<td>5-34</td>
</tr>
<tr>
<td>5.15</td>
<td>Flowchart for the Reactions</td>
<td>5-35</td>
</tr>
<tr>
<td>5.16</td>
<td>Structure Plotted with CASAP</td>
<td>5-56</td>
</tr>
<tr>
<td>6.1</td>
<td>Example of [B] Matrix for a Statically Determinate Truss</td>
<td>6-3</td>
</tr>
<tr>
<td>6.2</td>
<td>Example of [B] Matrix for a Statically Determinate Beam</td>
<td>6-5</td>
</tr>
<tr>
<td>6.3</td>
<td>Example of [B] Matrix for a Statically Indeterminate Truss</td>
<td>6-7</td>
</tr>
<tr>
<td>6.4</td>
<td>*Examples of Kinematic Instability</td>
<td>6-13</td>
</tr>
<tr>
<td>6.5</td>
<td>Example 1, Congruent Transfer</td>
<td>6-19</td>
</tr>
<tr>
<td>6.6</td>
<td>Example 2</td>
<td>6-21</td>
</tr>
<tr>
<td>7.1</td>
<td>Stable and Statically Determinate Element</td>
<td>7-6</td>
</tr>
<tr>
<td>7.2</td>
<td>Example 1, [k] → [d]</td>
<td>7-7</td>
</tr>
<tr>
<td>8.1</td>
<td>Stress Components on an Infinitesimal Element</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2</td>
<td>Stress Traction Relations</td>
<td>8-2</td>
</tr>
<tr>
<td>8.3</td>
<td>Equilibrium of Stresses, Cartesian Coordinates</td>
<td>8-4</td>
</tr>
<tr>
<td>8.4</td>
<td>Fundamental Equations in Solid Mechanics</td>
<td>8-8</td>
</tr>
<tr>
<td>9.1</td>
<td>Variational and Differential Operators</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2</td>
<td>*Strain Energy and Complementary Strain Energy</td>
<td>9-9</td>
</tr>
<tr>
<td>9.3</td>
<td>Effects of Load Histories on U and W</td>
<td>9-11</td>
</tr>
<tr>
<td>9.4</td>
<td>Torsion Rotation Relations</td>
<td>9-14</td>
</tr>
<tr>
<td>9.5</td>
<td>Flexural Member</td>
<td>9-15</td>
</tr>
<tr>
<td>9.6</td>
<td>Tapered Cantilivered Beam Analyased by the Virtual Displacement Method</td>
<td>9-23</td>
</tr>
<tr>
<td>9.7</td>
<td>Tapered Cantilevered Beam Analyased by the Virtual Force Method</td>
<td>9-28</td>
</tr>
<tr>
<td>9.8</td>
<td>Three Hinge Semi-Circular Arch</td>
<td>9-30</td>
</tr>
<tr>
<td>9.9</td>
<td>Semi-Circular Cantilevered Box Girder</td>
<td>9-31</td>
</tr>
<tr>
<td>9.10</td>
<td>Single DOF Example for Potential Energy</td>
<td>9-34</td>
</tr>
<tr>
<td>9.11</td>
<td>Graphical Representation of the Potential Energy</td>
<td>9-35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

9.12 Variable Cross Section Fixed Beam ... 9–38
9.13 Uniformly Loaded Simply Supported Beam Analysed by the Rayleigh-Ritz Method 9–42
9.14 Example xx: External Virtual Work ... 9–44
9.15 Summary of Variational Methods ... 9–50
9.16 Duality of Variational Principles ... 9–51

10.1 Axial Finite Element ... 10–2
10.2 Flexural Finite Element .. 10–4
10.3 Shape Functions for Flexure of Uniform Beam Element. 10–6
10.4 *Constant Strain Triangle Element ... 10–7
10.5 Constant Strain Quadrilateral Element ... 10–10
10.6 Solid Trilinear Rectangular Element .. 10–11

13.1 Euler Column ... 13–1
13.2 Simply Supported Beam Column; Differential Segment; Effect of Axial Force P . 13–4
13.3 Solution of the Transcendental Equation for the Buckling Load of a Fixed-Hinged Column ... 13–6
13.4 Critical lengths of columns .. 13–7
13.5 Summary of Stability Solutions .. –26
List of Tables

1.1 Example of Nodal Definition .. 1–5
1.2 Example of Element Definition 1–5
1.3 Example of Group Number .. 1–6
1.4 Degrees of Freedom of Different Structure Types Systems 1–12
2.1 Examples of Influence Coefficients 2–2
6.1 Internal Element Force Definition for the Statics Matrix 6–2
6.2 Conditions for Static Determinacy, and Kinematic Instability 6–13
9.1 Essential and Natural Boundary Conditions 9–5
9.2 Possible Combinations of Real and Hypothetical Formulations 9–20
9.3 Comparison of 2 Alternative Approximate Solutions 9–49
9.4 Summary of Variational Terms Associated with One Dimensional Elements . . . 9–52
10.1 Characteristics of Beam Element Shape Functions 10–6
10.2 Interpretation of Shape Functions in Terms of Polynomial Series (1D & 2D) . . . 10–12
10.3 Polynomial Terms in Various Element Formulations (1D & 2D) 10–12
NOTATION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Vector of coefficients in assumed displacement field</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>\mathcal{A}</td>
<td>Kinematics Matrix</td>
</tr>
<tr>
<td>b</td>
<td>Body force vector</td>
</tr>
<tr>
<td>\mathcal{B}</td>
<td>Statics Matrix, relating external nodal forces to internal forces $p = [\mathcal{B}]\mathcal{P}$</td>
</tr>
<tr>
<td>$[\mathcal{B}]$</td>
<td>Statics Matrix relating nodal load to internal forces</td>
</tr>
<tr>
<td>\mathcal{B}</td>
<td>Matrix relating assumed displacement fields parameters to joint displacements</td>
</tr>
<tr>
<td>C</td>
<td>Cosine</td>
</tr>
<tr>
<td>$[C_1</td>
<td>C_2]$</td>
</tr>
<tr>
<td>${d}$</td>
<td>Element flexibility matrix (lc)</td>
</tr>
<tr>
<td>${d_c}$</td>
<td>Element nodal forces = F (lc)</td>
</tr>
<tr>
<td>$[D]$</td>
<td>Structure flexibility matrix (GC)</td>
</tr>
<tr>
<td>E</td>
<td>Elastic Modulus</td>
</tr>
<tr>
<td>$[E]$</td>
<td>Matrix of elastic constants (Constitutive Matrix)</td>
</tr>
<tr>
<td>${F}$</td>
<td>Unknown element forces and unknown support reactions</td>
</tr>
<tr>
<td>${F_0}$</td>
<td>Nonredundant element forces (lc)</td>
</tr>
<tr>
<td>${F_r}$</td>
<td>Redundant element forces (lc)</td>
</tr>
<tr>
<td>${F_e}$</td>
<td>Element forces (lc)</td>
</tr>
<tr>
<td>FEA</td>
<td>Fixed end actions of a restrained member</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus</td>
</tr>
<tr>
<td>I</td>
<td>Moment of inertia</td>
</tr>
<tr>
<td>$[\mathcal{L}]$</td>
<td>Matrix relating the assumed displacement field parameters to joint displacements</td>
</tr>
<tr>
<td>$[I]$</td>
<td>Identity matrix</td>
</tr>
<tr>
<td>$[ID]$</td>
<td>Matrix relating nodal dof to structure dof</td>
</tr>
<tr>
<td>J</td>
<td>St Venant’s torsional constant</td>
</tr>
<tr>
<td>k</td>
<td>Element stiffness matrix (lc)</td>
</tr>
<tr>
<td>$[p]$</td>
<td>Matrix of coefficients of a polynomial series</td>
</tr>
<tr>
<td>$[k_g]$</td>
<td>Geometric element stiffness matrix (lc)</td>
</tr>
<tr>
<td>$[k_r]$</td>
<td>Rotational stiffness matrix (inverse)</td>
</tr>
<tr>
<td>$[K]$</td>
<td>Structure stiffness matrix (GC)</td>
</tr>
<tr>
<td>$[K_g]$</td>
<td>Structure’s geometric stiffness matrix (GC)</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>L</td>
<td>Linear differential operator relating displacement to strains</td>
</tr>
<tr>
<td>l_{ij}</td>
<td>Direction cosine of rotated axis i with respect to original axis j</td>
</tr>
<tr>
<td>${LM}$</td>
<td>Structure dof of nodes connected to a given element</td>
</tr>
<tr>
<td>${N}$</td>
<td>Shape functions</td>
</tr>
<tr>
<td>${p}$</td>
<td>Element nodal forces = F (lc)</td>
</tr>
<tr>
<td>${P}$</td>
<td>Structure nodal forces (GC)</td>
</tr>
<tr>
<td>P,V,M,T</td>
<td>Internal forces acting on a beam column (axial, shear, moment, torsion)</td>
</tr>
<tr>
<td>R</td>
<td>Structure reactions (GC)</td>
</tr>
</tbody>
</table>
\begin{itemize}
 \item S Sine
 \item t Traction vector
 \item \hat{t} Specified tractions along Γ_t
 \item u Displacement vector
 \item \hat{u} Neighbour function to $u(x)$
 \item $\hat{u}(x)$ Specified displacements along Γ_u
 \item u,v,w Translational displacements along the x, y, and z directions
 \item U Strain energy
 \item U^* Complementary strain energy
 \item x,y Local coordinate system (lc)
 \item X,Y Global coordinate system (GC)
 \item W Work
 \item α Coefficient of thermal expansion
 \item $[\Gamma]$ Transformation matrix
 \item $\{\delta\}$ Element nodal displacements (lc)
 \item $\{\Delta\}$ Nodal displacements in a continuous system
 \item $\{\Delta\}$ Structure nodal displacements (GC)
 \item ϵ Strain vector
 \item ϵ_0 Initial strain vector
 \item $\{\Upsilon\}$ Element relative displacement (lc)
 \item $\{\Upsilon_0\}$ Nonredundant element relative displacement (lc)
 \item $\{\Upsilon_x\}$ Redundant element relative displacement (lc)
 \item θ Rotational displacement with respect to z direction (for 2D structures)
 \item δ Variational operator
 \item δM Virtual moment
 \item δP Virtual force
 \item $\delta \theta$ Virtual rotation
 \item δu Virtual displacement
 \item $\delta \phi$ Virtual curvature
 \item δU Virtual internal strain energy
 \item δW Virtual external work
 \item $\delta \epsilon$ Virtual strain vector
 \item $\delta \sigma$ Virtual stress vector
 \item Γ Surface
 \item Γ_t Surface subjected to surface tractions
 \item Γ_u Surface associated with known displacements
 \item σ Stress vector
 \item σ_0 Initial stress vector
 \item Ω Volume of body
\end{itemize}

lc: Local Coordinate system
GC: Global Coordinate System

\textbf{Victor Saouma} \hspace{2cm} \textbf{Matrix Structural Analysis}
Chapter 1

INTRODUCTION

1.1 Why Matrix Structural Analysis?

1 In most Civil engineering curriculum, students are required to take courses in: Statics, Strength of Materials, Basic Structural Analysis. This last course is a fundamental one which introduces basic structural analysis (determination of reactions, deflections, and internal forces) of both statically determinate and indeterminate structures.

2 Also Energy methods are introduced, and most if not all examples are two dimensional. Since the emphasis is on hand solution, very seldom are three dimensional structures analyzed. The methods covered, for the most part lend themselves for “back of the envelope” solutions and not necessarily for computer implementation.

3 Those students who want to pursue a specialization in structural engineering/mechanics, do take more advanced courses such as Matrix Structural Analysis and/or Finite Element Analysis.

4 Matrix Structural Analysis, or Advanced Structural Analysis, or Introduction to Structural Engineering Finite Element, builds on the introductory analysis course to focus on those methods which lend themselves to computer implementation. In doing so, we will place equal emphasis on both two and three dimensional structures, and develop a thorough understanding of computer aided analysis of structures.

5 This is essential, as in practice most, if not all, structural analysis are done by the computer and it is imperative that as structural engineers you understand what is inside those “black boxes”, develop enough self assurance to be capable of opening them and modify them to perform certain specific tasks, and most importantly to understand their limitations.

6 With the recently placed emphasis on the finite element method in most graduate schools, many students have been tempted to skip a course such as this one and rush into a finite element one. Hence it is important that you understand the connection and role of those two courses. The Finite Element Method addresses the analysis of two or three dimensional continuum. As such, the primary unknowns is \(u \) the nodal displacements, and internal “forces” are usually...
restricted to stress σ. The only analogous one dimensional structure is the truss.

7 Whereas two and three dimensional continuum are essential in civil engineering to model structures such as dams, shells, and foundation, the majority of Civil engineering structures are constituted by “rod” one-dimensional elements such as beams, girders, or columns. For those elements, “displacements” and internal “forces” are somehow more complex than those encountered in continuum finite elements.

8 Hence, contrarily to continuum finite element where displacement is mostly synonymous with translation, in one dimensional elements, and depending on the type of structure, generalized displacements may include translation, and/or flexural and/or torsional rotation. Similarly, “internal forces” are not stresses, but rather axial and shear forces, and/or flexural or torsional moments. Those concepts are far more relevant in the analysis/design of most civil engineering structures.

9 Hence, Matrix Structural Analysis, is truly a bridge course between introductory analysis and finite element courses. The element stiffness matrix $[k]$ will first be derived using methods introduced in basic structural analysis, and later using energy based concepts. This later approach is the one exclusively used in the finite element method.

10 An important component of this course is computer programing. Once the theory and the algorithms are thoroughly explained, you will be expected to program them in either Fortran (preferably 90) or C (sorry, but no Basic) on the computer of your choice. The program (typically about 3,500 lines) will perform the analysis of 2 and 3 dimensional truss and frame structures, and many students have subsequently used it in their professional activities.

11 There will be one computer assignment in which you will be expected to perform simple symbolic manipulations using Mathematica. For those of you unfamiliar with the Bechtel Laboratory, there will be a special session to introduce you to the operation of Unix on Sun workstations.

1.2 Overview of Structural Analysis

12 To put things into perspective, it may be helpful to consider classes of Structural Analysis which are distinguished by:

1. Excitation model
 (a) Static
 (b) Dynamic

2. Structure model
 (a) Global geometry
 • small deformation ($\epsilon = \frac{\partial u}{\partial x}$)
1.2 Overview of Structural Analysis

- large deformation \(\varepsilon_x = \frac{du}{dx} + \frac{1}{2} \left(\frac{du}{dx} \right)^2 \), P-\(\Delta \) effects, chapter 13

(b) Structural elements element types:
- 1D framework (truss, beam, columns)
- 2D finite element (plane stress, plane strain, axisymmetric, plate or shell elements), chapter 12
- 3D finite element (solid elements)

(c) Material Properties:
- Linear
- Nonlinear

(d) Sectional properties:
- Constant
- Variable

(e) Structural connections:
- Rigid
- Semi-flexible (linear and non-linear)

(f) Structural supports:
- Rigid
- Elastic

3. Type of solution:

 (a) Continuum, analytical, Partial Differential Equation
 (b) Discrete, numerical, Finite Element, Finite Difference, Boundary Element

Structural design must satisfy:

1. Strength \((\sigma < \sigma_f) \)
2. Stiffness (“small” deformations)
3. Stability (buckling, cracking)

Structural analysis must satisfy

1. Statics (equilibrium)
2. Mechanics (stress-strain or force displacement relations)
3. Kinematics (compatibility of displacement)
1.3 Structural Idealization

Prior to analysis, a structure must be idealized for a suitable mathematical representation. Since it is practically impossible (and most often unnecessary) to model every single detail, assumptions must be made. Hence, structural idealization is as much an art as a science. Some of the questions confronting the analyst include:

1. Two dimensional versus three dimensional; Should we model a single bay of a building, or the entire structure?

2. Frame or truss, can we neglect flexural stiffness?

3. Rigid or semi-rigid connections (most important in steel structures)

4. Rigid supports or elastic foundations (are the foundations over solid rock, or over clay which may consolidate over time)

5. Include or not secondary members (such as diagonal braces in a three dimensional analysis).

6. Include or not axial deformation (can we neglect the axial stiffness of a beam in a building?)

7. Cross sectional properties (what is the moment of inertia of a reinforced concrete beam?)

8. Neglect or not haunches (those are usually present in zones of high negative moments)

9. Linear or nonlinear analysis (linear analysis can not predict the peak or failure load, and will underestimate the deformations).

10. Small or large deformations (In the analysis of a high rise building subjected to wind load, the moments should be amplified by the product of the axial load times the lateral deformation, $P - \Delta$ effects).

11. Time dependent effects (such as creep, which is extremely important in prestressed concrete, or cable stayed concrete bridges).

12. Partial collapse or local yielding (would the failure of a single element trigger the failure of the entire structure?).

13. Load static or dynamic (when should a dynamic analysis be performed?).

14. Wind load (the lateral drift of a high rise building subjected to wind load, is often the major limitation to higher structures).

15. Thermal load (can induce large displacements, specially when a thermal gradient is present.).

1.3 Structural Idealization

1.3.1 Structural Discretization

Once a structure has been idealized, it must be discretized to lend itself for a mathematical representation which will be analyzed by a computer program. This discretization should uniquely define each node, and member.

The node is characterized by its nodal id (node number), coordinates, boundary conditions, and load (this one is often defined separately), Table 1.1. Note that in this case we have two nodal coordinates, and three degrees of freedom (to be defined later) per node. Furthermore, a 0 and a 1 indicate unknown or known displacement. Known displacements can be zero (restrained) or non-zero (as caused by foundation settlement).

The element is characterized by the nodes which it connects, and its group number, Table 1.2.

<table>
<thead>
<tr>
<th>Node No.</th>
<th>Coor.</th>
<th>B. C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>2</td>
<td>5.</td>
<td>5.</td>
</tr>
<tr>
<td>3</td>
<td>20.</td>
<td>5.</td>
</tr>
<tr>
<td>4</td>
<td>25.</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 1.1: Example of Nodal Definition

Group number will then define both element type, and elastic/geometric properties. The last one is a pointer to a separate array, Table 1.3. In this example element 1 has element code 1 (such as beam element), while element 2 has a code 2 (such as a truss element). Material group 1 would have different elastic/geometric properties than material group 2.

From the analysis, we first obtain the nodal displacements, and then the element internal forces. Those internal forces vary according to the element type. For a two dimensional frame, those are the axial and shear forces, and moment at each node.

Hence, the need to define two coordinate systems (one for the entire structure, and one for...
each element), and a sign convention become apparent.

1.3.2 Coordinate Systems

We should differentiate between 2 coordinate systems:

Global: to describe the structure nodal coordinates. This system can be arbitrarily selected provided it is a Right Hand Side (RHS) one, and we will associate with it upper case axis labels, X,Y,Z, Fig. 1.1 or 1,2,3 (running indeces within a computer program).

Local: system is associated with each element and is used to describe the element internal forces. We will associate with it lower case axis labels, x,y,z (or 1,2,3), Fig. 1.2.

The x-axis is assumed to be along the member, and the direction is chosen such that it points from the 1st node to the 2nd node, Fig. 1.2.

Two dimensional structures will be defined in the X-Y plane.

1.3.3 Sign Convention

The sign convention in structural analysis is completely different than the one previously adopted in structural analysis/design, Fig. 1.3 (where we focused mostly on flexure and defined a positive moment as one causing “tension below”. This would be awkward to program!).

In matrix structural analysis the sign convention adopted is consistent with the prevailing coordinate system. Hence, we define a positive moment as one which is counter-clockwise, Fig. 1.3.

Fig. 1.4 illustrates the sign convention associated with each type of element.

Fig. 1.4 also shows the geometric (upper left) and elastic material (upper right) properties associated with each type of element.

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Element Type</th>
<th>Material Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1.3: Example of Group Number
Figure 1.1: Global Coordinate System
Figure 1.2: Local Coordinate Systems
1.4 Degrees of Freedom

A degree of freedom (d.o.f.) is an independent generalized nodal displacement of a node. The displacements must be linearly independent and thus not related to each other. For example, a roller support on an inclined plane would have three displacements (rotation θ, and two translations u and v), however since the two displacements are kinematically constrained, we only have two independent displacements, Fig. 1.5.

We note that we have been referring to generalized displacements, because we want this term to include translations as well as rotations. Depending on the type of structure, there may be none, one or more than one such displacement. It is unfortunate that in most introductory courses in structural analysis, too much emphasis has been placed on two dimensional structures, and not enough on either three dimensional ones, or two dimensional ones with torsion.

In most cases, there is the same number of d.o.f in local coordinates as in the global coordinate system. One notable exception is the truss element. In local coordinate we can only have one axial deformation, whereas in global coordinates there are two or three translations in 2D and 3D respectively for each node.

Hence, it is essential that we understand the degrees of freedom which can be associated with the various types of structures made up of one dimensional rod elements, Table 1.4.
Figure 1.4: Total Degrees of Freedom for various Type of Elements
This table shows the degree of freedoms and the corresponding generalized forces.

We should distinguish between local and global d.o.f.’s. The numbering scheme follows the following simple rules:

Local: d.o.f. for a given element: Start with the first node, number the local d.o.f. in the same order as the subscripts of the relevant local coordinate system, and repeat for the second node.

Global: d.o.f. for the entire structure: Starting with the 1st node, number all the unrestrained global d.o.f.’s, and then move to the next one until all global d.o.f have been numbered, Fig. 1.6.

1.5 Course Organization
<table>
<thead>
<tr>
<th>Type</th>
<th>Node 1</th>
<th>Node 2</th>
<th>(k)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Local)</td>
<td>(Global)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Dimensional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam</td>
<td>{p} (F_{y1}, M_{z2})</td>
<td>(F_{y3}, M_{z4})</td>
<td>4 \times 4</td>
<td>4 \times 4</td>
</tr>
<tr>
<td></td>
<td>{\delta} (v_1, \theta_2)</td>
<td>(v_3, \theta_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Dimensional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truss</td>
<td>{p} (F_{x1})</td>
<td>(F_{x2})</td>
<td>2 \times 2</td>
<td>4 \times 4</td>
</tr>
<tr>
<td></td>
<td>{\delta} (u_1)</td>
<td>(u_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>{p} (F_{x1}, F_{y2}, M_{z3})</td>
<td>(F_{x4}, F_{y5}, M_{z6})</td>
<td>6 \times 6</td>
<td>6 \times 6</td>
</tr>
<tr>
<td></td>
<td>{\delta} (u_1, v_2, \theta_3)</td>
<td>(u_4, v_5, \theta_6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid</td>
<td>{p} (T_{x1}, F_{y2}, M_{z3})</td>
<td>(T_{x4}, F_{y5}, M_{z6})</td>
<td>6 \times 6</td>
<td>6 \times 6</td>
</tr>
<tr>
<td></td>
<td>{\delta} (\theta_1, v_2, \theta_3)</td>
<td>(\theta_4, v_5, \theta_6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Dimensional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truss</td>
<td>{p} (F_{x1})</td>
<td>(F_{x2})</td>
<td>2 \times 2</td>
<td>6 \times 6</td>
</tr>
<tr>
<td></td>
<td>{\delta} (u_1)</td>
<td>(u_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>{p} (F_{x1}, F_{y2}, F_{y3}, T_{x4}, M_{y5}, M_{z6})</td>
<td>(F_{x7}, F_{y8}, F_{y9}, T_{x10}, M_{y11}, M_{z12})</td>
<td>12 \times 12</td>
<td>12 \times 12</td>
</tr>
<tr>
<td></td>
<td>{\delta} (u_1, v_2, w_3, \theta_4, \theta_5, \theta_6)</td>
<td>(u_7, v_8, w_9, \theta_{10}, \theta_{11}, \theta_{12})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.4: Degrees of Freedom of Different Structure Types Systems
Figure 1.6: Examples of Global Degrees of Freedom
Figure 1.7: Organization of the Course
Part I

Matrix Structural Analysis of Framed Structures
Chapter 2

ELEMENT STIFFNESS MATRIX

2.1 Introduction

1 In this chapter, we shall derive the element stiffness matrix \([k]\) of various one dimensional elements. Only after this important step is well understood, we could expand the theory and introduce the structure stiffness matrix \([K]\) in its global coordinate system.

2 As will be seen later, there are two fundamentally different approaches to derive the stiffness matrix of one dimensional element. The first one, which will be used in this chapter, is based on classical methods of structural analysis (such as moment area or virtual force method). Thus, in deriving the element stiffness matrix, we will be reviewing concepts earlier seen.

3 The other approach, based on energy consideration through the use of assumed shape functions, will be examined in chapter 11. This second approach, exclusively used in the finite element method, will also be extended to two and three dimensional continuum elements.

2.2 Influence Coefficients

4 In structural analysis an influence coefficient \(C_{ij}\) can be defined as the effect on d.o.f. \(i\) due to a unit action at d.o.f. \(j\) for an individual element or a whole structure. Examples of Influence Coefficients are shown in Table 2.1.

5 It should be recalled that influence lines are associated with the analysis of structures subjected to moving loads (such as bridges), and that the flexibility and stiffness coefficients are components of matrices used in structural analysis.
2.3 Flexibility Matrix (Review)

Considering the simply supported beam shown in Fig. 2.1, and using the local coordinate system, we have

\[
\begin{bmatrix}
\delta_1 \\
\delta_2
\end{bmatrix} =
\begin{bmatrix}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{bmatrix}
\begin{bmatrix}
p_1 \\
p_2
\end{bmatrix}
\]

(2.1)

Using the virtual work, or more specifically, the virtual force method to analyze this problem, (more about energy methods in Chapter 9), we have:

\[
\int_0^l \delta M \frac{M}{EI_z} dx\text{ Internal} = \delta P \Delta + \delta M \theta \text{ External} \tag{2.2}
\]

where \(\delta M \), \(\frac{M}{EI_z} \), \(\delta P \) and \(\Delta \) are the virtual internal force, real internal displacement, virtual external load, and real external displacement respectively. Here, both the external virtual force and moment are usually taken as unity.

Virtual Force:

\[
\begin{align*}
\delta U &= \int \delta \sigma_x \epsilon_x \, dvol \\
\delta \sigma_x &= \frac{M}{EI} \epsilon_x = \frac{M}{EI} \frac{\sigma}{E} \tag{2.3}
\end{align*}
\]

\[
\begin{align*}
\delta V &= \delta P \Delta \\
\delta U &= \delta V
\end{align*}
\]
Figure 2.1: Example for Flexibility Method
Hence:

\[EI \frac{1}{\delta M} \frac{d_{11}}{\Delta} = \int_0^L \left(1 - \frac{x}{L} \right)^2 dx = \frac{L}{3} \]

(2.4)

Similarly, we would obtain:

\[EI d_{22} = \int_0^L \left(\frac{x}{L} \right)^2 dx = \frac{L}{3} \]

(2.5)

\[EI d_{12} = \int_0^L \left(1 - \frac{x}{L} \right) \frac{x}{L} dx = -\frac{L}{6} = EI d_{21} \]

(2.6)

Those results can be summarized in a matrix form as:

\[
\begin{bmatrix}
 d_1 \\
 d_2 \\
 d_{12}
\end{bmatrix} = \begin{bmatrix}
 2 & -1 \\
 -1 & 2
\end{bmatrix}
\begin{bmatrix}
 L \\
 6EI_z
\end{bmatrix}
\]

(2.7)

The flexibility method will be covered in more detailed, in chapter 7.

2.4 Stiffness Coefficients

In the flexibility method, we have applied a unit force at a time and determined all the induced displacements in the statically determinate structure.

In the stiffness method, we

1. Constrain all the degrees of freedom
2. Apply a unit displacement at each d.o.f. (while restraining all others to be zero)
3. Determine the reactions associated with all the d.o.f.

\[
\begin{bmatrix}
 p_1 \\
 p_2 \\
 \vdots
\end{bmatrix} = \begin{bmatrix}
 k_{11} & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & k_{nn}
\end{bmatrix} \begin{bmatrix}
 \delta_1 \\
 \delta_2 \\
 \vdots
\end{bmatrix}
\]

(2.8)

Hence \(k_{ij} \) will correspond to the reaction at dof \(i \) due to a unit deformation (translation or rotation) at dof \(j \), Fig. 2.2.

The actual stiffness coefficients are shown in Fig. 2.3 for truss, beam, and grid elements in terms of elastic and geometric properties.

In the next sections, we shall derive those stiffness coefficients.
2.4 Stiffness Coefficients

Figure 2.2: Definition of Element Stiffness Coefficients
Figure 2.3: Stiffness Coefficients for One Dimensional Elements
2.5 Force-Displacement Relations

2.5.1 Axial Deformations

From strength of materials, the force/displacement relation in axial members is

\[\sigma = E \epsilon \]
\[\frac{A \sigma}{P} = \frac{AE}{L} \Delta \]

Hence, for a unit displacement, the applied force should be equal to \(\frac{AE}{L} \). From statics, the force at the other end must be equal and opposite.

2.5.2 Flexural Deformation

Our objective is to seek a relation for the shear and moments at each end of a beam, in terms of known displacements and rotations at each end.

\[V_1 = V_1(v_1, \theta_1, v_2, \theta_2) \] \hspace{1cm} (2.10-a)
\[M_1 = M_1(v_1, \theta_1, v_2, \theta_2) \] \hspace{1cm} (2.10-b)
\[V_2 = V_2(v_1, \theta_1, v_2, \theta_2) \] \hspace{1cm} (2.10-c)
\[M_2 = M_2(v_1, \theta_1, v_2, \theta_2) \] \hspace{1cm} (2.10-d)

We start from the differential equation of a beam, Fig. 2.4 in which we have all positive known displacements, we have from strength of materials

\[M = -EI \frac{d^2 v}{dx^2} = M_1 - V_1 x \] \hspace{1cm} (2.11)
Integrating twice

\[-EIv' = M_1 x - \frac{1}{2} V_1 x^2 + C_1 \]

(2.12)

\[-EIv = \frac{1}{2} M_1 x^2 - \frac{1}{6} V_1 x^3 + C_1 x + C_2 \]

(2.13)

Applying the boundary conditions at \(x = 0 \)

\[
v' = \theta_1 \]
\[
v = v_1 \]

\[
\begin{align*}
C_1 &= -EI\theta_1 \\
C_2 &= -EIv_1
\end{align*}
\]

(2.14)

Applying the boundary conditions at \(x = L \) and combining with the expressions for \(C_1 \) and \(C_2 \)

\[
v' = \theta_2 \]
\[
v = v_2 \]

\[
\begin{align*}
-M_1 L - \frac{1}{2} V_1 L^2 - EI\theta_1 \\
\frac{1}{2} M_1 L^2 - \frac{1}{6} V_1 L^3 - EI\theta_1 L - EIv_1
\end{align*}
\]

(2.15)

Since equilibrium of forces and moments must be satisfied, we have:

\[
V_1 + V_2 = 0 \quad M_1 - V_1 L + M_2 = 0
\]

(2.16)

or

\[
V_1 = \frac{(M_1 + M_2)}{L} \quad V_2 = -V_1
\]

(2.17)

Substituting \(V_1 \) into the expressions for \(\theta_2 \) and \(v_2 \) in Eq. 2.15 and rearranging

\[
\begin{align*}
M_1 - M_2 &= \frac{2EIz}{L} (\theta_1 + \theta_2) + \frac{6EIz}{L^2} (v_1 - v_2) \\
2M_1 - M_2 &= \frac{6EIz}{L^2} (v_1 - v_2) - \frac{6EIz}{L} v_2
\end{align*}
\]

(2.18)

Solving those two equations, we obtain:

\[
\begin{align*}
M_1 &= \frac{2EIz}{L} (2\theta_1 + \theta_2) + \frac{6EIz}{L^2} (v_1 - v_2) \\
M_2 &= \frac{2EIz}{L} (\theta_1 + 2\theta_2) + \frac{6EIz}{L^2} (v_1 - v_2)
\end{align*}
\]

(2.19)

(2.20)

Finally, we can substitute those expressions in Eq. 2.17

\[
\begin{align*}
V_1 &= \frac{6EIz}{L^2} (\theta_1 + \theta_2) + \frac{12EIz}{L^3} (v_1 - v_2) \\
V_2 &= -\frac{6EIz}{L^2} (\theta_1 + \theta_2) - \frac{12EIz}{L^3} (v_1 - v_2)
\end{align*}
\]

(2.21)

(2.22)
2.5.3 Torsional Deformations

From Fig. 2.2-d. Since torsional effects are seldom covered in basic structural analysis, and students may have forgotten the derivation of the basic equations from the Strength of Material course, we shall briefly review them.

Assuming a linear elastic material, and a linear strain (and thus stress) distribution along the radius of a circular cross section subjected to torsional load, Fig. 2.5 we have:

\[T = \int A \frac{\rho \tau_{\text{max}}}{c} dA \]

\[= \frac{\tau_{\text{max}}}{c} \int A \rho^2 dA \]

\[= \frac{Tc}{J} \]

\[\tau_{\text{max}} = \frac{Tc}{J} \] (2.25)

Note the analogy of this last equation with \(\sigma = \frac{Mc}{I_z} \).

\[\int_A \rho^2 dA \] is the polar moment of inertia \(J \). It is also referred to as the St. Venant’s torsion constant. For circular cross sections

\[J = \int_A \rho^2 dA = \int_0^c \rho^2 (2\pi \rho d\rho) \]

\[= \frac{\pi c^4}{2} = \frac{\pi d^4}{32} \] (2.26)

For rectangular sections \(b \times d \), and \(b < d \), an approximate expression is given by

\[J = kb^3d \] (2.27-a)

Victor Saouma
Matrix Structural Analysis
\[k = \frac{0.3}{1 + \left(\frac{b}{h}\right)^2} \] \tag{2.27-b}

For other sections, \(J \) is often tabulated.

Note that \(J \) corresponds to \(I_x \) where \(x \) is the axis along the element.

Having developed a relation between torsion and shear stress, we now seek a relation between torsion and torsional rotation. In Fig. 2.5-b, we consider the arc length BD

\[
\begin{aligned}
\gamma_{\text{max}}dx &= d\Phi_c \\
\Rightarrow \frac{d\Phi}{dx} &= \frac{\gamma_{\text{max}}}{c} \\
\gamma_{\text{max}} &= \frac{\tau_{\text{max}}}{Gc} \\
\tau_{\text{max}} &= \frac{T}{GJ} \\
\end{aligned}
\] \tag{2.28}

Finally, we can rewrite this last equation as \(\int Tdx = \int Gj d\Phi \) and obtain:

\[
T = GJ \frac{\Phi}{L} \tag{2.29}
\]

Note the similarity between this equation and Equation 2.9.

2.5.4 Shear Deformation

In general, shear deformations are quite small. However, for beams with low span to depth ratio, those deformations can not be neglected.

Considering an infinitesimal element subjected to shear, Fig. 2.6 and for linear elastic material, the shear strain (assuming small displacement, i.e. \(\tan \gamma \approx \gamma \)) is given by

\[
\tan \gamma \approx \gamma = \frac{dv_s}{dx} = \frac{\tau}{G} \tag{2.30}
\]

where \(\frac{dv_s}{dx} \) is the slope of the beam neutral axis from the horizontal while the vertical sections remain undeformed, \(G \) is the shear modulus, \(\tau \) the shear stress, and \(v_s \) the shear induced displacement.

In a beam cross section, the shear stress is not constant. For example for rectangular sections, it varies parabolically, and in I sections, the flange shear components can be neglected.

\[
\tau = \frac{VQ}{Ib} \tag{2.31}
\]

where \(V \) is the shear force, \(Q \) is the first moment (or static moment) about the neutral axis of the portion of the cross-sectional area which is outside of the section where the shear stress is...
to be determined, \(I \) is the moment of inertia of the cross sectional area about the neutral axis, and \(b \) is the width of the rectangular beam.

The preceding equation can be simplified as

\[
\tau = \frac{V}{A_s} \quad (2.32)
\]

where \(A_s \) is the effective cross section for shear (which is the ratio of the cross sectional area to the area shear factor).

Let us derive the expression of \(A_s \) for rectangular sections. The exact expression for the shear stress is

\[
\tau = \frac{VQ}{I_b} \quad (2.33)
\]

where \(Q \) is the moment of the area from the external fibers to \(y \) with respect to the neutral axis; For a rectangular section, this yields

\[
\tau = \frac{VQ}{I_b} = \frac{V}{I_b} \int_y^{h/2} by' dy' = \frac{V}{2I} \left(\frac{h^2}{4} - y^2 \right) \quad (2.34-a)
\]

\[
= \frac{6V}{bh^3} \left(\frac{h^2}{4} - 4 \right) \quad (2.34-b)
\]

and we observe that the shear stress is zero for \(y = h/2 \) and maximum at the neutral axis where it is equal to \(1.5 \frac{V}{bh} \).
To determine the form factor λ of a rectangular section

$$
\tau = \frac{V Q}{I_b}
$$

$$
Q = \int_y^{h/2} by' dy' = \frac{b}{2} \left(\frac{h^2}{4} - y^2 \right)
$$

$$
\begin{align*}
\lambda &= \frac{k}{A} = \frac{4}{\pi} \left(\frac{h^2}{4} - y^2 \right) \\
&= \frac{1}{A} \int A k^2 dy dz
\end{align*}
$$

Thus, the form factor λ may be taken as 1.2 for rectangular beams of ordinary proportions, and $A_s = 1.2 A$.

For I beams, k can be also approximated by 1.2, provided A is the area of the web.

Combining Eq. 2.31 and 2.32 we obtain

$$
dv_s = \frac{V}{GA_s} dx
$$

Assuming V to be constant, we integrate

$$
v_s = \frac{V}{GA_s} x + C_1
$$

If the displacement v_s is zero at the opposite end of the beam, then we solve for C_1 and obtain

$$
v_s = -\frac{V}{GA_s} (x - L)
$$

We define

$$
\Phi \overset{\text{def}}{=} \frac{12EI}{GA_s L^2}
$$

$$
= 24(1 + \nu)\frac{A}{A_s} \left(\frac{r}{L} \right)^2
$$

Hence for small slenderness ratio r/L compared to unity, we can neglect Φ.

Next, we shall consider the effect of shear deformations on both translations and rotations

Effect on Translation Due to a unit vertical translation, the end shear force is obtained from Eq. 2.21 and setting $v_1 = 1$ and $\theta_1 = \theta_2 = v_2 = 0$, or $V = \frac{12EI}{L^4}$. At $x = 0$ we have, Fig. 2.7

$$
\begin{align*}
v_s &= \frac{V L}{12EI} \\
V &= \frac{12EI}{V L^2} \\
&= \frac{12EI}{GA_s L^2}
\end{align*}
$$

Hence, the shear deformation has increased the total translation from 1 to 1 + Φ. Similar arguments apply to the translation at the other end.

Victor Saouma

Matrix Structural Analysis
Effect on Rotation Considering the beam shown in Fig. 2.8, even when a rotation θ_1 is applied, an internal shear force is induced, and this in turn is going to give rise to shear deformations (translation) which must be accounted for. The shear force is obtained from Eq. 2.21 and setting $\theta_1 = 1$ and $\theta_2 = v_1 = v_2 = 0$, or $V = \frac{6EIz}{L^2}$. As before

$$
\begin{align*}
 v_s &= \frac{VL}{GA_s} \\
 V &= \frac{6EIz}{GA_sL^2} \\
 \Phi &= \frac{12EIz}{GA_sL^2}
\end{align*}
$$

in other words, the shear deformation has moved the end of the beam (which was supposed to have zero translation) by $0.5\Phi L$.

2.6 Putting it All Together, [k]

Using basic structural analysis methods we have derived various force displacement relations for axial, flexural, torsional and shear imposed displacements. At this point, and keeping in mind the definition of degrees of freedom, we seek to assemble the individual element stiffness matrices [k]. We shall start with the simplest one, the truss element, then consider the beam, 2D frame, grid, and finally the 3D frame element.

In each case, a table will cross-reference the force displacement relations, and then the element stiffness matrix will be accordingly defined.
2.6.1 Truss Element

The truss element (whether in 2D or 3D) has only one degree of freedom associated with each node. Hence, from Eq. 2.9, we have

\[
[k'] = \frac{AE}{L} \begin{bmatrix}
 1 & 1 \\
 -1 & -1
\end{bmatrix}
\]

(2.43)

2.6.2 Beam Element

There are two major beam theories:

Euler-Bernoulli which is the classical formulation for beams.

Timoshenko which accounts for transverse shear deformation effects.
2.6 Putting it All Together, \([k]\)

2.6.2.1 Euler-Bernoulli

Using Equations 2.19, 2.20, 2.21 and 2.22 we can determine the forces associated with each unit displacement.

\[
[k_b] = \begin{bmatrix}
V_1 & \theta_1 & v_2 & \theta_2 \\
V_1 & 12EI/L^2 & 6EI/L & -12EI/L & 6EI/L \\
M_1 & 6EI/L & 4EI/L & -6EI/L & 2EI/L \\
M_1 & -6EI/L & 12EI/L & -6EI/L & 6EI/L \\
M_2 & 6EI/L & L^2 & -6EI/L & L^2 & 6EI/L \\
M_2 & -6EI/L & L^2 & 6EI/L & L^2 & 6EI/L \\
\end{bmatrix}
\]

(2.44)

The stiffness matrix of the beam element (neglecting shear and axial deformation) will thus be

\[
[k_b] = \begin{bmatrix}
V_1 & \theta_1 & v_2 & \theta_2 \\
V_1 & 12EI/L^2 & 6EI/L & -12EI/L & 6EI/L \\
M_1 & 6EI/L & 4EI/L & -6EI/L & 2EI/L \\
M_1 & -6EI/L & 12EI/L & -6EI/L & 6EI/L \\
M_2 & 6EI/L & L^2 & -6EI/L & L^2 & 6EI/L \\
M_2 & -6EI/L & L^2 & 6EI/L & L^2 & 6EI/L \\
\end{bmatrix}
\]

(2.45)

2.6.2.2 Timoshenko Beam

If shear deformations are present, we need to alter the stiffness matrix given in Eq. 2.45 in the following manner

1. Due to translation, we must divide (or normalize) the coefficients of the first and third columns of the stiffness matrix by \(1 + \Phi\) so that the net translation at both ends is unity.

2. Due to rotation and the effect of shear deformation

 (a) The forces induced at the ends due to a unit rotation at end 1 (second column) neglecting shear deformations are

 \[
 V_1 = -V_2 = \frac{6EI}{L^2}
 \]

 (2.46-a)

 \[
 M_1 = \frac{4EI}{L}
 \]

 (2.46-b)

 \[
 M_2 = \frac{2EI}{L}
 \]

 (2.46-c)

 (b) There is a net positive translation of \(0.5\Phi L\) at end 1 when we applied a unit rotation (this “parasitic” translation is caused by the shear deformation) but no additional forces are induced.
(c) When we apply a unit rotation, all other displacements should be zero. Hence, we should counteract this parasitic shear deformation by an equal and opposite one. Hence, we apply an additional vertical displacement of $-0.5\Phi L$ and the forces induced at the ends (first column) are given by

$$V_1 = -V_2 = \frac{12EI}{L^3} \frac{1}{1 + \Phi} \left(-0.5\Phi L\right) \frac{1}{k_{11}^{bt}} v_s$$ \hspace{1cm} (2.47-a)$$

$$M_1 = M_2 = \frac{6EI}{L^2} \frac{1}{1 + \Phi} \left(-0.5\Phi L\right) \frac{1}{k_{21}^{bt}} v_s$$ \hspace{1cm} (2.47-b)$$

Note that the denominators have already been divided by $1 + \Phi$ in k^{bt}.

(d) Summing up all the forces, we have the forces induced as a result of a unit rotation only when the effects of both bending and shear deformations are included.

$$V_1 = -V_2 = \frac{6EI}{L^2} + \frac{12EI}{L^3} \frac{1}{1 + \Phi} \left(-0.5\Phi L\right) \frac{1}{k_{11}^{bt}} v_s$$ \hspace{1cm} (2.48-a)$$

$$M_1 = M_2 = \frac{4EI}{L} + \frac{6EI}{L^2} \frac{1}{1 + \Phi} \left(-0.5\Phi L\right) \frac{1}{k_{21}^{bt}} v_s$$ \hspace{1cm} (2.48-b)$$

$$= 4 + \Phi \frac{EI}{1 + \Phi} \frac{1}{L}$$ \hspace{1cm} (2.48-c)$$

$$M_2 = \frac{2EI}{L} + \frac{6EI}{L^2} \frac{1}{1 + \Phi} \left(-0.5\Phi L\right) \frac{1}{k_{21}^{bt}} v_s$$ \hspace{1cm} (2.48-d)$$

$$= \frac{2 - \Phi}{1 + \Phi} \frac{EI}{L}$$ \hspace{1cm} (2.48-e)$$

$$= \frac{2 - \Phi}{1 + \Phi} \frac{EI}{L} \hspace{1cm} (2.48-f)$$

Victor Saouma Matrix Structural Analysis
Thus, the element stiffness matrix given in Eq. 2.45 becomes

\[
[k_{bV}] = \begin{bmatrix}
 v_1 & \theta_1 & v_2 & \theta_2 \\
 k_{11} & 0 & 0 & k_{12} \\
 0 & k_{11} & k_{12} & 0 & k_{13} & k_{14} \\
 0 & k_{21} & k_{22} & 0 & k_{23} & k_{24} \\
 0 & 0 & k_{12} & 0 & k_{14} & k_{14} \\
 0 & k_{31} & k_{32} & 0 & k_{33} & k_{34} \\
 0 & k_{41} & k_{42} & 0 & k_{43} & k_{44}
\end{bmatrix}
\] (2.49)

\[
[k^{2dfr}] = \begin{bmatrix}
 u_1 & v_1 & \theta_1 & u_2 & v_2 & \theta_2 \\
 P_1 & \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 \\
 V_1 & 0 & 12EI & 6EI & 0 & -12EI & 6EI \\
 M_1 & 0 & \frac{E}{{L}^3} & \frac{E}{{L}^3} & 0 & -\frac{6EI}{{L}^2} & \frac{6EI}{{L}^2} \\
 P_2 & -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 \\
 V_2 & 0 & -12EI & 6EI & 0 & 12EI & -6EI \\
 M_2 & 0 & \frac{6EI}{{L}^4} & \frac{6EI}{{L}^4} & 0 & -\frac{2EI}{{L}^2} & \frac{2EI}{{L}^2} \\
\end{bmatrix}
\] (2.51)

Thus, we have:

Thus, the element stiffness matrix given in Eq. 2.45 becomes

\[
[k^{2dfr}] = \begin{bmatrix}
 u_1 & v_1 & \theta_1 & u_2 & v_2 & \theta_2 \\
 P_1 & \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 \\
 V_1 & 0 & 12EI & 6EI & 0 & -12EI & 6EI \\
 M_1 & 0 & \frac{E}{{L}^3} & \frac{E}{{L}^3} & 0 & -\frac{6EI}{{L}^2} & \frac{6EI}{{L}^2} \\
 P_2 & -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 \\
 V_2 & 0 & -12EI & 6EI & 0 & 12EI & -6EI \\
 M_2 & 0 & \frac{6EI}{{L}^4} & \frac{6EI}{{L}^4} & 0 & -\frac{2EI}{{L}^2} & \frac{2EI}{{L}^2} \\
\end{bmatrix}
\] (2.51)

Note that if shear deformations must be accounted for, the entries corresponding to shear and flexure must be modified in accordance with Eq. 2.49
2.6.4 Grid Element

The stiffness matrix of the grid element is very analogous to the one of the 2D frame element, except that the axial component is replaced by the torsional one. Hence, the stiffness matrix is

\[
[k^g] = \begin{bmatrix}
\alpha_1 & \beta_1 & u_1 & \alpha_2 & \beta_2 & u_2 \\
T_1 & Eq. 2.29 & 0 & 0 & Eq. 2.29 & 0 \\
M_1 & 0 & k_{12}^b & -k_{21}^b & 0 & k_{14}^b & -k_{23}^b \\
V_1 & 0 & -k_{12}^b & k_{11}^b & 0 & -k_{14}^b & k_{13}^b \\
T_2 & Eq. 2.29 & 0 & 0 & Eq. 2.29 & 0 \\
M_2 & 0 & k_{12}^b & -k_{41}^b & 0 & k_{14}^b & -k_{43}^b \\
V_2 & 0 & -k_{32}^b & k_{31}^b & 0 & -k_{34}^b & k_{33}^b \\
\end{bmatrix}
\] (2.52)

Upon substitution, the grid element stiffness matrix is given by

\[
[k^g] = \begin{bmatrix}
\alpha_1 & \beta_1 & v_1 & \alpha_2 & \beta_2 & v_2 \\
T_1 & \frac{G_{L}}{L} & 0 & 0 & \frac{G_{L}}{L} & 0 \\
M_1 & 0 & 4EI_{z} & -6EI_{z} & 0 & 2EI_{z} & 6EI_{z} \\
V_1 & 0 & -6EI_{z} & 12EI_{z} & 0 & -6EI_{z} & 12EI_{z} \\
T_2 & \frac{G_{L}}{L} & 0 & 0 & \frac{G_{L}}{L} & 0 \\
M_2 & 0 & 2EI_{z} & -6EI_{z} & 0 & 4EI_{z} & 6EI_{z} \\
V_2 & 0 & 6EI_{z} & -12EI_{z} & 0 & 6EI_{z} & 12EI_{z} \\
\end{bmatrix}
\] (2.53)

Note that if shear deformations must be accounted for, the entries corresponding to shear and flexure must be modified in accordance with Eq. 2.49

2.6.5 3D Frame Element

\[
[k^{3dfr}] = \begin{bmatrix}
u_1 & v_1 & w_1 & \theta_{x1} & \theta_{y1} & \theta_{z1} & u_2 & v_2 & w_2 & \theta_{x2} & \theta_{y2} & \theta_{z2} \\
P_{x1} & k_{11}^t & 0 & 0 & 0 & 0 & k_{21}^b & 0 & 0 & 0 & 0 & 0 \\
V_{y1} & 0 & k_{11}^b & 0 & 0 & 0 & k_{12}^b & 0 & k_{13}^b & 0 & 0 & k_{14}^b \\
V_{z1} & 0 & 0 & k_{11}^b & 0 & -k_{12}^b & 0 & 0 & k_{13}^b & 0 & -k_{14}^b & 0 \\
T_{x1} & 0 & 0 & k_{11}^a & 0 & 0 & 0 & 0 & k_{12}^a & 0 & 0 & 0 \\
M_{y1} & 0 & 0 & k_{32}^b & 0 & k_{22}^b & 0 & 0 & k_{12}^b & 0 & k_{24}^b & 0 \\
M_{z1} & 0 & k_{21}^b & 0 & 0 & 0 & k_{22}^b & 0 & -k_{24}^b & 0 & 0 & k_{24}^b \\
P_{x2} & k_{21}^t & 0 & 0 & 0 & 0 & k_{22}^b & 0 & 0 & 0 & 0 & 0 \\
V_{y2} & 0 & k_{13}^b & 0 & 0 & 0 & k_{14}^b & 0 & k_{33}^b & 0 & 0 & k_{34}^b \\
V_{z2} & 0 & 0 & k_{13}^b & 0 & -k_{14}^b & 0 & 0 & k_{33}^b & 0 & -k_{34}^b & 0 \\
T_{x2} & 0 & 0 & k_{13}^a & 0 & 0 & 0 & 0 & k_{14}^a & 0 & k_{33}^a & 0 \\
M_{y2} & 0 & 0 & k_{13}^b & 0 & k_{24}^b & 0 & 0 & -k_{14}^b & 0 & k_{44}^b & 0 \\
M_{z2} & 0 & -k_{12}^b & 0 & 0 & 0 & k_{24}^b & 0 & k_{43}^b & 0 & 0 & k_{44}^b \\
\end{bmatrix}
\] (2.54)
For \([k_{11}^{3D}]\) and with we obtain:

\[
[k^{3D}] = \begin{bmatrix}
\begin{array}{cccccccccc}
P_{x1} & v_1 & w_1 & \theta_{x1} & \theta_{y1} & \theta_{z1} & u_2 & v_2 & w_2 & \theta_{x2} & \theta_{y2} & \theta_{z2} \\
L^3 & 12EI_L & 6EI_L & -EI_L & -EI_L & EI_L & 0 & 0 & 0 & 0 & 0 & 0 \\
V_{y1} & 0 & 0 & 0 & 0 & L^3 & -6EI_L & L^3 & 0 & 0 & 0 & 6EI_L \\
V_{z1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & L^3 & -6EI_L & L^3 \\
T_{x1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
M_{y1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
M_{z1} & 0 & -EI_L & 6EI_L & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
P_{x2} & -E_L & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
V_{y2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
V_{z2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
T_{x2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
M_{y2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
M_{z2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\end{bmatrix}
\]

(2.55)

Note that if shear deformations must be accounted for, the entries corresponding to shear and flexure must be modified in accordance with Eq. 2.49

2.7 Remarks on Element Stiffness Matrices

Singularity: All the derived stiffness matrices are singular, that is there is at least one row and one column which is a linear combination of others. For example in the beam element, row 4 = −row 1; and L times row 2 is equal to the sum of row 3 and 6. This singularity (not present in the flexibility matrix) is caused by the linear relations introduced by the equilibrium equations which are embedded in the formulation.

Symmetry: All matrices are symmetric due to Maxwell-Betti’s reciprocal theorem, and the stiffness flexibility relation.

More about the stiffness matrix properties later.
Chapter 3

STIFFNESS METHOD; Part I: ORTHOGONAL STRUCTURES

3.1 Introduction

In the previous chapter we have first derived displacement force relations for different types of rod elements, and then used those relations to define element stiffness matrices in local coordinates.

In this chapter, we seek to perform similar operations, but for an orthogonal structure in global coordinates.

In the previous chapter our starting point was basic displacement-force relations resulting in element stiffness matrices $[k]$.

In this chapter, our starting point are those same element stiffness matrices $[k]$, and our objective is to determine the structure stiffness matrix $[K]$, which when inverted, would yield the nodal displacements.

The element stiffness matrices were derived for fully restrained elements.

This chapter will be restricted to orthogonal structures, and generalization will be discussed later.

The stiffness matrices will be restricted to the unrestrained degrees of freedom.

From these examples, the interrelationships between structure stiffness matrix, nodal displacements, and fixed end actions will become apparent. Then the method will be generalized in chapter 5 to describe an algorithm which can automate the assembly of the structure global stiffness matrix in terms of the one of its individual elements.
3.2 The Stiffness Method

As a “vehicle” for the introduction to the stiffness method let us consider the problem in Fig 3.1-a, and recognize that there are only two unknown displacements, or more precisely, two global d.o.f: θ_1 and θ_2.

If we were to analyse this problem by the force (or flexibility) method, then

1. We make the structure statically determinate by removing *arbitrarily* two reactions (as long as the structure remains stable), and the beam is now statically determinate.

2. Assuming that we remove the two roller supports, then we determine the corresponding deflections due to the actual load (Δ_B and Δ_C).

3. Apply a unit load at point B, and then C, and compute the deflections f_{ij} at node i due to a unit force at node j.

4. Write the compatibility of displacement equation

\[
\begin{bmatrix}
 f_{BB} & f_{BC} \\
 f_{CB} & f_{CC}
\end{bmatrix}
\begin{bmatrix}
 R_B \\
 R_C
\end{bmatrix}
- \begin{bmatrix}
 \Delta_1 \\
 \Delta_2
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]

\hspace{1cm}(3.1)

5. Invert the matrix, and solve for the reactions

We will analyze this simple problem by the stiffness method.

1. The first step consists in making it kinematically determinate (as opposed to statically determinate in the flexibility method). Kinematically determinate in this case simply means restraining all the d.o.f. and thus prevent joint rotation, Fig 3.1-b.

2. We then determine the fixed end actions caused by the element load, and sum them for each d.o.f., Fig 3.1-c: ΣFEM_1 and ΣFEM_2.

3. In the third step, we will apply a unit displacement (rotation in this case) at each degree of freedom at a time, and in each case we shall determine the reaction forces, K_{11}, K_{21}, and K_{12}, K_{22} respectively. Note that we use $[K]$, rather than k since those are forces in the global coordinate system, Fig 3.1-d. Again note that we are focusing only on the reaction forces corresponding to a global degree of freedom. Hence, we are not attempting to determine the reaction at node A.

4. Finally, we write the equation of equilibrium at each node:

\[
\begin{bmatrix}
 M_1 \\
 M_2
\end{bmatrix}
= \begin{bmatrix}
 \Sigma FEM_1 \\
 \Sigma FEM_2
\end{bmatrix}
+ \begin{bmatrix}
 K_{11} & K_{12} \\
 K_{21} & K_{22}
\end{bmatrix}
\begin{bmatrix}
 \theta_1 \\
 \theta_2
\end{bmatrix}
\]

\hspace{1cm}(3.2)
Figure 3.1: Problem with 2 Global d.o.f. θ_1 and θ_2
Note that the FEM being on the right hand side, they are determined as the reactions to the applied load. Strictly speaking, it is a load which should appear on the left hand side of the equation, and are the nodal equivalent loads to the element load (more about this later).

As with the element stiffness matrix, each entry in the global stiffness matrix K_{ij}, corresponds to the internal force along d.o.f. i due to a unit displacement (generalized) along d.o.f. j (both in global coordinate systems).

3.3 Examples

Example 3-1: Beam

Considering the previous problem, Fig. 3.1-a, let $P_1 = 2P$, $M = PL$, $P_2 = P$, and $P_3 = P$. Solve for the displacements.

Solution:

1. Using the previously defined sign convention:

$$\Sigma_{FEM_1} = \frac{P_1L}{8} + \frac{P_2L}{8} = \frac{2PL}{8} + \frac{PL}{8} = -\frac{PL}{8} \quad (3.3)$$

$$\Sigma_{FEM_2} = \frac{PL}{8} \quad (3.4)$$

2. If it takes $\frac{4EI}{L} (k_{11}^{AB})$ to rotate AB (Eq. 2.45) and $\frac{4EI}{L} (k_{22}^{BC})$ to rotate BC, it will take a total force of $\frac{8EI}{L}$ to simultaneously rotate AB and BC, (Note that a rigid joint is assumed).

3. Hence, K_{11} which is the sum of the rotational stiffnesses at global d.o.f. 1. will be equal to $K_{11} = \frac{8EI}{L}$; similarly, $K_{21} = \frac{2EI}{L} (k_{22}^{BC})$.

4. If we now rotate dof 2 by a unit angle, then we will have $K_{22} = \frac{4EI}{L} (k_{22}^{BC})$ and $K_{12} = \frac{2EI}{L} (k_{22}^{BC})$.

5. The equilibrium relation can thus be written as:

$$\begin{bmatrix} PL \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{PL}{8} \\ -PL \end{bmatrix} + \begin{bmatrix} \frac{8EI}{2L} \\ \frac{2EI}{L} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad (3.5)$$

or

$$\begin{bmatrix} PL + \frac{PL}{8} \\ + \frac{PL}{8} \end{bmatrix} = \begin{bmatrix} \frac{8EI}{2L} \\ \frac{2EI}{L} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad (3.6)$$
6. The two by two matrix is next inverted
\[
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix} = \begin{bmatrix}
\frac{8EI}{L} & 2EI \\
2EI & \frac{4EI}{L}
\end{bmatrix}^{-1} \begin{bmatrix}
PL + \frac{PL^2}{8} \\
\frac{17}{112} \frac{P L^2}{E I}
\end{bmatrix} = \begin{bmatrix}
\frac{17}{112} \frac{P L^2}{E I} \\
\frac{5}{112} \frac{P L^2}{E I}
\end{bmatrix}
\] (3.7)

7. Next we need to determine both the reactions and the internal forces.
8. Recall that for each element \(\{ p \} = [k] \{ \delta \} \), and in this case \(\{ p \} = \{ P \} \) and \(\{ \delta \} = \{ \Delta \} \) for element \(AB \). The element stiffness matrix has been previously derived, Eq. 2.45, and in this case the global and local d.o.f. are the same.

9. Hence, the equilibrium equation for element \(AB \), at the element level, can be written as:
\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
\frac{12EI}{L^2} & \frac{6EI}{L} & -\frac{12EI}{L} & \frac{6EI}{L} \\
\frac{6EI}{L} & \frac{4EI}{L} & \frac{6EI}{L} & -\frac{6EI}{L} \\
-\frac{12EI}{L^2} & -\frac{6EI}{L} & \frac{12EI}{L} & -\frac{6EI}{L} \\
\frac{6EI}{L} & -\frac{6EI}{L} & \frac{4EI}{L} & \frac{6EI}{L}
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
0 \\
\frac{17}{112} \frac{P L^2}{E I}
\end{bmatrix} + \begin{bmatrix}
\frac{2P}{L} \\
\frac{2P}{L} \\
\frac{5P}{L} \\
\frac{2P}{L}
\end{bmatrix}
\] (3.8)

solving
\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
\frac{107}{56} P \\
\frac{31}{56} PL \\
\frac{5}{56} P \\
\frac{5}{14} PL
\end{bmatrix}
\] (3.9)

10. Similarly, for element \(BC \):
\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
\frac{12EI}{L^2} & \frac{6EI}{L} & -\frac{12EI}{L} & \frac{6EI}{L} \\
\frac{6EI}{L} & \frac{4EI}{L} & \frac{6EI}{L} & -\frac{6EI}{L} \\
-\frac{12EI}{L^2} & -\frac{6EI}{L} & \frac{12EI}{L} & -\frac{6EI}{L} \\
\frac{6EI}{L} & -\frac{6EI}{L} & \frac{4EI}{L} & \frac{6EI}{L}
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
0 \\
\frac{17}{112} \frac{P L^2}{E I}
\end{bmatrix} + \begin{bmatrix}
\frac{P}{L} \\
\frac{2P}{L} \\
\frac{8}{7} P \\
\frac{5P}{L}
\end{bmatrix}
\] (3.10)
or
\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
\frac{5}{8} P \\
\frac{9}{14} PL \\
-\frac{P}{L} \\
0
\end{bmatrix}
\] (3.11)

11. This simple example calls for the following observations:

1. Node A has contributions from element \(AB \) only, while node B has contributions from both \(AB \) and \(BC \).

2. Similarly, \(p_{3}^{AB} \neq p_{1}^{BC} \) even though they both correspond to a shear force at node B, the difference between them is equal to the reaction at B. Similarly, \(p_{4}^{AB} \neq p_{2}^{BC} \) due to the externally applied moment at node B.

2. From this analysis, we can draw the complete free body diagram, Fig. 3.1-e and then the shear and moment diagrams which is what the Engineer is most interested in for design purposes.
Example 3-2: Frame

Whereas in the first example all local coordinate systems were identical to the global one, in this example we consider the orthogonal frame shown in Fig. 3.2.

Solution:

1. Assuming axial deformations, we do have three global degrees of freedom, Δ_1, Δ_2, and θ_3.
2. Constrain all the degrees of freedom, and thus make the structure kinematically determinate.
3. Determine the fixed end actions for each element in its own local coordinate system:

$$\begin{bmatrix} P_1 & V_1 & M_1 \\ P_2 & V_2 & M_2 \end{bmatrix}_{AB} = \begin{bmatrix} 0 & \frac{P}{2} & \frac{PL}{8} \\ 0 & \frac{P}{2} & -\frac{PL}{8} \end{bmatrix}$$

(3.12)
4. Summing the fixed end actions at node B in global coordinates we have

\[
\begin{bmatrix} P_1 & V_1 & M_1 \\ P_2 & V_2 & M_2 \end{bmatrix}_{BC} = \begin{bmatrix} 0 & \frac{wH}{2} & \frac{wH^2}{12} \\ 0 & \frac{wH}{2} & -\frac{wH^2}{12} \end{bmatrix}
\] (3.13)

(3.14)

5. Next, we apply a unit displacement in each of the 3 global degrees of freedom, and we seek to determine the structure global stiffness matrix. Each entry \(K_{ij} \) of the global stiffness matrix will correspond to the internal force in degree of freedom \(i \), due to a unit displacement in degree of freedom \(j \).

6. Recalling the force displacement relations derived earlier, we can assemble the global stiffness matrix in terms of contributions from both AB and BC:

\[
\begin{array}{|c|c|c|c|}
\hline
 & K_{i1} & K_{i2} & K_{i3} \\
\hline
\Delta_1 & \frac{E_A}{L} + \frac{12EI^c}{H^2} & 0 & 0 \\
\Delta_2 & 0 & \frac{12EI^b}{L} + \frac{E_A}{H} & -\frac{6EI^b}{L^2} \\
\theta_3 & 0 & -\frac{6EI^b}{L^2} & \frac{4EI^b}{L} \\
\hline
\end{array}
\]

7. Summing up, the structure global stiffness matrix \([K]\) is:

\[
[K] = P_1 \begin{bmatrix} \frac{E_A}{L} + \frac{12EI^c}{H^2} & 0 & \frac{6EI^c}{H^2} \\
0 & \frac{12EI^b}{L^2} + \frac{E_A}{H} & -\frac{6EI^b}{L^2} \\
\frac{6EI^c}{H^2} & -\frac{6EI^b}{L^2} & \frac{4EI^b}{L} + \frac{4EI^c}{H} \end{bmatrix}
\] (3.16-a)

\[
= P_1 \begin{bmatrix} k_{44}^{AB} + k_{22}^{BC} & k_{45}^{AB} + k_{21}^{BC} & k_{46}^{AB} + k_{23}^{BC} \\
k_{45}^{AB} + k_{21}^{BC} & k_{55}^{AB} + k_{21}^{BC} & k_{56}^{AB} + k_{23}^{BC} \\
k_{46}^{AB} + k_{23}^{BC} & k_{56}^{AB} + k_{23}^{BC} & k_{66}^{AB} + k_{33}^{BC} \end{bmatrix}
\] (3.16-b)

8. The global equation of equilibrium can now be written

\[
\begin{bmatrix} -\frac{P}{2} \\ 0 \\ -\frac{PL}{8} + \frac{wH^2}{12} \end{bmatrix} = \begin{bmatrix} \frac{wH}{2} \\ 0 \\ \frac{wH^2}{12} \end{bmatrix} + \begin{bmatrix} \frac{E_A}{L} + \frac{12EI^c}{H^2} & 0 & \frac{6EI^c}{H^2} \\
0 & \frac{12EI^b}{L^2} + \frac{E_A}{H} & -\frac{6EI^b}{L^2} \\
\frac{6EI^c}{H^2} & -\frac{6EI^b}{L^2} & \frac{4EI^b}{L} + \frac{4EI^c}{H} \end{bmatrix} (\begin{bmatrix} \Delta_1 \\ \Delta_2 \\ \theta_3 \end{bmatrix})
\] (3.17)
9. Solve for the displacements

\[
\begin{bmatrix}
\Delta_1 \\
\Delta_2 \\
\theta_3
\end{bmatrix} = \begin{bmatrix}
\frac{EA}{L} + \frac{12EI_c}{H^2} & 0 & \frac{6EI_c}{H} \\
0 & \frac{12EI_b}{L^2} + \frac{EA}{H} & -\frac{6EI_b}{L^2} \\
\frac{6EI_c}{H^2} & -\frac{6EI_b}{L^2} & \frac{4EI_b}{H} + \frac{4EI_c}{H}
\end{bmatrix}^{-1} \begin{bmatrix}
-P - \frac{wH}{2} \\
-\frac{L}{2} \\
M + \frac{P L}{8} - \frac{wH^2}{12}
\end{bmatrix}
\]

(3.18)

10. To obtain the element internal forces, we will multiply each element stiffness matrix by the local displacements. For element AB, the local and global coordinates match, thus

\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4 \\
p_5 \\
p_6
\end{bmatrix} = \begin{bmatrix}
\frac{EA}{L} & 0 & \frac{0}{L^2} & \frac{12EI_c}{L} & \frac{6EI_c}{L} & \\
0 & \frac{EA}{L} & \frac{6EI_c}{L^2} & 0 & 0 & \frac{12EI_b}{L^2} \\
0 & \frac{12EI_b}{L^2} & \frac{6EI_c}{L^2} & 0 & 0 & 2EI_u \\
-\frac{L}{2} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\
0 & \frac{12EI_b}{L^2} & 0 & \frac{6EI_c}{L^2} & -\frac{6EI_c}{L^2} & 0 \\
0 & 0 & 0 & 0 & \frac{6EI_b}{L^2} & \frac{4EI_c}{L^2}
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P_1 \\
P_2 \\
P_3
\end{bmatrix} + \begin{bmatrix}
P \\
P \\
P
\end{bmatrix} \frac{P L}{8}
\]

(3.19)

11. For element BC, the local and global coordinates do not match, hence we will need to transform the displacements from their global to their local coordinate components. But since, vector (displacement and load), and matrix transformation have not yet been covered, we note by inspection that the relationship between global and local coordinates for element BC is

<table>
<thead>
<tr>
<th>Local</th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\theta_3)</th>
<th>(\delta_4)</th>
<th>(\delta_5)</th>
<th>(\theta_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\Delta_2)</td>
<td>(-\Delta_1)</td>
<td>(\theta_3)</td>
</tr>
</tbody>
</table>
3.3 Examples

the internal forces for element BC are given by:

\[
\begin{pmatrix}
 p_1 \\
p_2 \\
p_3 \\
p_4 \\
p_5 \\
p_6
\end{pmatrix} = \begin{bmatrix}
 \frac{E A}{L} & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
 0 & \frac{12E I_y}{L^2} & \frac{6E I_y}{L^4} & 0 & -\frac{12E I_y}{L^2} & \frac{6E I_y}{L^4} \\
 0 & \frac{6E I_y}{L^2} & \frac{4E I_y}{L^4} & 0 & -\frac{6E I_y}{L^2} & \frac{2E I_y}{L^4} \\
 -\frac{E A}{L} & 0 & 0 & \frac{E A}{L} & 0 & 0 \\
 0 & \frac{-12E I_y}{L^2} & \frac{6E I_y}{L^4} & 0 & \frac{12E I_y}{L^2} & \frac{-6E I_y}{L^4} \\
 0 & \frac{6E I_y}{L^2} & \frac{2E I_y}{L^4} & 0 & \frac{6E I_y}{L^2} & \frac{-4E I_y}{L^4}
\end{bmatrix} \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 -(L^3(12I_b^2+13AL^2)P) \\
 32E(3I_b^2+AL^2)(12I_b^2+AL^2) \\
 32E(3I_b^2+AL^2)(12I_b^2+AL^2) \\
 64EI_b(3I_b^2+AL^2)
\end{bmatrix} \\
+ \begin{bmatrix}
 0 \\
 w H \\
 \frac{w H^2}{12} \\
 0 \\
 \frac{w H}{2} \\
 \frac{w H^2}{12}
\end{bmatrix}
\]

(3.20)

Mathematica:

\[\text{IC}=I_b\]
\[\text{M}=0\]
\[\text{w}=0\]
\[\text{H}=L\]
\[\alpha=\]
\[\text{K} = \{\begin{align*}
 &\{\frac{E A}{L} + 12 \frac{E I_c}{H^3}, 0, \quad 6 \frac{E I_c}{H^2}\}, \\
 &\{0, \quad 12 \frac{E I_b}{L^3} + \frac{E A}{H}, \quad -6 \frac{E I_b}{L^2}\}, \\
 &\{6 \frac{E I_c}{H^2}, \quad -6 \frac{E I_b}{L^2}, \quad 4 \frac{E I_b}{L} + 4 \frac{E I_c}{H}\}
\end{align*}\}\]
\[\text{d}=\text{Inverse}[\text{K}]\]
\[\text{load} = \{-P/2 - wH/2, -P/2, M+P\ L/8 -wH^2/12\}\]
\[\text{displacement} = \text{Simplify}[\text{d} . \text{load}]\]

Example 3-3: Grid

Victor Saouma
Matrix Structural Analysis
Figure 3.3: Grid Example
Analyse the orthogonal grid shown in Fig. 3.3. The two elements have identical flexural and torsional rigidity, EI and GJ.

Solution:

1. We first identify the three degrees of freedom, θ_1, Δ_2, and θ_3.
2. Restrain all the degrees of freedom, and determine the fixed end actions:

$$
\begin{bmatrix}
T_1 \\
v_2 \\
M_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
P \\
P
\end{bmatrix} = \begin{bmatrix}
0 \\
P \\
-P
\end{bmatrix}
$$

@node A @node B

(3.21)

3. Apply a unit displacement along each of the three degrees of freedom, and determine the internal forces:

1. Apply unit rotation along global d.o.f. 1.
 (a) AB (Torsion) $K_{11}^{AB} = \frac{GL}{L}$, $K_{21}^{AB} = 0$, $K_{31}^{AB} = 0$
 (b) BC (Flexure) $K_{11}^{BC} = \frac{4EI}{L}$, $K_{21}^{BC} = \frac{6EI}{L^2}$, $K_{31}^{BC} = 0$

4. Apply a unit displacement along global d.o.f. 2.
 (a) AB (Flexure): $K_{12}^{AB} = 0$, $K_{22}^{AB} = \frac{12EI}{L^3}$, $K_{32}^{AB} = -\frac{6EI}{L^2}$
 (b) BC (Flexure): $K_{12}^{BC} = \frac{6EI}{L^2}$, $K_{22}^{BC} = \frac{12EI}{L^3}$, $K_{32}^{BC} = 0$

5. Apply unit displacement along global d.o.f. 3.
 (a) AB (Flexure): $K_{13}^{AB} = 0$, $K_{23}^{AB} = -\frac{6EI}{L^2}$, $K_{33}^{AB} = \frac{4EI}{L}$
 (b) BC (Torsion): $K_{13}^{BC} = 0$, $K_{23}^{BC} = 0$, $K_{33}^{BC} = \frac{GJ}{L}$

4. The structures stiffness matrix will now be assembled:

$$
\begin{bmatrix}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{bmatrix}
= \begin{bmatrix}
\frac{GL}{L} & 0 & 0 \\
0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\
0 & -\frac{6EI}{L^2} & \frac{4EI}{L}
\end{bmatrix}
+ \begin{bmatrix}
\frac{4EI}{L^2} & 0 & 0 \\
0 & \frac{6EI}{L^3} & \frac{12EI}{L^2} \\
0 & 0 & \frac{GJ}{L}
\end{bmatrix}
$$

$$
\begin{bmatrix}
\begin{bmatrix}
K_{AB} \\
K_{BC}
\end{bmatrix}
\end{bmatrix}
= \frac{EI}{L^3}
\begin{bmatrix}
\alpha EIL^2 & 0 & 0 \\
0 & 12 & -6L \\
0 & -6L & 4L^2
\end{bmatrix}
+ \frac{EI}{L^3}
\begin{bmatrix}
4L^2 & 6L & 0 \\
6L & 12 & 0 \\
0 & 0 & \alpha EIL^2
\end{bmatrix}
$$

$$
= \frac{EI}{L^3}
\begin{bmatrix}
(4 + \alpha EI)L^2 & 6L & 0 \\
6L & 24 & -6L \\
0 & -6L & (4 + \alpha EI)L^2
\end{bmatrix}
$$

(3.22)
where \(\alpha = \frac{GJ}{EI} \) and in the last equation it is assumed that for element BC, node 1 corresponds to C and 2 to B.

5. The structure equilibrium equation in matrix form:

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
=
\begin{bmatrix}
0 \\
\frac{P}{L} \\
\frac{P}{s}
\end{bmatrix}
+ \frac{EI}{L^3}
\begin{bmatrix}
(4 + \alpha)L^2 & 6L & 0 \\
6L & 24 & -6L \\
0 & -6L & (4 + \alpha)L^2
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\Delta_2 \\
\theta_3
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
\theta_1 \\
\Delta_2 \\
\theta_3
\end{bmatrix}
=
\begin{bmatrix}
\frac{PL^2}{16EI} \frac{5+2\alpha}{(1+\alpha)(4+\alpha)} \\
-\frac{PL^2}{8EI} \frac{5+2\alpha}{1+\alpha} \\
-\frac{3PL^2}{16EI} \frac{5+2\alpha}{(1+\alpha)(4+\alpha)}
\end{bmatrix}
\begin{bmatrix}
\delta_1 \\
\delta_2 \\
\delta_3 \\
\delta_4 \\
\delta_5 \\
\delta_6
\end{bmatrix}
\]

6. Determine the element internal forces. This will be accomplished by multiplying each element stiffness matrix \([k]\) with the vector of nodal displacement \(\{\delta\}\). Note these operations should be accomplished in local coordinate system, and great care should be exercised in writing the nodal displacements in the same local coordinate system as the one used for the derivation of the element stiffness matrix, Eq. 2.53.

7. For element AB and BC, the vector of nodal displacements are

\[
\begin{bmatrix}
\delta_1 \\
\delta_2 \\
\delta_3 \\
\delta_4 \\
\delta_5 \\
\delta_6
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
\theta_1 \\
-\theta_3 \\
\Delta_2
\end{bmatrix}
\]

8. Hence, for element AB we have

\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4 \\
p_5 \\
p_6
\end{bmatrix}
=
\begin{bmatrix}
\frac{GL}{L} & 0 & 0 & -\frac{GL}{L} \\
0 & \frac{4EI_o}{L^2} & -\frac{6EI_o}{L^2} & 0 \\
0 & \frac{6EI_o}{L^2} & \frac{12EI_o}{L^3} & 0 \\
-\frac{GL}{L} & 0 & 0 & \frac{GL}{L} \\
0 & \frac{2EI_o}{L^2} & -\frac{6EI_o}{L^2} & 0 \\
0 & \frac{6EI_o}{L^2} & -\frac{12EI_o}{L^3} & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
\theta_1 \\
0 \\
0
\end{bmatrix}
\]

Victor Saouma | Matrix Structural Analysis
9. For element BC:

\[
\begin{bmatrix}
\frac{GL}{L} & 0 & 0 & 0 & -\frac{GL}{L} & 0 & 0 & 0 \\
0 & \frac{4EI_y}{L^2} & -\frac{6EI_y}{L^2} & \frac{12EI_y}{L^2} & 0 & \frac{2EI_y}{L^2} & -\frac{6EI_y}{L^2} & \frac{12EI_y}{L^2} \\
0 & 0 & -\frac{6EI_y}{L^2} & \frac{12EI_y}{L^2} & 0 & 0 & -\frac{6EI_y}{L^2} & \frac{12EI_y}{L^2} \\
0 & \frac{2EI_y}{L^2} & -\frac{6EI_y}{L^2} & \frac{12EI_y}{L^2} & 0 & 0 & -\frac{6EI_y}{L^2} & \frac{12EI_y}{L^2} \\
0 & \frac{6EI_y}{L^2} & -\frac{12EI_y}{L^2} & 0 & 0 & \frac{6EI_y}{L^2} & -\frac{12EI_y}{L^2} & 0 \\
0 & \frac{6EI_y}{L^2} & -\frac{12EI_y}{L^2} & 0 & 0 & \frac{6EI_y}{L^2} & -\frac{12EI_y}{L^2} & 0 \\
\end{bmatrix}
\begin{bmatrix}
-\theta_3 \\
-\theta_1 \\
\Delta_2 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\] (3.28)

3.4 Observations

On the basis of these two illustrative examples we note that the global structure equilibrium equation can be written as

\[
\{P\} = \{FEA\} + [K] \{\Delta\}
\] (3.29)

where \([K]\) is the global structure stiffness matrix (in terms of the unrestrained d.o.f.) \(\{P\}\) the vector containing both the nodal load and the nodal equivalent load caused by element loading, \(\{\Delta\}\) is the vector of generalized nodal displacements.

Whereas the preceding two examples were quite simple to analyze, we seek to generalize the method to handle any arbitrary structure. As such, some of the questions which arise are:

1. How do we determine the element stiffness matrix in global coordinate systems, \([K^e]\), from the element stiffness matrix in local coordinate system \([k^e]\)?

2. How to assemble the structure \([K^S]\) from each element \([K^E]\)?

3. How to determine the \(\{FEA\}\) or the nodal equivalent load for an element load?

4. How to determine the local nodal displacements from the global ones?

5. How do we compute reactions in the restrained d.o.f?

6. How can we determine the internal element forces \((P, V, M, and T)\)?

7. How do we account for temperature, initial displacements or prestrain?

Those questions, and others, will be addressed in the next chapters which will outline the general algorithm for the direct stiffness method.
Chapter 4

TRANSFORMATION MATRICES

4.1 Derivations

4.1.1 \([k^e] [K^e] \) Relation

1 In the previous chapter, in which we focused on orthogonal structures, the assembly of the structure’s stiffness matrix \([K^e]\) in terms of the element stiffness matrices was relatively straightforward.

2 The determination of the element stiffness matrix in global coordinates, from the element stiffness matrix in local coordinates requires the introduction of a transformation.

3 This chapter will examine the 2D and 3D transformations required to obtain an element stiffness matrix in global coordinate system prior to assembly (as discussed in the next chapter).

4 Recalling that

\[
\{p\} = [k^e]\{\delta\} \quad (4.1)
\]
\[
\{P\} = [K^e]\{\Delta\} \quad (4.2)
\]

5 Let us define a transformation matrix \(\Gamma\) such that:

\[
\{\delta\} = [\Gamma]\{\Delta\} \quad (4.3)
\]
\[
\{p\} = [\Gamma]\{P\} \quad (4.4)
\]

Note that we use the same matrix \(\Gamma\) since both \(\{\delta\}\) and \(\{p\}\) are vector quantities (or tensors of order one).

6 Substituting Eqn. 4.3 and Eqn. 4.4 into Eqn. 4.1 we obtain

\[
[\Gamma]\{P\} = [k^e][\Gamma]\{\Delta\} \quad (4.5)
\]
premultiplying by $[\Gamma]^{-1}$

$$\{P\} = [\Gamma]^{-1} [K^e] [\Gamma] \{\Delta\}$$ \hspace{1cm} (4.6)

But since the rotation matrix is orthogonal, we have $[\Gamma]^{-1} = [\Gamma]^T$ and

$$\{P\} = [\Gamma]^T [K^e] [\Gamma] \{\Delta\}$$ \hspace{1cm} (4.7)

$$[K^e] = [\Gamma]^T [k^e] [\Gamma]$$ \hspace{1cm} (4.8)

which is the general relationship between element stiffness matrix in local and global coordinates.

4.1.2 Direction Cosines

The problem confronting us is the general transformation of a vector V from (X, Y, Z) coordinate system to $(\bar{X}, \bar{Y}, \bar{Z})$, Fig. 4.1: where:

$$\begin{bmatrix} V_x \\ V_y \\ V_z \end{bmatrix} = \begin{bmatrix} l_{xX} & l_{xY} & l_{xZ} \\ l_{yX} & l_{yY} & l_{yZ} \\ l_{zX} & l_{zY} & l_{zZ} \end{bmatrix} \begin{bmatrix} V_{\bar{X}} \\ V_{\bar{Y}} \\ V_{\bar{Z}} \end{bmatrix}$$ \hspace{1cm} (4.9)
where \(l_{ij} \) is the direction cosine of axis \(i \) with respect to axis \(j \), and thus the rows of the matrix correspond to the rotated vectors with respect to the original ones corresponding to the columns.

9 Transformation can be accomplished through simple rotation matrices of direction cosines.

10 We define the rotated coordinate system as \(x, y, z \) relative to original system \(X, Y, Z \), in terms of direction cosines \(l_{ij} \) where:

- \(l_{ij} \) direction cosines of rotated axis \(i \) with respect to original axis \(j \).
- \(l_{xj} = (l_{xX}, l_{xY}, l_{xZ}) \) direction cosines of \(x \) with respect to \(X, Y, Z \)
- \(l_{yj} = (l_{yX}, l_{yY}, l_{yZ}) \) direction cosines of \(y \) with respect to \(X, Y, Z \)
- \(l_{zj} = (l_{zX}, l_{zY}, l_{zZ}) \) direction cosines of \(z \) with respect to \(X, Y, Z \)

and thus

\[
\begin{pmatrix}
V_x \\
V_y \\
V_z
\end{pmatrix}
= \begin{bmatrix}
l_{xX} & l_{xY} & l_{xZ} \\
l_{yX} & l_{yY} & l_{yZ} \\
l_{zX} & l_{zY} & l_{zZ}
\end{bmatrix}
\begin{pmatrix}
V_X \\
V_Y \\
V_Z
\end{pmatrix}
\]

(4.10)

and the rows of the matrix correspond to the rotated vectors with respect to the original ones corresponding to the columns.

11 Note that with respect to Fig. 4.2, \(l_{xX} = \cos \alpha; l_{xY} = \cos \beta \), and \(l_{xZ} = \cos \gamma \) or

\[
V_x = V_X \cos \alpha + V_Y \cos \beta + V_Z \cos \gamma
\]

(4.11)

12 Recalling that the dot product of two vectors

\[
\vec{A} \cdot \vec{B} = |A| \cdot |B| \cos \alpha
\]

(4.12)

where \(|A| \) is the norm (length) of \(\vec{A} \), and \(\alpha \) is the angle between the two vectors. If we write

\[
\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}
\]

(4.13)

The vector can be normalized

\[
\vec{V}_n = \frac{V_x}{|V|} \vec{i} + \frac{V_y}{|V|} \vec{j} + \frac{V_z}{|V|} \vec{k}
\]

(4.14)

and hence the to get the three direction cosines of vector \(\vec{V} \) we simply take the dot product of its normalized form with the three unit vector forming the orthogonal coordinate system

\[
\vec{V}_n \cdot \vec{i} = \frac{x_2 - x_1}{L} = l_{vx}
\]

(4.15-a)

\[
\vec{V}_n \cdot \vec{j} = \frac{y_2 - y_1}{L} = l_{vy}
\]

(4.15-b)

\[
\vec{V}_n \cdot \vec{k} = \frac{z_2 - z_1}{L} = l_{vz}
\]

(4.15-c)
If we use indecis instead of cartesian system, then direction cosines can be expressed as

\[V_x = V_X l_{11} + V_Y l_{12} + V_Z l_{13} \] \hspace{1cm} (4.16)

or by extension:

\[
\begin{bmatrix}
V_x \\
V_y \\
V_z
\end{bmatrix} =
\begin{bmatrix}
l_{11} & l_{12} & l_{13} \\
l_{21} & l_{22} & l_{23} \\
l_{31} & l_{32} & l_{33}
\end{bmatrix}
\begin{bmatrix}
V_X \\
V_Y \\
V_Z
\end{bmatrix}
\] \hspace{1cm} (4.17)

Alternatively, \([\gamma]\) is the matrix whose columns are the direction cosines of \(x, y, z\) with respect to \(X, Y, Z\):

\[[\gamma]^T =
\begin{bmatrix}
l_{11} & l_{21} & l_{31} \\
l_{12} & l_{22} & l_{32} \\
l_{13} & l_{23} & l_{33}
\end{bmatrix}
\] \hspace{1cm} (4.18)

The transformation of \(V\) can be written as:

\[\{v\} = [\gamma] \{V\} \] \hspace{1cm} (4.19)

where: \(\{v\}\) is the rotated coordinate system and \(\{V\}\) is in the original one.
Direction cosines are unit orthogonal vectors

\[\sum_{j=1}^{3} l_{ij} l_{ij} = 1 \quad i = 1, 2, 3 \] \hspace{0.5cm} (4.20)

i.e:

\[l_{11}^2 + l_{12}^2 + l_{13}^2 = 1 \] \hspace{0.5cm} (4.21)

\[\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 = \delta_{11} \] \hspace{0.5cm} (4.22)

and

\[\sum_{j=1}^{3} l_{ij} l_{kj} = 0 \begin{cases} \quad i = 1, 2, 3 \\ \quad k = 1, 2, 3 \\ \quad i \neq k \end{cases} \] \hspace{0.5cm} (4.23)

\[l_{11} l_{21} + l_{12} l_{22} + l_{13} l_{23} = 0 = \delta_{12} \] \hspace{0.5cm} (4.24)

By direct multiplication of \([\gamma]^T \) and \([\gamma] \) it can be shown that: \([\gamma]^T [\gamma] = [I] \Rightarrow [\gamma]^T = [\gamma]^{-1} \Rightarrow [\gamma] \) is an orthogonal matrix.

The reverse transformation (from local to global) would be

\[\{V\} = [\gamma]^T \{v\} \] \hspace{0.5cm} (4.25)

Finally, recalling that the transformation matrix \([\gamma] \) is orthogonal, we have:

\[
\begin{pmatrix}
V_x \\
V_y \\
V_z
\end{pmatrix}
= \begin{bmatrix}
l_{xX} & l_{yX} & l_{zX} \\
l_{xY} & l_{yY} & l_{zY} \\
l_{xZ} & l_{yZ} & l_{zZ}
\end{bmatrix}
\begin{pmatrix}
V_x \\
V_y \\
V_z
\end{pmatrix}
\]

\[[\gamma]^{-1} = [\gamma]^T \] \hspace{0.5cm} (4.26)
4.2 Transformation Matrices For Framework Elements

The rotation matrix, \([\Gamma]\), will obviously vary with the element type. In the most general case (3D element, 6 d.o.f. per node), we would have to define:

\[
\begin{bmatrix}
F_{x1} \\
F_{y1} \\
F_{z1} \\
M_{x1} \\
M_{y1} \\
M_{z1}
\end{bmatrix}
= \begin{bmatrix}
[\gamma] \\
[\gamma] \\
[\gamma]
\end{bmatrix}

\begin{bmatrix}
F_{x2} \\
F_{y2} \\
F_{z2} \\
M_{x2} \\
M_{y2} \\
M_{z2}
\end{bmatrix}

\begin{bmatrix}
F_{X1} \\
F_{Y1} \\
F_{Z1} \\
M_{X1} \\
M_{Y1} \\
M_{Z1}
\end{bmatrix}
\]

(4.27)

and should distinguish between the vector transformation \([\gamma]\) and the element transformation matrix \([\Gamma]\).

In the next sections, we will examine the transformation matrix of each type of element.

4.2.1 2 D cases

4.2.1.1 2D Frame, and Grid Element

The vector rotation matrix \([\gamma]\) is identical for both 2D frame and grid elements, Fig. 4.3, and 4.4 respectively.

From Eq. 4.10 the vector rotation matrix is defined in terms of 9 direction cosines of 9 different angles. However for the 2D case, we will note that four angles are interrelated \((l_x, l_y, l_y, l_y)\) and can all be expressed in terms of a single one \(\alpha\), where \(\alpha\) is the direction of the local \(x\) axis (along the member from the first to the second node) with respect to the global \(X\) axis. The remaining 5 terms are related to another angle, \(\beta\), which is between the \(Z\) axis and the \(x-y\) plane. This angle is zero because we select an orthogonal right handed coordinate system. Thus, the rotation matrix can be written as:

\[
[\gamma] = \begin{bmatrix}
l_{xX} & l_{yX} & l_{zX} \\
l_{yX} & l_{yY} & l_{zY} \\
l_{zX} & l_{zY} & l_{zZ}
\end{bmatrix} = \begin{bmatrix}
\cos \alpha & \cos \left(\frac{\pi}{2} - \alpha\right) & 0 \\
\cos \left(\frac{\pi}{2} + \alpha\right) & \cos \alpha & 0 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

(4.28)

and we observe that the angles are defined from the second subscript to the first, and that counterclockwise angles are positive.
4.2 Transformation Matrices For Framework Elements

Figure 4.3: 2D Frame Element Rotation

Figure 4.4: Grid Element Rotation
Figure 4.5: 2D Truss Rotation

The element rotation matrix $[\Gamma]$ will then be given by

$$
\begin{bmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 p_4 \\
 p_5 \\
 p_6
\end{bmatrix} =
\begin{bmatrix}
 \cos \alpha & \sin \alpha & 0 & 0 & 0 \\
 -\sin \alpha & \cos \alpha & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & \cos \alpha & \sin \alpha \\
 0 & 0 & 0 & -\sin \alpha & \cos \alpha \\
 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 P_1 \\
 P_2 \\
 P_3 \\
 P_4 \\
 P_5 \\
 P_6
\end{bmatrix}
$$

(4.29)

4.2.1.2 2D Truss

For the 2D truss element, the global coordinate system is two dimensional, whereas the local one is only one dimensional, hence the vector transformation matrix is, Fig. 4.5.

$$
[\gamma] =
\begin{bmatrix}
 l_{xX} & l_{xY}
\end{bmatrix} =
\begin{bmatrix}
 \cos \alpha & \cos(\frac{\pi}{2} - \alpha) \\
 \cos \alpha & \sin \alpha
\end{bmatrix} =
\begin{bmatrix}
 \cos \alpha & \sin \alpha
\end{bmatrix}
$$

(4.30)

The element rotation matrix $[\Gamma]$ will then be assembled from the vector rotation matrix $[\gamma]$.

$$
\begin{bmatrix}
 p_1 \\
 p_2
\end{bmatrix} =
\begin{bmatrix}
 [\gamma] & 0 \\
 0 & [\gamma]
\end{bmatrix} =
\begin{bmatrix}
 \cos \alpha & \sin \alpha & 0 & 0 \\
 0 & 0 & \cos \alpha & \sin \alpha
\end{bmatrix}
\begin{bmatrix}
 P_1 \\
 P_2 \\
 P_3 \\
 P_4
\end{bmatrix}
$$

(4.31)

4.2.2 3D Frame

Given that rod elements, are defined in such a way to have their local x axis aligned with their major axis, and that the element is defined by the two end nodes (of known coordinates),
4.2 Transformation Matrices For Framework Elements

then recalling the definition of the direction cosines it should be apparent that the evaluation of the first row, only, is quite simple. However, evaluation of the other two is more complex.

This generalized transformation from \(X, Y, Z \) to \(x, y, z \) was accomplished in one step in the two dimensional case, but intermediary ones will have to be defined in the 3D case.

Starting with a reference \((X_1, Y_1, Z_1)\) coordinate system which corresponds to the global coordinate system, we can define another one, \(X_2, Y_2, Z_2\), such that \(X_2\) is aligned along the element, Fig. ??.

In the 2D case this was accomplished through one single rotation \(\alpha\), and all other angles where defined in terms of it.

In the 3D case, it will take a minimum of two rotations \(\beta\) and \(\gamma\), and possibly a third one \(\alpha\) (different than the one in 2D) to achieve this transformation.

We can start with the first row of the transformation matrix which corresponds to the direction cosines of the reference axis \((X_1, Y_1, Z_1)\) with respect to \(X_2\). This will define the first row of the vector rotation matrix \([\gamma]\):

\[
[\gamma] = \begin{bmatrix}
C_X & C_Y & C_Z \\
l_{21} & l_{22} & l_{23} \\
l_{31} & l_{32} & l_{33}
\end{bmatrix}
\] (4.32)

where

\begin{align*}
C_X &= \frac{x_j - x_i}{L}, \\
C_Y &= \frac{y_j - y_i}{L}, \\
C_Z &= \frac{z_j - z_i}{L}, \\
L &= \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2 + (z_j - z_i)^2}.
\end{align*}

Note that this does not uniquely define the new coordinate system. This will be done in two ways: a simple and a general one.

4.2.2.1 Simple 3D Case

We start by looking at a simplified case, Fig. 4.6, one in which \(Z_2\) is assumed to be horizontal in the \(X_1 - Z_1\) plane, this will also define \(Y_2\). We note that there will be no ambiguity unless the member is vertical.

This transformation can be used if:

1. The principal axis of the cross section lie in the horizontal and vertical plane (i.e the web of an I Beam in the vertical plane).

2. If the member has 2 axis of symmetry in the cross section and same moment of inertia about each one of them (i.e circular or square cross section).

The last two rows of Eq. 4.32 can be determined through two successive rotations (assuming that \((X_1, Y_1, Z_1)\) and \((X_2, Y_2, Z_2)\) are originally coincident):

Victor Saouma Matrix Structural Analysis
Figure 4.6: Simple 3D Rotation

Figure 4.7: Arbitrary 3D Rotation; Rotation with respect to β
4.2 Transformation Matrices For Framework Elements

Figure 4.8: Arbitrary 3D Rotation; Rotation with respect to γ

1. Rotation by β about the Y_1 axis, 4.7 this will place the X_1 axis along X_β. This rotation $[R_{\beta}]$ is made of the direction cosines of the β axis ($X_\beta, Y_\beta, Z_\beta$) with respect to ($X_1, Y_1, Z_1$):

$$[R_{\beta}] = \begin{bmatrix}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{bmatrix} \quad (4.33)$$

we note that: $\cos \beta = \frac{C_X}{C_{XZ}}$, $\sin \beta = \frac{C_Z}{C_{XZ}}$, and $C_{XZ} = \sqrt{C_X^2 + C_Z^2}$.

2. Rotation by γ about the Z_2 axis 4.8

$$[R_{\gamma}] = \begin{bmatrix}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{bmatrix} \quad (4.34)$$

where $\cos \gamma = C_{XZ}$, and $\sin \gamma = C_Y$.

Combining Eq. 4.33 and 4.34 yields:

$$[\gamma] = [R_{\gamma}][R_{\beta}] = \begin{bmatrix}
\frac{C_X}{C_{XZ}} & \frac{C_Y}{C_{XZ}} & \frac{C_Z}{C_{XZ}} \\
\frac{-C_X C_Y}{C_{XZ}} & \frac{C_X^2}{C_{XZ}} & \frac{-C_X C_Z}{C_{XZ}} \\
\frac{-C_Y}{C_{XZ}} & 0 & \frac{C_Z}{C_{XZ}}
\end{bmatrix} \quad (4.35)$$
For vertical member the preceding matrix is no longer valid as C_{XZ} is undefined. However we can obtain the matrix by simple inspection, Fig. 4.9 as we note that:

1. X_2 axis aligned with Y_1
2. Y_2 axis aligned with -X_1
3. Z_2 axis aligned with Z_1

hence the rotation matrix with respect to the y axis, is similar to the one previously derived for rotation with respect to the z axis, except for the reordering of terms:

$$[\gamma] =
\begin{bmatrix}
0 & C_Y & 0 \\
-C_Y & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

(4.36)

which is valid for both cases ($C_Y = 1$ for $\gamma = 90$ deg, and $C_Y = -1$ for $\gamma = 270$ deg).

4.2.2.2 General Case

In the most general case, we need to define an additional rotation to the preceding transformation of an angle α about the X_γ axis, Fig. 4.10. This rotation is defined such that:

1. X_α is aligned with X_2 and normal to both Y_2 and Z_2
2. Y_α makes an angle 0, α and $\beta = \frac{\pi}{2} - \alpha$, with respect to X_2, Y_2 and Z_2 respectively
Figure 4.10: Arbitrary 3D Rotation; Rotation with respect to α
3. Z_α makes an angle 0, $\frac{\pi}{2} + \alpha$ and α, with respect to X_2, Y_2 and Z_2 respectively

Noting that $\cos(\frac{\pi}{2} + \alpha) = -\sin \alpha$ and $\cos \beta = \sin \alpha$, the direction cosines of this transformation are given by:

$$[R_\alpha] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$$ \hspace{1cm} (4.37)

causing the $Y_2 - Z_2$ axis to coincide with the principal axes of the cross section, Fig. 4.12. This will yield:

$$[\gamma] = [R_\alpha][R_\gamma][R_\beta]$$ \hspace{1cm} (4.38)

$$[\gamma] = \begin{bmatrix} C_X & C_Y & C_Z \\ -C_X C_Y \cos \alpha - C_Z \sin \alpha & C_X \cos \alpha - C_Y C_Z \sin \alpha & -C_Y C_Z \sin \alpha + C_X \cos \alpha \\ C_X C_Y \sin \alpha - C_Z \cos \alpha & C_X \sin \alpha - C_Y C_Z \cos \alpha & -C_Y C_Z \cos \alpha + C_X \sin \alpha \end{bmatrix}$$ \hspace{1cm} (4.39)

As for the simpler case, the preceding equation is undefined for vertical members, and a counterpart to Eq. 4.36 must be derived. This will be achieved in two steps:

1. Rotate the member so that:

 (a) X_2 axis aligned with Y_1

 (b) Y_2 axis aligned with $-X_1$

 (c) Z_2 axis aligned with Z_1
4.2 Transformation Matrices For Framework Elements

Figure 4.12: Arbitrary 3D Element Transformation

this was previously done and resulted in Eq. 4.36

\[
[R_\gamma] = \begin{bmatrix}
0 & C_Y & 0 \\
-C_Y & 0 & 0 \\
0 & 0 & -1
\end{bmatrix}
\] (4.40)

2. The second step consists in performing a rotation of angle \(\alpha\) with respect to the new \(X_2\) as defined in Eq. 4.37.

3. Finally, we multiply the two transformation matrices \([R_\gamma][R_\alpha]\) given by Eq. 4.40 and 4.37 to obtain:

\[
\Gamma = [R_\gamma][R_\alpha] = \begin{bmatrix}
0 & C_Y & 0 \\
-C_Y \cos \alpha & 0 & \sin \alpha \\
C_Y \sin \alpha & 0 & \cos \alpha
\end{bmatrix}
\] (4.41)

Note with \(\alpha = 0\), we recover Eq. 4.36.

4.2.3 3D Truss

With reference to the first part of the derivation of the transformation of 3D frame element, the transformation matrix of 3D truss elements is

\[
[\Gamma^{3D}] = \begin{bmatrix}
C_X & C_Y & C_Z & 0 & 0 & 0 \\
0 & 0 & 0 & C_X & C_Y & C_Z
\end{bmatrix}
\] (4.42)
Chapter 5

STIFFNESS METHOD; Part II

5.1 Introduction

1. The direct stiffness method, covered in Advanced Structural Analysis is briefly reviewed in this lecture.

2. A slightly different algorithm will be used for the assembly of the global stiffness matrix.

Preliminaries: First we shall

1. Identify type of structure (Plane stress/strain/Axisymmetric/Plate/Shell/3D) and determine the
 (a) Number of spatial coordinates (1D, 2D, or 3D)
 (b) Number of degree of freedom per node
 (c) Number of material properties

2. Determine the global unrestrained degree of freedom equation numbers for each node, to be stored in the [ID] matrix.

Analysis:

1. For each element, determine
 (a) Vector LM relating local to global degree of freedoms.
 (b) Element stiffness matrix [K^e]. This may require a numerical integration

3. Decompose [K^S] into [K^S] = [L][L]^T where [L] is a lower triangle matrix\(^1\).

4. For traction, body forces, determine the nodal equivalent load.

5. Assemble load vector \{P\}

\(^1\)More about these operations in chapter C.
6. Backsubstitute and obtain nodal displacements
7. For each element, determine strain and stresses.
8. For each restrained degree of freedom compute its reaction from

\[\{R\} = \sum_{i=1}^{\text{# of elem.}} [K_i]\{\Delta\} \]

Some of the prescribed steps are further discussed in the next sections.

5.2 [ID] Matrix

Because of the boundary condition restraints, the total structure number of active degrees of freedom (i.e unconstrained) will be less than the number of nodes times the number of degrees of freedom per node.

To obtain the global degree of freedom for a given node, we need to define an [ID] matrix such that:

ID has dimensions \(l \times k\) where \(l\) is the number of degree of freedom per node, and \(k\) is the number of nodes.

ID matrix is initialized to zero.

1. At input stage read **ID(idof,inod)** of each degree of freedom for every node such that:

\[
\text{ID(idof,inod)} = \begin{cases}
0 & \text{if unrestrained d.o.f.} \\
1 & \text{if restrained d.o.f.}
\end{cases} \tag{5.1}
\]

2. After all the node boundary conditions have been read, assign incrementally equation numbers
 (a) First to all the active dof
 (b) Then to the other (restrained) dof.
 (c) Multiply by -1 all the passive dof.

Note that the total number of dof will be equal to the number of nodes times the number of dof/node \(NEQA\).

3. The largest positive global degree of freedom number will be equal to \(NEQ\) (Number Of Equations), which is the size of the square matrix which will have to be decomposed.

For example, for the frame shown in Fig. 5.1:

1. The input data file may contain:
2. At this stage, the $[\text{ID}]$ matrix is equal to:

$$
\text{ID} = \begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$

(5.2)

3. After we determined the equation numbers, we would have:

$$
\text{ID} = \begin{bmatrix}
1 & -10 & 5 & -12 \\
2 & -11 & 6 & 8 \\
3 & 4 & 7 & 9
\end{bmatrix}
$$

(5.3)

5.3 LM Vector

7 The LM vector of a given element gives the global degree of freedom of each one of the element degree of freedom’s. For the structure shown in Fig. 5.1, we would have:

$$
\begin{align*}
[\text{LM}] &= \begin{bmatrix}
-10 & -11 & 4 & 5 & 6 & 7 \\
5 & 6 & 7 & 1 & 2 & 3 \\
1 & 2 & 3 & -12 & 8 & 9
\end{bmatrix} \text{ element } 1 \ (2 \rightarrow 3) \\
[\text{LM}] &= \begin{bmatrix}
5 & 6 & 7 & 1 & 2 & 3 \\
1 & 2 & 3 & -12 & 8 & 9
\end{bmatrix} \text{ element } 2 \ (3 \rightarrow 1) \\
[\text{LM}] &= \begin{bmatrix}
1 & 2 & 3 & -12 & 8 & 9
\end{bmatrix} \text{ element } 3 \ (1 \rightarrow 4)
\end{align*}
$$

5.4 Assembly of Global Stiffness Matrix

8 As for the element stiffness matrix, the global stiffness matrix $[K]$ is such that K_{ij} is the force in degree of freedom i caused by a unit displacement at degree of freedom j.

9 Whereas this relationship was derived from basic analysis at the element level, at the structure level, this term can be obtained from the contribution of the element stiffness matrices $[K^e]$ (written in global coordinate system).

10 For each K_{ij} term, we shall add the contribution of all the elements which can connect degree of freedom i to degree of freedom j, assuming that those forces are readily available from the individual element stiffness matrices written in global coordinate system.

11 K_{ij} is non-zero if and only if degree of freedom i and degree of freedom j are connected by an element or share a node.

12 There are usually more than one element connected to a dof. Hence, individual element stiffness matrices terms must be added up.
Because each term of all the element stiffness matrices must find its position inside the global stiffness matrix \([\mathbf{K}]\), it is found computationally most effective to initialize the global stiffness matrix \([\mathbf{K}^S]_{NEQA \times NEQA}\) to zero, and then loop through all the elements, and then through each entry of the respective element stiffness matrix \(K^e_{ij}\).

The assignment of the element stiffness matrix term \(K^e_{ij}\) (note that \(e, i,\) and \(j\) are all known since we are looping on \(e\) from 1 to the number of elements, and then looping on the rows and columns of the element stiffness matrix \(i, j\)) into the global stiffness matrix \(K^S_{kl}\) is made through the LM vector (note that it is \(k\) and \(l\) which must be determined).

Since the global stiffness matrix is also symmetric, we would need to only assemble one side of it, usually the upper one.

Contrarily to Matrix Structural Analysis, we will assemble the full augmented stiffness matrix.

The algorithm for this assembly is illustrated in Fig. 5.2.

Example 5-1: Global Stiffness Matrix Assembly

Assemble the global stiffness matrix in terms of element 2 and 3 of the example problem shown in Fig. 5.1.

Solution:

Given the two elements 2 and 3, their respective stiffness matrices in global coordinate systems may be symbolically represented by:

\[
[K^e_2] = \begin{bmatrix}
5 & 6 & 7 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 5 & 6 \\
\end{bmatrix} \rightarrow \text{structure d.o.f. LM}
\]

\[
\begin{array}{cccc}
5 & 1 & a & b & c & d & e & f \\
6 & 2 & g & h & i & j & k \\
7 & 3 & l & m & n & o \\
1 & 4 & p & q & r \\
2 & 5 & s & t \\
3 & 6 & u \\
\end{array}
\]

and

\[
[K^e_3] = \begin{bmatrix}
1 & 2 & 3 & -12 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 \\
\end{bmatrix} \rightarrow \text{structure d.o.f. LM}
\]

\[
\begin{array}{cccc}
1 & 1 & A & B & C & D & E & F \\
2 & 2 & G & H & I & J & K \\
3 & 3 & L & M & N & O \\
-12 & 4 & P & Q & R \\
8 & 5 & S & T \\
9 & 6 & U \\
\end{array}
\]
5.4 Assembly of Global Stiffness Matrix

Figure 5.1: Example for $[ID]$ Matrix Determination

Figure 5.2: Flowchart for Assembling Global Stiffness Matrix
The partially assembled structure global stiffness matrix will then be given by (check):

\[
K^S = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & A + p & B + q & C + r & 0 & d & i & m & E & F & D \\
2 & 0 & G + s & H + t & 0 & e & j & n & J & K & I \\
3 & 0 & 0 & L + u & 0 & f & k & o & N & O & M \\
4 & g & h \\
5 & l \\
6 & S & T \\
7 & U \\
8 & & & & & & & & & & & \\
9 & & & & & & & & & & & \\
10 & & & & & & & & & & & \\
11 & & & & & & & & & & & \\
12 & & & & & & & & & & &
\end{bmatrix}
\]

From this example problem, we note that:

1. Many entries in the global stiffness matrix are left as zero, because they correspond to unconnected degrees of freedom (such as \(K_{4,6}\)).

2. All entries in the element stiffness matrix do find a storage space in the global stiffness matrix.

5.5 Skyline Storage of Global Stiffness Matrix, MAXA Vector

The stiffness matrix of a structure will be a square matrix of dimension \(NEQ \times NEQ\).

We first observe that the matrix is symmetric, thus only the upper half needs to be stored. Furthermore, we observe that this matrix has a certain “bandwidth”, \(BW\), defined as \(|K_{ij} - K_{ii}|_{\text{max}}\), when \(K_{ij} \neq 0\), Fig. 5.3.

Thus, we could as a first space saving solution store the global stiffness matrix inside a rectangular matrix of length \(NEQ\) and width \(BW\), which can be obtained from the \(LM\) vector (largest difference of terms of \(LM\) for all the elements).

It is evident that numbering of nodes is extremely important as it controls the size of the bandwidth, and hence the storage requirement, Fig. 5.4. In this context, we observe that the stiffness matrix really has a variable bandwidth, or variable “skyline”. Hence if we want to store only those entries below the “skyline” inside a vector rather than a matrix for maximum storage efficiency, then we shall define a vector \(\text{MAXA}\) which provides the address of the diagonal terms.
5.5 Skyline Storage of Global Stiffness Matrix, MAXA Vector

Figure 5.3: Example of Bandwidth

Figure 5.4: Numbering Schemes for Simple Structure
In the following global stiffness matrix, the individual entries which must be stored in the global stiffness matrix are replaced by their address in the vector representation of this same matrix. Also shown is the corresponding \(\text{MAXA} \) vector.

\[
K = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & x & x & x & x & x & x & x & x & x & x & x \\
2 & x & x & x & x & x & x & x & x & x & x & x \\
3 & x & x & x & x & x & x & x & x & x & x & x \\
4 & x & x & x & x & x & x & x & x & x & x & x \\
5 & x & x & x & x & x & x & x & x & x & x & x \\
6 & x & x & x & x & x & x & x & x & x & x & x \\
7 & x & x & x & x & x & x & x & x & x & x & x \\
8 & x & x & x & x & x & x & x & x & x & x & x \\
9 & x & x & x & x & x & x & x & x & x & x & x \\
10 & x & x & x & x & x & x & x & x & x & x & x \\
11 & x & x & x & x & x & x & x & x & x & x & x \\
12 & x & x & x & x & x & x & x & x & x & x & x \\
\end{bmatrix}
\]

\[
\text{MAXA} = \begin{bmatrix}
1 \\
2 \\
4 \\
6 \\
7 \\
10 \\
12 \\
18 \\
25 \\
33 \\
42 \\
49 \\
57 \\
\end{bmatrix}
\]

Thus, to locate an element within the stiffness matrix, we use the following formula:

\[
K_{ij} = \text{MAXA}(j) + (j - i) \quad (5.4)
\]

if \(i \leq j \) (since we are storing only the upper half).

Using this formula, we will have:

\[
K_{58} = \text{MAXA}(8) + (8 - 5) = 18 + 3 = 21 \quad (5.5)
\]

\[
K_{42} = \text{MAXA}(4) + (4 - 2) = 6 + 2 = 8 \quad (5.6)
\]

We should note that the total number of non-zero entries inside the global stiffness matrix is always the same, irrespective of our numbering scheme. However by properly numbering the nodes, we can minimize the number of zero terms\(^2\) which would fall below the skyline and which storage would be ineffective.

\(^2\)As we shall see later, all the terms below the skyline (including the zeros) must be stored. Following matrix decomposition, all zero terms outside the skyline terms remain zero, and all others are altered.
5.6 Augmented Stiffness Matrix

Previous exposure to the Direct Stiffness Method is assumed.

We can conceptually partition the global stiffness matrix into two groups with respective subscript ‘u’ over Γ_u where the displacements are known (zero or otherwise), and t where the tractions are known.

\[
\begin{bmatrix}
P_t \\
R_u
\end{bmatrix} =
\begin{bmatrix}
K_{tt} & K_{tu} \\
K_{ut} & K_{uu}
\end{bmatrix}
\begin{bmatrix}
\Delta_t \\
\Delta_u
\end{bmatrix}
\]

The first equation enables the calculation of the unknown displacements on Γ_t

\[
\Delta_t = K_{tt}^{-1} (P_t - K_{tu} \Delta_u)
\] (5.7)

The second equation enables the calculation of the reactions on Γ_u

\[
R_u = K_{ut} \Delta_t + K_{uu} \Delta_u
\] (5.8)

For internal book-keeping purpose, since we are assembling the augmented stiffness matrix, we proceed in two stages:

1. First number all the unrestrained degrees of freedom, i.e. those on Γ_t.
2. Then number all the degrees of freedom with known displacements, on Γ_u, and multiply by -1.

Considering a simple beam, Fig. 5.5 the full stiffness matrix is equal to

\[
[K] =
\begin{bmatrix}
V_1 & \theta_1 & v_2 & \theta_2 \\
6E1/L^3 & 6E1/L^2 & -12E1/L^3 & 6E1/L^2 \\
6E1/L^2 & 4E1/L & -6E1/L^2 & 2E1/L \\
-12E1/L^3 & -6E1/L^2 & 12E1/L^3 & -6E1/L^2 \\
6E1/L^2 & 2E1/L & -6E1/L^2 & 4E1/L
\end{bmatrix}
\] (5.9)

This matrix is singular, it has a rank 2 and order 4 (as it embodies also 2 rigid body motions).

We shall consider 3 different cases, Fig. 5.6

Cantilivered Beam/Point Load
Figure 5.5: Beam Element
5.6 Augmented Stiffness Matrix

1. The element stiffness matrix is

\[
\mathbf{k}^e = \begin{bmatrix}
-3 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 & 6EI/L^2 \\
-4 & 6EI/L^2 & 4EI/L & -6EI/L^2 & 2EI/L \\
1 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3 & -6EI/L^2 \\
2 & 6EI/L^2 & 2EI/L & -6EI/L^2 & 4EI/L
\end{bmatrix}
\]

2. The structure stiffness matrix is assembled

\[
\mathbf{k}^s = \begin{bmatrix}
1 & 12EI/L^2 & -6EI/L^2 & -12EI/L^3 & -6EI/L^2 \\
2 & -6EI/L^2 & 4EI/L & 6EI/L^2 & 2EI/L \\
-3 & -12EI/L^3 & 6EI/L^2 & 12EI/L^3 & 6EI/L^2 \\
-4 & -6EI/L^2 & 2EI/L & 6EI/L^2 & 4EI/L
\end{bmatrix}
\]

3. The global matrix can be rewritten as

\[
\begin{bmatrix}
-P \sqrt{3} \\
0 \\
R_3 \\
R_4
\end{bmatrix} = \begin{bmatrix}
12EI/L^2 & -6EI/L^2 & -12EI/L^3 & -6EI/L^2 \\
-6EI/L^2 & 4EI/L & 6EI/L^2 & 2EI/L \\
-12EI/L^3 & 6EI/L^2 & 12EI/L^3 & 6EI/L^2 \\
-6EI/L^2 & 2EI/L & 6EI/L^2 & 4EI/L
\end{bmatrix} \begin{bmatrix}
\Delta_1 \\
\Delta_2 \\
\Delta_3 \sqrt{-3} \\
\Delta_4 \sqrt{-3}
\end{bmatrix}
\]

4. \(\mathbf{K}_{tt} \) is inverted (or actually decomposed) and stored in the same global matrix

\[
\begin{bmatrix}
L^3/3EI & L^2/2EI & -12EI/L^3 & -6EI/L^2 \\
L^2/2EI & L/EI & 6EI/L^2 & 2EI/L \\
-12EI/L^3 & 6EI/L^2 & 12EI/L^3 & 6EI/L^2 \\
-6EI/L^2 & 2EI/L & 6EI/L^2 & 4EI/L
\end{bmatrix}
\]

5. Next we compute the equivalent load, \(\mathbf{P}'_t = \mathbf{P}_t - \mathbf{K}_{tu} \Delta_u \), and overwrite \(\mathbf{P}_t \) by \(\mathbf{P}'_t \)

\[
\mathbf{P}_t - \mathbf{K}_{tu} \Delta_u = \begin{bmatrix}
-P \\
0 \\
0 \\
0
\end{bmatrix} - \begin{bmatrix}
L^3/3EI & L^2/2EI & -12EI/L^3 & -6EI/L^2 \\
L^2/2EI & L/EI & 6EI/L^2 & 2EI/L \\
-12EI/L^3 & 6EI/L^2 & 12EI/L^3 & 6EI/L^2 \\
-6EI/L^2 & 2EI/L & 6EI/L^2 & 4EI/L
\end{bmatrix} \begin{bmatrix}
-P \\
0 \\
0 \\
0
\end{bmatrix}
\]

6. Now we solve for the displacement \(\Delta_t = \mathbf{K}_{tt}^{-1} \mathbf{P}'_t \), and overwrite \(\mathbf{P}_t \) by \(\Delta_t \)

\[
\begin{bmatrix}
\Delta_1 \\
\theta_2 \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
L^3/3EI & L^2/2EI & -12EI/L^3 & -6EI/L^2 \\
L^2/2EI & L/EI & 6EI/L^2 & 2EI/L \\
-12EI/L^3 & 6EI/L^2 & 12EI/L^3 & 6EI/L^2 \\
-6EI/L^2 & 2EI/L & 6EI/L^2 & 4EI/L
\end{bmatrix} \begin{bmatrix}
-P \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
-L^3/3EI \\
-L^2/2EI \\
0 \\
0
\end{bmatrix}
\]

Victor Saouma

Matrix Structural Analysis
7. Finally, we solve for the reactions, $R_u = K_{uu} \Delta u + K_{ut} \Delta t$, and overwrite Δu by R_u

$$\begin{bmatrix} -PL^3/3EI \\ -PL^2/2EI \end{bmatrix} = \begin{bmatrix} L^3/3EI & L^2/2EI \\ L^2/2EI & L/EI \end{bmatrix} \begin{bmatrix} -12EI/L^3 \\ -6EI/L^2 \end{bmatrix} \begin{bmatrix} 6EI/L^2 \\ 2EI/L \end{bmatrix} \begin{bmatrix} 12EI/L^3 \\ 6EI/L^2 \end{bmatrix} \begin{bmatrix} 6EI/L^2 \\ 4EI/L \end{bmatrix} \begin{bmatrix} -PL^3/3EI \\ -PL^2/2EI \end{bmatrix}$$

Simply Supported Beam/End Moment

1. The element stiffness matrix is

$$K^e = \begin{bmatrix} -3 & 1 & -4 & 2 \\ 1 & 6EI/L^2 & 4EI/L & -6EI/L^2 & 2EI/L \\ 4 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3 & -6EI/L^2 \\ 2 & 6EI/L^2 & 2EI/L & -6EI/L^2 & 4EI/L \end{bmatrix}$$

2. The structure stiffness matrix is assembled

$$K^s = \begin{bmatrix} 1 & 2 & -3 & -4 \\ 1 & 2EI/L & 6EI/L^2 & -6EI/L^2 \\ 2 & 6EI/L^2 & 12EI/L^3 & -12EI/L^3 \\ -3 & -6EI/L^2 & -6EI/L^2 & 12EI/L^3 \end{bmatrix}$$

3. The global stiffness matrix can be rewritten as

$$\begin{bmatrix} 0\sqrt{M} \\ M\sqrt{\theta} \end{bmatrix} = \begin{bmatrix} 4EI/L & 2EI/L & 6EI/L^2 & -6EI/L^2 \\ 6EI/L^2 & 6EI/L^2 & 12EI/L^3 & -12EI/L^3 \\ -6EI/L^2 & -6EI/L^2 & 12EI/L^3 & -12EI/L^3 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \Delta_1 \\ \Delta_4 \end{bmatrix}$$

4. K_{tt} is inverted

$$K_{tt} = \begin{bmatrix} L^3/3EI & -L/6EI \\ -L/6EI & L/3EI \end{bmatrix} \begin{bmatrix} 6EI/L^2 & -6EI/L^2 \\ -6EI/L^2 & 6EI/L^2 \end{bmatrix} \begin{bmatrix} -12EI/L^3 \\ -6EI/L^2 \end{bmatrix} \begin{bmatrix} 12EI/L^3 \\ 12EI/L^3 \end{bmatrix}$$

5. We compute the equivalent load, $P'_t = P_t - K_{tu} \Delta u$, and overwrite P_t by P'_t

$$P_t - K_{tu} \Delta u = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} L^3/3EI & -L/6EI \\ -L/6EI & L/3EI \end{bmatrix} \begin{bmatrix} 6EI/L^2 & -6EI/L^2 \\ -6EI/L^2 & 6EI/L^2 \end{bmatrix} \begin{bmatrix} 12EI/L^3 \\ 12EI/L^3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Victor Saouma

Matrix Structural Analysis
5.6 Augmented Stiffness Matrix

6. Solve for the displacements, \(\Delta_t = K_{tt}^{-1}P_t \), and overwrite \(P_t \) by \(\Delta_t \)

\[
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
\frac{L^3}{3EI} & -\frac{L}{6EI} & \frac{6EI}{L^2} & \frac{-6EI}{L^2} \\
-\frac{L}{6EI} & \frac{L}{3EI} & \frac{6EI}{L^2} & \frac{-6EI}{L^2} \\
\frac{6EI}{L^2} & \frac{6EI}{L^2} & \frac{12EI}{L^3} & \frac{-12EI}{L^3} \\
-\frac{6EI}{L^2} & -\frac{6EI}{L^2} & -\frac{12EI}{L^3} & \frac{12EI}{L^3}
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
-ML/6EI \\
ML/3EI
\end{bmatrix} =
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
0 \\
0
\end{bmatrix}
\]

7. Solve for the reactions, \(R_t = K_{tt}\Delta_t + K_{uu}\Delta_u \), and overwrite \(\Delta_u \) by \(R_u \)

\[
\begin{bmatrix}
-R_1 \\
-R_2
\end{bmatrix} =
\begin{bmatrix}
\frac{L^3}{3EI} & -\frac{L}{6EI} & \frac{6EI}{L^2} & \frac{-6EI}{L^2} \\
-\frac{L}{6EI} & \frac{L}{3EI} & \frac{6EI}{L^2} & \frac{-6EI}{L^2} \\
\frac{6EI}{L^2} & \frac{6EI}{L^2} & \frac{12EI}{L^3} & \frac{-12EI}{L^3} \\
-\frac{6EI}{L^2} & -\frac{6EI}{L^2} & -\frac{12EI}{L^3} & \frac{12EI}{L^3}
\end{bmatrix}
\begin{bmatrix}
-ML/6EI \\
ML/3EI \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
M/L \\
-M/L
\end{bmatrix}
\]

Cantilevered Beam/Initial Displacement and Concentrated Moment

1. The element stiffness matrix is

\[
k^e =
\begin{bmatrix}
-2 & -3 & -4 & 1 \\
-3 & 6EI/L^2 & 4EI/L & -6EI/L^2 & 2EI/L \\
-4 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3 & -6EI/L^2 \\
1 & 6EI/L^2 & 2EI/L & -6EI/L^2 & 4EI/L
\end{bmatrix}
\]

2. The structure stiffness matrix is assembled

\[
K^s =
\begin{bmatrix}
1 & -2 & -3 & -4 \\
-2 & 6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
-3 & 2EI/L & 6EI/L^2 & 4EI/L & -6EI/L^2 \\
-4 & -6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\]

3. The global matrix can be rewritten as

\[
\begin{bmatrix}
M/\sqrt{2} \\
R_2? \\
R_3? \\
R_4?
\end{bmatrix} =
\begin{bmatrix}
4EI/L & 6EI/L^2 & 2EI/L & -6EI/L^2 \\
6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
2EI/L & 6EI/L^2 & 4EI/L & -6EI/L^2 \\
-6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\begin{bmatrix}
\theta_1? \\
\Delta_2? \\
\Delta_3? \\
\Delta_4?
\end{bmatrix}
\]

4. \(K_{tt} \) is inverted (or actually decomposed) and stored in the same global matrix

\[
\begin{bmatrix}
L/4EI & 6EI/L^2 & 2EI/L & -6EI/L^2 \\
6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
2EI/L & 6EI/L^2 & 4EI/L & -6EI/L^2 \\
-6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\]
5. Next we compute the equivalent load, \(P'_t = P_t - K_{tu} \Delta_u \), and overwrite \(P_t \) by \(P'_t \)

\[
P_t - K_{tu} \Delta_u = \begin{bmatrix} M \\ \frac{L}{AEI} \\ 0 \\ 0 \\ \Delta^0 \end{bmatrix} - \begin{bmatrix} \frac{L}{AEI} & \frac{6E}{L^2} & \frac{2E}{L} & \frac{-6E}{L^2} \\ \frac{6E}{L^2} & \frac{12E}{L^3} & \frac{6E}{L^2} & \frac{-12E}{L^3} \\ \frac{2E}{L} & \frac{6E}{L^2} & \frac{4E}{L} & \frac{-6E}{L^2} \\ \frac{-6E}{L^2} & \frac{-12E}{L^3} & \frac{-6E}{L^2} & \frac{12E}{L^3} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \Delta^0 \end{bmatrix}
\]

\[
= \begin{bmatrix} \frac{M + 6E}{L^2} \Delta^0 \\ 0 \\ 0 \\ \Delta^0 \end{bmatrix}
\]

6. Now we solve for the displacements, \(\Delta_t = K_{tt}^{-1} P'_t \), and overwrite \(P_t \) by \(\Delta_t \)

\[
\begin{bmatrix} \theta_1 \\ 0 \\ 0 \\ \Delta^0 \end{bmatrix} = \begin{bmatrix} \frac{L}{AEI} & \frac{6E}{L^2} & \frac{2E}{L} & \frac{-6E}{L^2} \\ \frac{6E}{L^2} & \frac{12E}{L^3} & \frac{6E}{L^2} & \frac{-12E}{L^3} \\ \frac{2E}{L} & \frac{6E}{L^2} & \frac{4E}{L} & \frac{-6E}{L^2} \\ \frac{-6E}{L^2} & \frac{-12E}{L^3} & \frac{-6E}{L^2} & \frac{12E}{L^3} \end{bmatrix} \begin{bmatrix} \frac{M + 6E}{L^2} \Delta^0 \\ 0 \\ 0 \\ \Delta^0 \end{bmatrix}
\]

\[
= \begin{bmatrix} \frac{ML}{AEI} + \frac{3\Delta^0}{2L} \\ 0 \\ 0 \\ \Delta^0 \end{bmatrix}
\]

7. Finally, we solve for the reactions, \(R_t = K_{ut} \Delta_t + K_{uu} \Delta_u \), and overwrite \(\Delta_u \) by \(R_u \)

\[
\begin{bmatrix} \frac{ML}{AEI} + \frac{3\Delta^0}{2L} \\ R_2 \\ R_3 \\ R_4 \end{bmatrix} = \begin{bmatrix} \frac{L}{AEI} & \frac{6E}{L^2} & \frac{2E}{L} & \frac{-6E}{L^2} \\ \frac{6E}{L^2} & \frac{12E}{L^3} & \frac{6E}{L^2} & \frac{-12E}{L^3} \\ \frac{2E}{L} & \frac{6E}{L^2} & \frac{4E}{L} & \frac{-6E}{L^2} \\ \frac{-6E}{L^2} & \frac{-12E}{L^3} & \frac{-6E}{L^2} & \frac{12E}{L^3} \end{bmatrix} \begin{bmatrix} \frac{M}{2} & \frac{3E}{L^2} & \frac{0}{L^3} \\ \frac{3E}{L^2} & \frac{6E}{L^3} & \frac{M}{2} - 3E \Delta^0/L^2 \\ \frac{-3E}{L^2} & \frac{-6E}{L^3} & \frac{-3E}{L^2} + 3E \Delta^0/L^3 \end{bmatrix}
\]

\[
= \begin{bmatrix} \frac{ML}{AEI} + \frac{3\Delta^0}{2L} \\ 0 \\ 0 \\ \Delta^0 \end{bmatrix}
\]

\[
= \begin{bmatrix} \frac{3M}{2L} - \frac{3E}{L^2} \Delta^0/L^3 \\ \frac{M}{2} - 3E \Delta^0/L^2 \\ - \frac{3M}{2L} + 3E \Delta^0/L^3 \end{bmatrix}
\]

Example 5-2: Direct Stiffness Analysis of a Truss

Using the direct stiffness method, analyse the following truss.
Solution:

1. Determine the structure ID matrix and the LM vector for each element

Initial ID matrix

\[
ID = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Final ID matrix

\[
ID = \begin{bmatrix}
1 & 2 & -9 & 4 & 6 \\
-8 & 3 & -10 & 5 & 7 \\
\end{bmatrix}
\]

LM vectors for each element

\[
\begin{align*}
\text{Element 1} & : \begin{bmatrix} 1 & -8 & 4 & 5 \end{bmatrix} \\
\text{Element 2} & : \begin{bmatrix} 1 & -8 & 2 & 3 \end{bmatrix} \\
\text{Element 3} & : \begin{bmatrix} 2 & 3 & 4 & 5 \end{bmatrix} \\
\text{Element 4} & : \begin{bmatrix} 4 & 5 & 6 & 7 \end{bmatrix} \\
\text{Element 5} & : \begin{bmatrix} -9 & -10 & 4 & 5 \end{bmatrix} \\
\text{Element 6} & : \begin{bmatrix} 2 & 3 & 6 & 7 \end{bmatrix} \\
\text{Element 7} & : \begin{bmatrix} 2 & 3 & -9 & -10 \end{bmatrix} \\
\text{Element 8} & : \begin{bmatrix} -9 & -10 & 6 & 7 \end{bmatrix}
\end{align*}
\]
2. Derive the element stiffness matrix in global coordinates

\[
[K] = \frac{EA}{L} \begin{bmatrix}
c^2 & cs & -c^2 & -cs \\
cs & s^2 & -cs & -s^2 \\
-c^2 & -cs & c^2 & cs \\
-cs & -s^2 & cs & s^2 \\
\end{bmatrix}
\]

where \(c = \cos \alpha = \frac{x_2-x_1}{L}, \) \(s = \sin \alpha = \frac{y_2-y_1}{L} \)

Element 1 \(L = 20', c = \frac{16-0}{20} = 0.8, s = \frac{12-0}{20} = 0.6, \)
\[
\frac{EA}{L} = \frac{(30,000)(10)}{20} = 15,000
\]

\[
[K_1] = \begin{bmatrix}
1 & -8 & 4 & 5 \\
9600 & 7200 & -9600 & -7200 \\
7200 & 5400 & -7200 & -5400 \\
-9600 & -7200 & 9600 & 7200 \\
-7200 & -5400 & 7200 & 5400 \\
\end{bmatrix}
\]

Element 2 \(L = 16', c = 1, s = 0, \frac{EA}{L} = 18,750. \)

\[
[K_2] = \begin{bmatrix}
1 & -8 & 2 & 3 \\
18,750 & 0 & -18,750 & 0 \\
0 & 0 & 0 & 0 \\
-18,750 & 0 & 18,750 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Element 3 \(L = 12', c = 0, s = 1, \frac{EA}{L} = 25,000 \)

\[
[K_3] = \begin{bmatrix}
2 & 3 & 4 & 5 \\
2 & 0 & 0 & 0 & 0 \\
3 & 0 & 25,000 & 0 & -25,000 \\
4 & 0 & 0 & 0 & 0 \\
5 & 0 & -25,000 & 0 & 25,000 \\
\end{bmatrix}
\]

Element 4 \(L = 16', c = 1, s = 0, \frac{EA}{L} = 18,750 \)

\[
[K_4] = \begin{bmatrix}
4 & 5 & 6 & 7 \\
4 & 18,750 & 0 & -18,750 & 0 \\
5 & 0 & 0 & 0 & 0 \\
6 & -18,750 & 0 & 18,750 & 0 \\
7 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Element 5 \(L = 20', c = \frac{-16-0}{20} = -0.8, s = 0.6, \frac{E_A}{L} = 15,000 \)

\[
[K_5] = \begin{bmatrix}
-9 & -10 & 4 & 5 \\
-9 & 9600 & -7200 & -9600 & 7200 \\
-10 & -7200 & 5400 & 7200 & -5400 \\
4 & -9600 & 7200 & 9600 & -7200 \\
5 & 7200 & -5400 & -7200 & 5400
\end{bmatrix}
\]

Element 6 \(L = 20', c = 0.8, s = 0.6, \frac{E_A}{L} = 15,000 \)

\[
[K_6] = \begin{bmatrix}
2 & 3 & 6 & 7 \\
2 & 9600 & 7200 & -9600 & -7200 \\
3 & 7200 & 5400 & -7200 & -5400 \\
6 & -9600 & -7200 & 9600 & 7200 \\
7 & -7200 & -5400 & 7200 & 5400
\end{bmatrix}
\]

Element 7 \(L = 16', c = 1, s = 0, \frac{E_A}{L} = 18,750 \)

\[
[K_7] = \begin{bmatrix}
2 & 3 & -9 & -10 \\
2 & 18,750 & 0 & -18,750 & 0 \\
3 & 0 & 0 & 0 & 0 \\
-9 & -18,750 & 0 & 18,750 & 0 \\
-10 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Element 8 \(L = 12', c = 0, s = 1, \frac{E_A}{L} = 25,000 \)

\[
[K_8] = \begin{bmatrix}
-9 & -10 & 6 & 7 \\
-9 & 0 & 0 & 0 & 0 \\
-10 & 0 & 25,000 & 0 & -25,000 \\
6 & 0 & 0 & 0 & 0 \\
7 & 0 & -25,000 & 0 & 25,000
\end{bmatrix}
\]

3. Assemble the augmented global stiffness matrix in kips/ft.

\[
k_{tt} = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 9,600 + 18,750 & -18,750 & 0 & -9,600 & -7,200 & 0 & 0 \\
2 & 9,600 + (2)18,750 & 7,200 & 0 & 0 & 0 & -9,600 & -7,200 \\
3 & 5,400 + 25,000 & 18,750 + (2)9,600 & 7,200 & -7,200 & -18,750 & 0 & 0 \\
4 & SYMMETRIC & 25,000 + 5,400(2) & 0 & 0 & 18,750 + 9600 & 25,000 + 5,400 & 7200 \\
5 & & & & & & & \\
6 & & & & & & & \\
7 & & & & & & & \\
\end{bmatrix}
\]

\[
k_{tu} = \begin{bmatrix}
-8 & -9 & -10 \\
0 + 7,200 & 0 & -18,750 & -18,750 & 0 \\
0 & 0 & 0 & 0 & 0 \\
4 & -7,200 & -9,600 & 7,200 & 0 \\
5 & -5,400 & 7,200 & -5,400 & 0 \\
6 & 0 & 0 & 0 & 0 \\
7 & -25,000 & & & & \\
\end{bmatrix}
\]
5. Invert stiffness matrix and solve for displacements (inches)

\[
\begin{bmatrix}
0 & 2,362.5 & -1,562.5 & 0 & 0 & 0 & 0 \\
0 & 3,925.0 & 600 & 0 & 0 & 0 & 0 \\
0 & 2,533.33 & 0 & -2,083.33 & -2,083.33 & -600 & -450 \\
-100 & 3,162.5 & 0 & 1,562.5 & 0 & 0 & 0 \\
50 & 2,983.33 & 0 & 0 & 0 & 0 & 0 \\
0 & 2,362.5 & 600 & 0 & 2,533.33 & 0 & 0 \\
0 & 3,925.0 & -2,083.33 & -2,083.33 & -600 & -450 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7 \\
\end{bmatrix}
= \begin{bmatrix}
-0.0223 \\
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174 \\
\end{bmatrix}
\]

6. Solve for member forces in local coordinate systems

\[
\begin{bmatrix}
\{v_1\} \\
\{v_2\} \\
\end{bmatrix}
= \begin{bmatrix}
0.8 & 0.6 & -0.8 & -0.6 \\
-0.8 & -0.6 & 0.8 & 0.6 \\
\end{bmatrix}
\begin{bmatrix}
-0.0223 \\
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174 \\
\end{bmatrix}
= \begin{bmatrix}
52.1 \\
-52.1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\{v_1\} \\
\{v_2\} \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
-0.0233 \\
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174 \\
\end{bmatrix}
= \begin{bmatrix}
-43.2 \\
43.2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\{v_1\} \\
\{v_2\} \\
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 & -1 \\
0 & -1 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
-0.0233 \\
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174 \\
\end{bmatrix}
= \begin{bmatrix}
-63.3 \\
63.3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\{v_1\} \\
\{v_2\} \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
-0.0233 \\
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174 \\
\end{bmatrix}
= \begin{bmatrix}
-1.58 \\
1.58 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\{v_1\} \\
\{v_2\} \\
\end{bmatrix}
= \begin{bmatrix}
0.8 & 0.6 & -0.8 & -0.6 \\
0.8 & 0.6 & -0.8 & -0.6 \\
0.8 & 0.6 & -0.8 & -0.6 \\
0.8 & 0.6 & -0.8 & -0.6 \\
\end{bmatrix}
\begin{bmatrix}
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174 \\
\end{bmatrix}
= \begin{bmatrix}
54.0 \\
-54.0 \\
-60.43 \\
60.43 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\{v_1\} \\
\{v_2\} \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
-0.116 \\
0.00919 \\
-0.0174 \\
\end{bmatrix}
= \begin{bmatrix}
6.72 \\
-6.72 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\{v_1\} \\
\{v_2\} \\
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 & -1 \\
0 & -1 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 \\
-0.0919 \\
-0.0174 \\
\end{bmatrix}
= \begin{bmatrix}
36.3 \\
36.3 \\
\end{bmatrix}
\]
7. Determine the structure’s \(\text{MAXA} \) vector

\[
\begin{bmatrix}
1 & 3 & 9 & 14 \\
2 & 5 & 8 & 13 & 19 & 25 \\
4 & 7 & 12 & 18 & 24 \\
6 & 11 & 17 & 23 \\
10 & 16 & 22 \\
15 & 21 \\
20
\end{bmatrix}
\]

\[
\text{MAXA} = \begin{Bmatrix} 1 \\ 2 \\ 4 \\ 6 \\ 10 \\ 15 \\ 20 \end{Bmatrix}
\]

25 terms would have to be stored.

Example 5-3: Assembly of the Global Stiffness Matrix

As an example, let us consider the frame shown in Fig. 5.7. The ID matrix is initially set to:

\[
[ID] = \begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
\] \hspace{1cm} (5.10)

We then modify it to generate the global degrees of freedom of each node:

\[
[ID] = \begin{bmatrix}
-4 & 1 & -7 \\
-5 & 2 & -8 \\
-6 & 3 & -9
\end{bmatrix}
\] \hspace{1cm} (5.11)

Finally the LM vectors for the two elements (assuming that Element 1 is defined from node 1 to node 2, and element 2 from node 2 to node 3):

\[
[LM] = \begin{bmatrix}
-4 & -5 & -6 & 1 & 2 & 3 \\
1 & 2 & 3 & -7 & -8 & -9
\end{bmatrix}
\] \hspace{1cm} (5.12)
Figure 5.6: ID Values for Simple Beam

Figure 5.7: Simple Frame Analysed with the MATLAB Code
Let us simplify the operation by designating the element stiffness matrices in global coordinates as follows:

\[
\begin{align*}
K^{(1)} &= \begin{bmatrix}
-4 & -5 & -6 & 1 & 2 & 3 \\
-4 & A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} \\
-5 & A_{21} & A_{22} & A_{23} & A_{24} & A_{25} & A_{26} \\
-6 & A_{31} & A_{32} & A_{33} & A_{34} & A_{35} & A_{36} \\
1 & A_{41} & A_{42} & A_{43} & A_{44} & A_{45} & A_{46} \\
2 & A_{51} & A_{52} & A_{53} & A_{54} & A_{55} & A_{56} \\
3 & A_{61} & A_{62} & A_{63} & A_{64} & A_{65} & A_{66}
\end{bmatrix} \\
(5.13-a) \\
K^{(2)} &= \begin{bmatrix}
1 & 2 & 3 & -7 & -8 & -9 \\
1 & B_{11} & B_{12} & B_{13} & B_{14} & B_{15} & B_{16} \\
2 & B_{21} & B_{22} & B_{23} & B_{24} & B_{25} & B_{26} \\
3 & B_{31} & B_{32} & B_{33} & B_{34} & B_{35} & B_{36} \\
-7 & B_{41} & B_{42} & B_{43} & B_{44} & B_{45} & B_{46} \\
-8 & B_{51} & B_{52} & B_{53} & B_{54} & B_{55} & B_{56} \\
-9 & B_{61} & B_{62} & B_{63} & B_{64} & B_{65} & B_{66}
\end{bmatrix} \\
(5.13-b)
\end{align*}
\]

We note that for each element we have shown the corresponding LM vector.

Now, we assemble the global stiffness matrix

\[
K = \begin{bmatrix}
A_{44} + B_{11} & A_{45} + B_{12} & A_{46} + B_{13} & A_{41} & A_{42} & A_{43} & A_{14} & A_{15} & A_{16} \\
A_{54} + B_{21} & A_{55} + B_{22} & A_{56} + B_{23} & A_{51} & A_{52} & A_{53} & A_{24} & A_{25} & A_{26} \\
A_{64} + B_{31} & A_{65} + B_{32} & A_{66} + B_{33} & A_{61} & A_{62} & A_{63} & A_{34} & A_{35} & A_{36}
\end{bmatrix}
\]

(5.14)

We note that some terms are equal to zero because we do not have a connection between the corresponding degrees of freedom (i.e. node 1 is not connected to node 3).

\section*{Example 5-4: Analysis of a Frame with MATLAB}

The simple frame shown in Fig. 5.8 is to be analysed by the direct stiffness method. Assume: \(E = 200,000 \text{ MPa}, \ A = 6,000 \text{ mm}^2, \ \text{and} \ I = 200 \times 10^6 \text{ mm}^4. \) The complete MATLAB solution is shown below along with the results.
Figure 5.8: Simple Frame Analyzed with the MATLAB Code

```matlab
% zero the matrices
k=zeros(6,6,2);
K=zeros(6,6,2);
Gamma=zeros(6,6,2);
% Structural properties units: mm^2, mm^4, and MPa(10^6 N/m)
A=6000;II=200*10^6;EE=200000;
% Convert units to meter and kN
A=A/10^6;II=II/10^12;EE=EE*1000;
% Element 1
i=[0,0];j=[7.416,3];
[k(:,:,1),K(:,:,1),Gamma(:,:,1)]=stiff(EE,II,A,i,j);
% Element 2
i=j;j=[15.416,3];
[k(:,:,2),K(:,:,2),Gamma(:,:,2)]=stiff(EE,II,A,i,j);
% Define ID matrix
ID=[
    -4 1 -7;
    -5 2 -8;
    -6 3 -9];
% Determine the LM matrix
LM=[
    -4 -5 -6 1 2 3;
    1 2 3 -7 -8 -9];
% Assemble augmented stiffness matrix
Kaug=zeros(9);
for elem=1:2
    for r=1:6
        lr=abs(LM(elem,r));
        for c=1:6
            lc=abs(LM(elem,c));
            Kaug(lr,lc)=Kaug(lr,lc)+K(r,c,elem);
        end
    end
end
```
% Extract the structures Stiffness Matrix
Ktt=Kaug(1:3,1:3);
% Determine the fixed end actions in local coordinate system
fea(1:6,1)=0;
fea(1:6,2)=[0,8*4/2,4*8^2/12,0,8*4/2,-4*8^2/12]';
% Determine the fixed end actions in global coordinate system
FEA(1:6,1)=Gamma(:,:,1)*fea(1:6,1);
FEA(1:6,2)=Gamma(:,:,2)*fea(1:6,2);
% FEA_Rest for all the restrained nodes
FEA_Rest=[0,0,0,FEA(4:6,2)'];
% Assemble the load vector for the unrestrained node
P(1)=50*3/8;P(2)=-50*7.416/8-fea(2,2);P(3)=-fea(3,2);
% Solve for the Displacements in meters and radians
Displacements=inv(Ktt)*P';
% Extract Kut
Kut=Kaug(4:9,1:3);
% Compute the Reactions and do not forget to add fixed end actions
Reactions=Kut*Displacements+FEA_Rest';
% Solve for the internal forces and do not forget to include the fixed end actions
dis_global(:,:,1)=[0,0,0,Displacements(1:3)'];
dis_global(:,:,2)=[Displacements(1:3)',0,0,0];
for elem=1:2
 dis_local=Gamma(:,:,elem)*dis_global(:,:,elem)';
 int_forces=k(:,:,elem)*dis_local+fea(1:6,elem)
end

function [k,K,Gamma]=stiff(EE,II,A,i,j)
% Determine the length
L=sqrt((j(2)-i(2))^2+(j(1)-i(1))^2);
% Compute the angle theta (carefull with vertical members!)
if(j(1)-i(1))~=0
 alpha=atan((j(2)-i(2))/(j(1)-i(1)));
else
 alpha=-pi/2;
end
% form rotation matrix Gamma
Gamma=[
cos(alpha) sin(alpha) 0 0 0 0;
-sin(alpha) cos(alpha) 0 0 0 0;
0 0 1 0 0 0;
0 0 0 cos(alpha) sin(alpha) 0;
0 0 0 -sin(alpha) cos(alpha) 0;]
% form element stiffness matrix in local coordinate system
EI=EE*II;
EA=EE*A;
k=[EA/L, 0, 0, -EA/L, 0, 0;
0, 12*EI/L^3, 6*EI/L^2, 0, -12*EI/L^3, 6*EI/L^2;
0, 6*EI/L^2, 4*EI/L, 0, -6*EI/L^2, 2*EI/L;
-EA/L, 0, 0, EA/L, 0, 0;
0, -12*EI/L^3, -6*EI/L^2, 0, 12*EI/L^3, -6*EI/L^2;
0, 6*EI/L^2, 2*EI/L, 0, -6*EI/L^2, 4*EI/L];
% Element stiffness matrix in global coordinate system
K=Gamma'*k*Gamma;

This simple program will produce the following results:

Displacements =

0.0010
-0.0050
-0.0005

Reactions =

130.4973
55.6766
13.3742

-149.2473
22.6734
-45.3557

int_forces =

141.8530 149.2473
2.6758 9.3266
13.3742 -8.0315

-141.8530 -149.2473
-2.6758 22.6734
8.0315 -45.3557

We note that the internal forces are consistent with the reactions (specially for the second node of element 2), and amongst themselves, i.e. the moment at node 2 is the same for both elements (8.0315).
5.7 Computer Program Flow Charts

The main program should, Fig. 5.9:

1. Read
 (a) TITLE CARD
 (b) CONTROL CARD which should include:
 i. Number of nodes
 ii. Number of elements
 iii. Type of structure: beam, grid, truss, or frame; (2D or 3D)
 iv. Number of different element properties
 v. Number of load cases

2. Determine:
 (a) Number of spatial coordinates for the structure
 (b) Number of local and global degrees of freedom per node

3. Set up the pointers of the dynamic memory allocation (if using f77) for:
 (a) Nodal coordinates
 (b) Equation number matrix (ID)
 (c) Element connectivity
 (d) Element properties
 (e) Element stiffness matrices
 (f) Element rotation matrices

4. Loop over all the elements and determine the element stiffness matrices (in local coordinates), and rotation angles.

5. Determine the column heights, and initialize the global stiffness vector to zero.

6. Loop through all the elements, and for each one
 (a) Determine the element stiffness matrices in global coordinates
 (b) Determine the LM vector
 (c) Assemble the structure’s global stiffness matrix.

7. Decompose the global stiffness matrix using a Cholesky’s decomposition.

8. For each load case:
(a) Determine the nodal equivalent loads (fixed end actions), if any.
(b) Assemble the load vector
(c) Backsubstitute and obtain the nodal displacements
(d) Loop through each element and:
 i. Determine the nodal displacements in local coordinates
 ii. Determine the internal forces (include effects of fixed end actions).

The tree structure of the program is illustrated in Fig. 5.10

5.7.1 Input

The input subroutine should:
1. For each node read:
 (a) Node number
 (b) Boundary conditions of each global degree of freedom [ID]
 (c) Spatial coordinates
 Note that all the above are usually written on the same “data card”
2. Determine equation numbers associated with each degree of freedom, and the total number of equations (NEQ).
3. For each element, read:
 (a) Element number
 (b) First and second node
 (c) Element Property number
4. For each element property group read the associated elastic and cross sectional characteristics. Note these variables will depend on the structure type.

5.7.2 Element Stiffness Matrices

For each element:
1. Retrieve its properties
2. Determine the length
3. Call the appropriate subroutines which will determine:
 (a) The stiffness matrix in local coordinate systems \([k^e]\).
 (b) The direction cosines.
Figure 5.9: Program Flowchart
Figure 5.10: Program’s Tree Structure
5.7.3 Assembly

Since a skyline solver will be used, we first need to determine the appropriate pointers which will enable us to efficiently store the global stiffness matrix (\{MAXA\}). This is accomplished as follows, Fig. 5.11:

1. Determine the maximum height of the skyline for each column of the global stiffness matrix by first assigning a very large number to each row of \{MAXA\}, and then looping through each element, and for each one:

 (a) Determine the lowest associated global degree of freedom number (from the \{LM\} vectors)

 (b) Compare this “height” with the one currently associated with those degree of freedom stored in the element \{LM\}; if lower overwrite

2. Determine the total height of each skyline (i.e. each column) by determining the difference between MAXA (IEQ) (Skyline elevation), and IEQ (“BottomLine”). Overwrite MAXA with this height.

3. Determine the total length of the vector storing the compacted structure global stiffness matrix by summing up the height of each skyline

4. Assign to MAXA(NEQ+1) this total length +1.

5. Loop backward from the last column to the first, and for each one determine the address of the diagonal term from MAXA(IEQ) = MAXA(IEQ + 1) – MAXA(IEQ)

Once the MAXA vector has been determine, then term \(K(i,j)\) in the square matrix, would be stored in \(KK(MAXA(j)+j-i)\) (assuming \(j>i\)) in the compacted form of \{K\}.

The assembly of the global stiffness matrix is next described, Fig. 5.12:

1. Initialize the vector storing the compacted stiffness matrix to zero.

2. Loop through each element, \(e\), and for each element:

 (a) Retrieve its stiffness matrix (in local coordinates) \([k^e]\), and direction cosines.

 (b) Determine the rotation matrix \([\Gamma]\) of the element.

 (c) Compute the element stiffness matrix in global coordinates from \(bK^e = [\Gamma]^T[k^e][\Gamma]\).

 (d) Define the \{LM\} array of the element

 (e) Loop through each row and column of the element stiffness matrix, and for those degree of freedom not equal to zero, add the contributions of the element to the structure’s stiffness matrix (note that we assemble only the upper half).

\[
K^S[LM(i), LM(j)] = K^S[LM(i), LM(j)] + K^e[i,j]
\]
(5.15)
Figure 5.11: Flowchart for the Skyline Height Determination
Figure 5.12: Flowchart for the Global Stiffness Matrix Assembly
5.7.4 Decomposition

Decompose the global stiffness matrix. Since the matrix is both symmetric and positive
definite, the matrix can be decomposed using Cholesky’s method into: $[K] = [L][L]^T$. Should a
division by zero occur, or an attempt to extract the square root of a negative number happen,
then this would be an indication that either the global stiffness matrix is not properly assembled,
or that there are not enough restraint to prevent rigid body translation or rotation of the
structure.

5.7.5 Load

Once the stiffness matrix has been decomposed, than the main program should loop through
each load case and, Fig. 5.13

1. Initialize the load vector (of length NEQ) to zero.

2. Read number of loaded nodes. For each loaded node store the non-zero values inside the
load vector (using the [ID] matrix for determining storage location).

3. Loop on all loaded elements:
 (a) Read element number, and load value
 (b) Compute the fixed end actions and rotate them from local to global coordinates.
 (c) Using the LM vector, add the fixed end actions to the nodal load vector (unless the
 corresponding equation number is zero, ie. restrained degree of freedom).
 (d) Store the fixed end actions for future use.

5.7.6 Backsubstitution

Backsubstitution is achieved by multiplying the decomposed stiffness matrix with the load
vector. The resulting vector stores the nodal displacements, in global coordinate system, cor-
responding to the unrestrained degree of freedom.

5.7.7 Internal Forces and Reactions

The internal forces for each element, and reactions at each restrained degree of freedom, are
determined by, Fig. 5.15

1. Initialize reactions to zero

2. For each element retrieve:
 (a) nodal coordinates
Figure 5.13: Flowchart for the Load Vector Assembly
Figure 5.14: Flowchart for the Internal Forces

\[P \cdot [k] \cdot [u] = [F] \]

Victor Saouma
Matrix Structural Analysis
5.7 Computer Program Flow Charts

Figure 5.15: Flowchart for the Reactions

Victor Saouma

Matrix Structural Analysis
(b) rotation matrix
(c) element stiffness matrix

3. Compute nodal displacements in local coordinate system from $\delta^e = [\Gamma]\Delta(LM)$

4. Compute element internal forces from $p = [k^e]\delta^e$

5. If the element is loaded, add corresponding fixed end actions

6. print the interior forces

7. check if any of its degree of freedom is restrained, if so:

 (a) rotate element forces to global coordinates

 (b) update appropriate reaction

5.8 Computer Implementation with MATLAB

You will be required, as part of your term project, to write a simple MATLAB (or whatever other language you choose) program for the analysis of two dimensional frames with nodal load and initial displacement, as well as element load.

To facilitate the task, your instructor has taken the liberty of taking a program written by Mr. Dean Frank (as part of his term project with this instructor in the Advanced Structural Analysis course, Fall 1995), modified it with the aid of Mr. Pawel Smolarki, and is making available most, but not all of it to you. Hence, you will be expected to first familiarize yourself with the code made available to you, and then complete it by essentially filling up the missing parts.

5.8.1 Program Input

From Dean Frank’s User’s Manual

It is essential that the structure be idealized such that it can be discretized. This discretization should define each node and element uniquely. In order to decrease the required amount of computer storage and computation it is best to number the nodes in a manner that minimizes the numerical separation of the node numbers on each element. For instance, an element connecting nodes 1 and 4, could be better defined by nodes 1 and 2, and so on. As it was noted previously, the user is required to have a decent understanding of structural analysis and structural mechanics. As such, it will be necessary for the user to generate or modify an input file input.m using the following directions. Open the file called input.m and set the existing variables in the file to the appropriate values. The input file has additional helpful directions given as comments for each variable. After setting the variables to the correct values, be sure to save the file. Please note that the program is case-sensitive.
In order for the program to be run, the user must supply the required data by setting certain variables in the file called `indat.m` equal to the appropriate values. All the user has to do is open the text file called `indat.txt`, fill in the required values and save the file as `indat.m` in a directory within MATLAB's path. There are helpful hints within this file. It is especially important that the user keep track of units for all of the variables in the input data file. All of the units MUST be consistent. It is suggested that one always use the same units for all problems. For example, always use kips and inches, or kilo- newtons and millimeters.

5.8.1.1 Input Variable Descriptions

A brief description of each of the variables to be used in the input file is given below:

- **npoin** This variable should be set equal to the number of nodes that comprise the structure. A node is defined as any point where two or more elements are joined.

- **nelem** This variable should be set equal to the number of elements in the structure. Elements are the members which span between nodes.

- **istrtp** This variable should be set equal to the type of structure. There are six types of structures which this program will analyze: beams, 2-D trusses, 2-D frames, grids, 3-D trusses, and 3-D frames. Set this to 1 for beams, 2 for 2D-trusses, 3 for 2D- frames, 4 for grids, 5 for 3D-trusses, and 6 for 3D-frames. An error will occur if it is not set to a number between 1 and 6. Note only `istrp=3` was kept.

- **nload** This variable should be set equal to the number of different load cases to be analyzed. A load case is a specific manner in which the structure is loaded.

- **ID (matrix)** The ID matrix contains information concerning the boundary conditions for each node. The number of rows in the matrix correspond with the number of nodes in the structure and the number of columns corresponds with the number of degrees of freedom for each node for that type of structure type. The matrix is composed of ones and zeros. A one indicates that the degree of freedom is restrained and a zero means it is unrestrained.

- **nodecoor (matrix)** This matrix contains the coordinates (in the global coordinate system) of the nodes in the structure. The rows correspond with the node number and the columns correspond with the global coordinates x, y, and z, respectively. It is important to always include all three coordinates for each node even if the structure is only two-dimensional. In the case of a two-dimensional structure, the z-coordinate would be equal to zero.

- **lnods (matrix)** This matrix contains the nodal connectivity information. The rows correspond with the element number and the columns correspond with the node numbers which the element is connected from and to, respectively.

- **E,A,Iy (arrays)** These are the material and cross-sectional properties for the elements. They are arrays with the number of terms equal to the number of elements in the structure. The index number of each term corresponds with the element number. For example, the value of \(A(3) \) is the area of element 3, and so on. \(E \) is the modulus of elasticity, \(A \) is the cross-sectional area, \(I_y \) is the moment of inertia about the y axes.

- **Pnods** This is an array of nodal loads in global degrees of freedom. Only put in the loads in the global degrees of freedom and if there is no load in a particular degree of freedom, then
put a zero in its place. The index number corresponds with the global degree of freedom.

Pelem This an array of element loads, or loads which are applied between nodes. Only one load between elements can be analyzed. If there are more than one element loads on the structure, the equivalent nodal load can be added to the nodal loads. The index number corresponds with the element number. If there is not a load on a particular member, put a zero in its place. These should be in local coordinates.

a This is an array of distances from the left end of an element to the element load. The index number corresponds to the element number. If there is not a load on a particular member, put a zero in its place. This should be in local coordinates.

w This is an array of distributed loads on the structure. The index number corresponds with the element number. If there is not a load on a particular member, put a zero in its place. This should be in local coordinates.

dispflag Set this variable to 1 if there are initial displacements and 0 if there are none.

initial_displ This is an array of initial displacements in all structural degrees of freedom. This means that you must enter in values for all structure degrees of freedom, not just those restrained. For example, if the structure is a 2D truss with 3 members and 3 node, there would be 6 structural degrees of freedom, etc. If there are no initial displacements, then set the values equal to zero.

angle This is an array of angles which the x-axis has possibly been rotated. This angle is taken as positive if the element has been rotated towards the z-axis. The index number corresponds to the element number.

drawflag Set this variable equal to 1 if you want the program to draw the structure and 0 if you do not.

5.8.1.2 Sample Input Data File

The contents of the input.m file which the user is to fill out is given below:

```
%******************************************************************************************
% Scriptfile name: indat.m (EXAMPLE 2D-FRAME INPUT DATA)
%
% Main Program: casap.m
%
% This is the main data input file for the computer aided
% structural analysis program CASAP. The user must supply
% the required numeric values for the variables found in
% this file (see user's manual for instructions).
%
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
%
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
%******************************************************************************************
```

Victor Saouma

Matrix Structural Analysis
% HELPFUL INSTRUCTION COMMENTS IN ALL CAPITALS

% SET NPON IN EQUAL TO THE NUMBER OF NODES IN THE STRUCTURE
npoin=3;

% SET NELEM EQUAL TO THE NUMBER OF ELEMENTS IN THE STRUCTURE
nelem=2;

% SET NLOAD EQUAL TO THE NUMBER OF LOAD CASES
nload=1;

% INPUT THE ID MATRIX CONTAINING THE NODAL BOUNDARY CONDITIONS (ROW # = NODE #)
ID=[1 1 1;
 0 0 0;
 1 1 1];

% INPUT THE NODE COORDINATE (X,Y) MATRIX, NODECOOR (ROW # = NODE #)
nodecoor=[
 0 0;
 7416 3000;
 15416 3000
];

% INPUT THE ELEMENT CONNECTIVITY MATRIX, LNODS (ROW # = ELEMENT #)
lnods=[
 1 2;
 2 3
];

% INPUT THE MATERIAL PROPERTIES ASSOCIATED WITH THIS TYPE OF STRUCTURE
% PUT INTO ARRAYS WHERE THE INDEX NUMBER IS EQUAL TO THE CORRESPONDING ELEMENT NUMBER.
% COMMENT OUT VARIABLES THAT WILL NOT BE USED
E=[200 200];
A=[6000 6000];
Iz=[200000000 200000000];

% INPUT THE LOAD DATA. NODAL LOADS, PNODS SHOULD BE IN MATRIX FORM. THE COLUMNS CORRESPOND
% TO THE GLOBAL DEGREE OF FREEDOM IN WHICH THE LOAD IS ACTING AND THE THE ROW NUMBER CORRESPONDS
% WITH THE LOAD CASE NUMBER. PELEM IS THE ELEMENT LOAD, GIVEN IN A MATRIX, WITH COLUMNS
% CORRESPONDING TO THE ELEMENT NUMBER AND ROW THE LOAD CASE. ARRAY "A" IS THE DISTANCE FROM
% THE LEFT END OF THE ELEMENT TO THE LOAD, IN ARRAY FORM. THE DISTRIBUTED LOAD, W SHOULD BE
% IN MATRIX FORM ALSO WITH COLUMNS = ELEMENT NUMBER UPON WHICH W IS ACTING AND ROWS = LOAD CASE.
% ZEROS SHOULD BE USED IN THE MATRICES WHEN THERE IS NO LOAD PRESENT. NODAL LOADS SHOULD
% BE GIVEN IN GLOBAL COORDINATES, WHEREAS THE ELEMENT LOADS AND DISTRIBUTED LOADS SHOULD BE
% GIVEN IN LOCAL COORDINATES.
Pnods=[18.75 -46.35 0];
Pelem=[0 0];
a=[0 0];
w=[0 4/1000];

% IF YOU WANT THE PROGRAM TO DRAW THE STRUCTURE SET DRAWFLAG=1, IF NOT SET IT EQUAL TO 0.
% THIS IS USEFUL FOR CHECKING THE INPUT DATA.

drawflag=1;

% END OF INPUT DATA FILE

5.8.1.3 Program Implementation

In order to "run" the program, open a new MATLAB Notebook. On the first line, type the
name of the main program CASAP and evaluate that line by typing ctrl-enter. At this point, the
main program reads the input file you have just created and calls the appropriate subroutines
to analyze your structure. In doing so, your input data is echoed into your MATLAB notebook
and the program results are also displayed. As a note, the program can also be executed directly
from the MATLAB workspace window, without Microsoft Word.

5.8.2 Program Listing

5.8.2.1 Main Program

%**
%Main Program: casap.m
%
% This is the main program, Computer Aided Structural Analysis Program
% CASAP. This program primarily contains logic for calling scriptfiles and does not
% perform calculations.
%
% All variables are global, but are defined in the scriptfiles in which they are used.
%
% Associated scriptfiles:
%
% (for all structures)
% indat.m (input data file)
% idrasmbl.m
% elmcoord.m
% draw.m
%
% (3 - for 2D-frames)
% length3.m
% stiffl3.m
% trans3.m
% assembl3.m
% loads3.m
% disp3.m

Victor Saouma Matrix Structural Analysis
% react3.m
%
% By Dean A. Frank
% CVEN 5525
% Advanced Structural Analysis - Term Project
% Fall 1995
%
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
%**

% COMMENT CARDS ARE IN ALL CAPITALS

% SET NUMERIC FORMAT

format short e

% CLEAR MEMORY OF ALL VARIABLES

clear

% INITIALIZE OUTPUT FILE

fid = fopen('casap.out', 'wt');

% SET ISTRTP EQUAL TO THE NUMBER CORRESPONDING TO THE TYPE OF STRUCTURE:
% 3 = 2DFRAME

istrtp=3;

% READ INPUT DATA SUPPLIED BY THE USER

indat

% REASSAMBLE THE ID MATRIX AND CALCULATE THE LM VECTORS
% CALL SCRIPTFILE IDRASMBL

idrasmb1

% ASSEMBLE THE ELEMENT COORDINATE MATRIX

elmcoord

% 2DFRAME CALCULATIONS

% CALCULATE THE LENGTH AND ORIENTATION ANGLE, ALPHA FOR EACH ELEMENT
% CALL SCRIPTFILE LENGTH3.M

length3

% CALCULATE THE 2DFRAME ELEMENT STIFFNESS MATRIX IN LOCAL COORDINATES
% CALL SCRIPTFILE STIFFL3.M
stiff3

% CALCULATE THE 2DFRAME ELEMENT STIFFNESS MATRIX IN GLOBAL COORDINATES
% CALL SCRIPTFILE TRANS3.M

trans3

% ASSEMBLE THE GLOBAL STRUCTURAL STIFFNESS MATRIX
% CALL SCRIPTFILE ASSEMBL3.M

assembl3

% PRINT STRUCTURAL INFO

print_general_info

% LOOP TO PERFORM ANALYSIS FOR EACH LOAD CASE
for iload=1:nload

 print_loads

 % DETERMINE THE LOAD VECTOR IN GLOBAL COORDINATES
 % CALL SCRIPTFILE LOADS3.M

 loads3

 % CALCULATE THE DISPLACEMENTS
 % CALL SCRIPTFILE DISP3.M

 disp3

 % CALCULATE THE REACTIONS AT THE RESTRAINED DEGREES OF FREEDOM
 % CALL SCRIPTFILE REACT3.M

 react3

 % CALCULATE THE INTERNAL FORCES FOR EACH ELEMENT

 intern3

 % END LOOP FOR EACH LOAD CASE
end

% DRAW THE STRUCTURE, IF USER HAS REQUESTED (DRAWFLAG=1)
% CALL SCRIPTFILE DRAW.M

draw

st=fclose('all');
% END OF MAIN PROGRAM (CASAP.M)
disp('Program completed! - See "casap.out" for complete output');

5.8.2.2 Assembly of ID Matrix

%**
%SCRIPTFILE NAME: IDRASMBL.M
%
%MAIN FILE : CASAP
%
Description : This file re-assembles the ID matrix such that the restrained
% degrees of freedom are given negative values and the unrestrained
% degrees of freedom are given incremental values begining with one
% and ending with the total number of unrestrained degrees of freedom.
%
% By Dean A. Frank
% CVEN 5525
% Advanced Structural Analysis - Term Project
% Fall 1995
%
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
%**

% TAKE CARE OF SOME INITIAL BUSINESS: TRANSPOSE THE PNODS ARRAY

Pnods=Pnods.;;

% SET THE COUNTER TO ZERO

count=1;
negcount=-1;

% REASSEMBLE THE ID MATRIX

if istrtp==3
 ndofpn=3;
 nterm=6;
else
 error('Incorrect structure type specified')
end

% SET THE ORIGINAL ID MATRIX TO TEMP MATRIX

orig_ID=ID;

% REASSEMBLE THE ID MATRIX, SUBSTITUTING RESTRAINED DEGREES OF FREEDOM WITH NEGATIVES,
% AND NUMBERING GLOBAL DEGREES OF FREEDOM

for inode=1:npoi
 for icoord=1:ndofpn
 if ID(inode,icoord)==0
 disp('Program completed! - See "casap.out" for complete output');

VICTOR SAOUAMA Matrix Structural Analysis
ID(inode,icoord)=count;
count=count+1;
elseif ID(inode,icoord)==1
 ID(inode,icoord)=negcount;
 negcount=negcount-1;
else
 error('ID input matrix incorrect')
end
end
% CREATE THE LM VECTORS FOR EACH ELEMENT
for ielem=1:nelem
 LM(ielem,1:ndofpn)=ID(lnods(ielem,1),1:ndofpn);
 LM(ielem,(ndofpn+1):(2*ndofpn))=ID(lnods(ielem,2),1:ndofpn);
end
% END OF IDRASMBL.M SCRIPTFILE

5.8.2.3 Element Nodal Coordinates

%**
%SCRIPTFILE NAME: ELEMCOORD.M
%MAIN FILE : CASAP
%Description : This file assembles a matrix, elemcoor which contains the coordinates
%of the first and second nodes on each element, respectively.
%By Dean A. Frank
%CVEN 5525
%Advanced Structural Analysis - Term Project
%Fall 1995
%Edited by Pawel Smolarkiewicz, 3/16/99
%Simplified for 2D Frame Case only
%**
% ASSEMBLE THE ELEMENT COORDINATE MATRIX, ELEMCOOR FROM NODECOOR AND LNODS

for ielem=1:nelem
 elemcoor(ielem,1)=nodecoor(lnods(ielem,1),1);
 elemcoor(ielem,2)=nodecoor(lnods(ielem,1),2);
 elemcoor(ielem,3)=nodecoor(lnods(ielem,1),3);
 elemcoor(ielem,4)=nodecoor(lnods(ielem,2),1);
 elemcoor(ielem,5)=nodecoor(lnods(ielem,2),2);
 elemcoor(ielem,6)=nodecoor(lnods(ielem,2),3);
end
% END OF ELMCOORD.M SCRIPTFILE
5.8.2.4 Element Lengths

%**
% Scriptfile name : length3.m (for 2d-frame structures)
% %
% % Main program : casap.m
% %
% % When this file is called, it computes the length of each element and the
% % angle alpha between the local and global x-axes. This file can be used
% % for 2-dimensional elements such as 2-D truss, 2-D frame, and grid elements.
% % This information will be useful for transformation between local and global
% % variables.
% %
% % Variable descriptions: (in the order in which they appear)
% %
% % nelem = number of elements in the structure
% % ielem = counter for loop
% % L(ielem) = length of element ielem
% % elemcoor(ielem,4) = xj-coordinate of element ielem
% % elemcoor(ielem,1) = xi-coordinate of element ielem
% % elemcoor(ielem,5) = yj-coordinate of element ielem
% % elemcoor(ielem,2) = yi-coordinate of element ielem
% % alpha(ielem) = angle between local and global x-axes
% % By Dean A. Frank
% % CVEN 5525 - Term Project
% % Fall 1995
% % Edited by Pawel Smolarkiewicz, 3/16/99
% % Simplified for 2D Frame Case only
% %
% %**

% COMPUTE THE LENGTH AND ANGLE BETWEEN LOCAL AND GLOBAL X-AXES FOR EACH ELEMENT

for ielem=1:nelem
 L(ielem)=
 1
 alpha(ielem)=
 1
end

% END OF LENGTH3.M SCRIPTFILE

5.8.2.5 Element Stiffness Matrices

%**
% Scriptfile name: stiffl3.m (for 2d-frame structures)
% %
% % Main program: casap.m
% %
% % When this file is called, it computes the element stiffness matrix
% % of a 2-D frame element in local coordinates. The element stiffness
% Victor Saouma
Matrix Structural Analysis
% matrix is calculated for each element in the structure.
% The matrices are stored in a single matrix of dimensions 6x6*i and
% can be recalled individually later in the program.
%
% Variable descriptions: (in the order in which the appear)
%
% ielem = counter for loop
% nelem = number of element in the structure
% k(ielem,6,6)= element stiffness matrix in local coordinates
% E(ielem) = modulus of elasticity of element ielem
% A(ielem) = cross-sectional area of element ielem
% L(ielem) = length of element ielem
% Iz(ielem) = moment of inertia with respect to the local z-axis of element ielem
%
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
%
%**

for ielem=1:nelem
 k(1:6,1:6,ielem)=...
 XXXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
end

% END OF STIFFL3.M SCRIPTFILE

5.8.2.6 Transformation Matrices

%***
% Scriptfile name : trans3.m (for 2d-frame structures)
%
% Main program : casap.m
%
% This file calculates the rotation matrix and the element stiffness
% matrices for each element in a 2D frame.
%
% Variable descriptions: (in the order in which they appear)
%
% ielem = counter for the loop
% nelem = number of elements in the structure
% rotation = rotation matrix containing all elements info
% Rot = rotational matrix for 2d-frame element
% alpha(ielem) = angle between local and global x-axes
% K = element stiffness matrix in global coordinates
% k = element stiffness matrix in local coordinates
%
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995

Victor Saouma Matrix Structural Analysis
5.8 Computer Implementation with MATLAB

%**
% CALCULATE THE ELEMENT STIFFNESS MATRIX IN GLOBAL COORDINATES
% FOR EACH ELEMENT IN THE STRUCTURE

for ielem=1:nelem

% SET UP THE ROTATION MATRIX, ROTATION

rotation(1:6,1:6,ielem)=...

ktemp=k(1:6,1:6,ielem);
% CALCULATE THE ELEMENT STIFFNESS MATRIX IN GLOBAL COORDINATES
Rot=rotation(1:6,1:6,ielem);
K(1:6,1:6,ielem)=...

end
% END OF TRANS3.M SCRIPTFILE

5.8.2.7 Assembly of the Augmented Stiffness Matrix

%**
% Scriptfile name : assembl3.m (for 2d-frame structures)
% Main program : casap.m
% This file assembles the global structural stiffness matrix from the
% element stiffness matrices in global coordinates using the LM vectors.
% In addition, this file assembles the augmented stiffness matrix.
% Variable Descriptions (in order of appearance):
% ielem = Row counter for element number
% nelem = Number of elements in the structure
% iterm = Counter for term number in LM matrix
% LM(a,b) = LM matrix
% jterm = Column counter for element number
% temp1 = Temporary variable
% temp2 = Temporary variable
% temp3 = Temporary variable
% temp4 = Temporary variable
% number_gdofs = Number of global dofs
% new_LM = LM matrix used in assembling the augmented stiffness matrix
% aug_total_dofs = Total number of structure dofs
% K_aug = Augmented structural stiffness matrix
% Ktt = Structural Stiffness Matrix (Upper left part of Augmented structural stiffness matrix)
% Kut = Upper right part of Augmented structural stiffness matrix
% Kuu = Lower right part of Augmented structural stiffness matrix
% By Dean A. Frank

Victor Saouma Matrix Structural Analysis
% CVEN 5525 - Term Project
% Fall 1995
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
%**

% RENUMBER DOF INCLUDE ALL DOF, FREE DOF FIRST, RESTRAINED NEXT
new_LM=LM;
number_gdofs=max(LM(:));
new_LM(find(LM<0))=number_gdofs-LM(find(LM<0));
aug_total_dofs=max(new_LM(:));

% ASSEMBLE THE AUGMENTED STRUCTURAL STIFFNESS MATRIX
K_aug=zeros(aug_total_dofs);
for ielem=1:nelem

Tough one!
end

% SET UP SUBMATRICES FROM THE AUGMENTED STIFFNESS MATRIX
Ktt=
Ktu=
Kut=
Kuu=

% END OF ASSEMBLER SCRIPTFILE

5.8.2.8 Print General Information

%**

%fprint(fid,'
\nNumber of Nodes: \%d\n',npoin);
fprint(fid,'Number of Elements: \%d\n',nelem);
fprint(fid,'Number of Load Cases: \%d\n',nload);
fprintf(fid,'Number of Restrained dofs: %d\n',abs(min(LM(:))));
fprintf(fid,'Number of Free dofs: %d\n',max(LM(:)));

for inode=1:npoint
 fprintf(fid,' Node %d (%d,%d)\n',inode,nodecoor(inode,1),nodecoor(inode,2));
 freedof=' ';
 if(ID(inode,1))>0
 freedof=strcat(freedof,' X ');
 end
 if(ID(inode,2))>0
 freedof=strcat(freedof,' Y ');
 end
 if(ID(inode,3))>0
 freedof=strcat(freedof,' Rot');
 end
 if freedof==''
 freedof=' none; node is fixed';
 end
 fprintf(fid,' Free dofs:%s\n',freedof);
end

fprintf(fid,'Element Info:\n');
for ielem=1:nelem
 fprintf(fid,' Element %d (%d->%d)',ielem,lnods(ielem,1),lnods(ielem,2));
 fprintf(fid,' E=%d A=%d Iz=%d \n',E(ielem),A(ielem),Iz(ielem));
end

5.8.2.9 Print Load

%**
% Scriptfile name : print_loads.m
% Main program : casap.m
% Prints the current load case data to the output file
% By Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%**

Load_case=iload
if iload==1
 fprintf(fid,'\n___
\n');
end

fprintf(fid,'Load Case: %d\n',iload);
fprintf(fid,' Nodal Loads:\n');
for k=1:max(LM(:));
 %WORK BACKWARDS WITH LM MATRIX TO FIND NODE# AND DOF
 LM_spot=find(LM'==k);
 fprintf(fid,' %d
',LM_spot);
end

Victor Saouma

Matrix Structural Analysis
elem=fix(LM_spot(1)/nterm+1)+1;
dof=mod(LM_spot(1)-1,nterm)+1;
nod=nods(elem,fix(dof/4)+1);
switch(dof)
case {1,4}, dof='Fx';
case {2,5}, dof='Fy';
otherwise, dof=' M';
end
%PRINT THE DISPLACEMENTS
if Pnods(k)~=0
 fprintf(fid,' Node: %2d %s = %14d
',node, dof, Pnods(k));
end
end
fprintf(fid,'
 Elemental Loads:
');
for k=1:nelem
 fprintf(fid,' Element: %d Point load = %d at %d from left
',k, Pelem(k), a(k));
 fprintf(fid,' Distributed load = %d
', w(k));
end
fprintf(fid,'

5.8.2.10 Load Vector
%**
% Scriptfile name: loads3.m (for 2d-frame structures)
% Main program: casap.m
% When this file is called, it computes the fixed end actions for elements which
% carry distributed loads for a 2-D frame.
% Variable descriptions: (in the order in which they appear)
% ielem = counter for loop
% nelem = number of elements in the structure
% b(ielem) = distance from the right end of the element to the point load
% L(ielem) = length of the element
% a(ielem) = distance from the left end of the element to the point load
% Ffl = fixed end force (reaction) at the left end due to the point load
% w(ielem) = distributed load on element ielem
% L(ielem) = length of element ielem
% Pelem(ielem) = element point load on element ielem
% Mfl = fixed end moment (reaction) at the left end due to the point load
% Ffr = fixed end force (reaction) at the right end due to the point load
% Mfr = fixed end moment (reaction) at the right end due to the point load
% feamatrix_local = matrix containing resulting fixed end actions in local coordinates
% feamatrix_global = matrix containing resulting fixed end actions in global coordinates
% fea_vector = vector of fea's in global dofs, used to calc displacements
% fea_vector_abs = vector of fea's in every structure dof
% dispflag = flag indicating initial displacements
% Ff1d = fea (vert force) on left end of element due to initial disp
% Mf1d = fea (moment) on left end of element due to initial disp

Victor Saouma
Matrix Structural Analysis
% Ffrd = fea (vert force) on right end of element due to initial disp
% Mfrd = fea (moment) on right end of element due to initial disp
% fea_vector_disp = vector of fea's due to initial disp, used to calc displacements
% fea_vector_react = vector of fea's due to initial disp, used to calc reactions
%
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
%
%**

% CALCULATE THE FIXED END ACTIONS AND INSERT INTO A MATRIX IN WHICH THE ROWS CORRESPOND
% WITH THE ELEMENT NUMBER AND THE COLUMNS CORRESPOND WITH THE ELEMENT LOCAL DEGREES
% OF FREEDOM

for ielem=1:nelem
 b(ielem)=L(ielem)-a(ielem);
 Ffl=((w(ielem)*L(ielem))/2)+((Pelem(ielem)*(b(ielem))^2)/(L(ielem))^3)*(3*a(ielem)+b(ielem));
 Mfl=((w(ielem)*(L(ielem))^2))/12+(Pelem(ielem)*a(ielem)*(b(ielem))^2)/(L(ielem))^2;
 Ffr=((w(ielem)*L(ielem))/2)+((Pelem(ielem)*(a(ielem))^2)/(L(ielem))^3)*(a(ielem)+3*b(ielem));
 Mfr=-((w(ielem)*(L(ielem))^2))/12+(Pelem(ielem)*a(ielem)*(b(ielem))^2)/(L(ielem))^2;
 feamatrix_local(ielem,1:6)=[0 Ffl Mfl 0 Ffr Mfr];
end

% ROTATE THE LOCAL FEA MATRIX TO GLOBAL

feamatrix_global=...
XXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

% CREATE A LOAD VECTOR USING THE LM MATRIX

% INITIALIZE FEA VECTOR TO ALL ZEROS

for idofpn=1:ndofpn
 fea_vector(idofpn,1)=0;
end

for ielem=1:nelem
 for idof=1:6
 if ielem==1
 if LM(ielem,idof)>0
 fea_vector(LM(ielem,idof),1)=feamatrix_global(idof,ielem);
 end
 elseif ielem>1
 if LM(ielem,idof)>0
 fea_vector(LM(ielem,idof),1)=fea_vector(LM(ielem,1))+feamatrix_global(idof,ielem);
 end
 end
 end
end
5.8.2.11 Nodal Displacements

%**
% Scriptfile name : disp3.m (for 2d-frame structures)
% %
% % Main program : casap.m
% % When this file is called, it computes the displacements in the global
% % degrees of freedom.
% %
% % Variable descriptions: (in the order in which they appear)
% %
% Ksinv = inverse of the structural stiffness matrix
% Ktt = structural stiffness matrix
% Delta = vector of displacements for the global degrees of freedom
% Pnods = vector of nodal loads in the global degrees of freedom
% fea_vector = vector of fixed end actions in the global degrees of freedom
% %
% % By Dean A. Frank
% % CVEN 5525 - Term Project
% % Fall 1995
% % Edited by Pawel Smolarkiewicz, 3/16/99
% % Simplified for 2D Frame Case only
% %
%**

% CREATE A TEMPORARY VARIABLE EQUAL TO THE INVERSE OF THE STRUCTURAL STIFFNESS MATRIX

Ksinv=inv(Ktt);

% CALCULATE THE DISPLACEMENTS IN GLOBAL COORDINATES

Delta=

XXXXXXXXXXXXXXXXX COMPLETE XX

Victor Saouma Matrix Structural Analysis
5.8.2.12 Reactions

%***
% Scriptfile name : react3.m (for 2d-frame structures)
% Main program : casap.m
% When this file is called, it calculates the reactions at the restrained degrees of freedom.
% Variable Descriptions:
% Reactions = Reactions at restrained degrees of freedom
% Kut = Upper left part of aug stiffness matrix, normal structure stiff matrix
% Delta = vector of displacements
% fea_vector_react = vector of fea's in restrained dofs
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
%***

% CALCULATE THE REACTIONS FROM THE AUGMENTED STIFFNESS MATRIX

% PRINT DISPLACEMENTS WITH NODE INFO

fprintf(fid,' Displacements:
');
for k=1:size(Delta,1)
 % WORK BACKWARDS WITH LM MATRIX TO FIND NODE# AND DOF
 LM_spot=find(LM'==k);
 elem=fix(LM_spot(1)/(nterm+1))+1;
 dof=mod(LM_spot(1)-1,nterm)+1;
 node=lnods(elem,fix(dof/4)+1);
 switch(dof)
 case {1,4}, dof='delta X';
 case {2,5}, dof='delta Y';
 otherwise, dof='rotate ';
 end
 % PRINT THE DISPLACEMENTS
 fprintf(fid,' (Node: %2d %s) %14d
',node, dof, Delta(k));
end
fprintf(fid,'
');

% END OF DISP3.M SCRIPTFILE
Reactions=
XXXXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

fprintf(fid,' Reactions:
');
for k=1:size(Reactions,1)
 % WORK BACKWARDS WITH LM MATRIX TO FIND NODE# AND DOF
 LM_spot=find(LM'==-k);
 elem=fix(LM_spot(1)/(nterm+1))+1;
 dof=mod(LM_spot(1)-1,nterm)+1;
 node=lnods(elem,fix(dof/4)+1);
 switch(dof)
 case {1,4}, dof='Fx';
 case {2,5}, dof='Fy';
 otherwise, dof='M ';
 end
 % PRINT THE REACTIONS
 fprintf(fid,' (Node: %2d %s) %14d
',node, dof, Reactions(k));
end
fprintf(fid,'
');
% END OF REACT3.M SCRIPTFILE

5.8.2.13 Internal Forces

%***
% Scriptfile name : intern3.m (for 2d-frame structures)
% %
% % Main program : casap.m
% %
% % When this file is called, it calculates the internal forces in all elements
% % freedom.
% %
% % By Pawel Smolarkiewicz, 3/16/99
% % Simplified for 2D Frame Case only
% %
%***

Pglobe=zeros(6,nelem);
Plocal=Pglobe;

fprintf(fid,' Internal Forces:
');
% LOOP FOR EACH ELEMENT
for ielem=1:nelem
 % FIND ALL 6 LOCAL DISPLACEMENTS
 elem_delta=zeros(6,1);
 for idof=1:6
 gdof=LM(ielem,idof);
 if gdof<0
 elem_delta(idof)=
 XXXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 else
 elem_delta(idof)=
 end
 end
 % END OF REACT3.M SCRIPTFILE

Victor Saouma
Matrix Structural Analysis
%SOLVE FOR ELEMENT FORCES (GLOBAL)
P Globe(:,ielem)=K(:,:,ielem)*elem_delta+feamatrix_global(:,ielem);

%ROTATE FORCES FROM GLOBAL TO LOCAL COORDINATES
P local(:,ielem)=

%PRINT RESULTS
fprintf(fid,'
 Element: %2d
',ielem);
for idof=1:6
 if idof==1
 fprintf(fid,' At Node: %d
',lnods(ielem,1));
 end
 if idof==4
 fprintf(fid,' At Node: %d
',lnods(ielem,2));
 end
 switch(idof)
 case {1,4}, dof='Fx';
 case {2,5}, dof='Fy';
 otherwise, dof='M ';
 end
 fprintf(fid,' (Global : %s) %14d',dof, P Globe(idof,ielem));
 fprintf(fid,' (Local : %s) %14d
',dof, P local(idof,ielem));
end

5.8.2.14 Sample Output File

CASAP will display figure 5.16.

Number of Nodes: 3
Number of Elements: 2
Number of Load Cases: 1
Number of Restrained dofs: 6
Number of Free dofs: 3

Node Info:
 Node 1 (0,0)
 Free dofs: none; node is fixed
 Node 2 (7416,3000)
 Free dofs: X Y Rot
 Node 3 (15416,3000)
 Free dofs: none; node is fixed

Element Info:
 Element 1 (1->2) E=200 A=6000 Iz=200000000
Figure 5.16: Structure Plotted with CASAP

Element 2 (2→3) \(E=200 \ A=6000 \ I_{z}=200000000 \)

Load Case: 1

Nodal Loads:
Node: 2 \(F_x = 1.875000e+001 \)
Node: 2 \(F_y = -4.635000e+001 \)

Elemental Loads:
Element: 1 Point load = 0 at 0 from left
Element: 2 Point load = 0 at 0 from left

Displacements:
(Node: 2 \(\Delta X \)) \(9.949820e-001 \)
(Node: 2 \(\Delta Y \)) \(-4.981310e+000 \)
(Node: 2 rotate) \(-5.342485e-004 \)

Reactions:
(Node: 1 \(F_x \)) \(1.304973e+002 \)
(Node: 1 \(F_y \)) \(5.567659e+001 \)
(Node: 1 M) \(1.337416e+004 \)
(Node: 3 \(F_x \)) \(-1.492473e+002 \)
(Node: 3 \(F_y \)) \(2.267341e+001 \)
(Node: 3 M) \(-4.535573e+004 \)
Internal Forces:

Element: 1
At Node: 1
(Global : Fx) 1.304973e+002 (Local : Fx) 1.418530e+002
(Global : Fy) 5.567659e+001 (Local : Fy) 2.675775e+000
(Global : M) 1.337416e+004 (Local : M) 1.337416e+004
At Node: 2
(Global : Fx) -1.304973e+002 (Local : Fx) -1.418530e+002
(Global : Fy) -5.567659e+001 (Local : Fy) -2.675775e+000
(Global : M) 8.031549e+003 (Local : M) 8.031549e+003

Element: 2
At Node: 2
(Global : Fx) 1.492473e+002 (Local : Fx) 1.492473e+002
(Global : Fy) 9.326590e+000 (Local : Fy) 9.326590e+000
(Global : M) -8.031549e+003 (Local : M) -8.031549e+003
At Node: 3
(Global : Fx) -1.492473e+002 (Local : Fx) -1.492473e+002
(Global : Fy) 2.267341e+001 (Local : Fy) 2.267341e+001
(Global : M) -4.535573e+004 (Local : M) -4.535573e+004
Chapter 6

EQUATIONS OF STATICS and KINEMATICS

Note: This section is largely based on chapter 6 of Mc-Guire and Gallagher, *Matrix Structural Analysis*, John Wiley

1 Having developed the stiffness method in great details, and prior to the introduction of energy based methods (which will culminate with the finite element formulation), we ought to revisit the flexibility method. This will be done by first introducing some basic statics and kinematics relationship.

2 Those relations will eventually enable us not only to formulate the flexibility/stiffness relation, but also other “by-products” such as algorithms for: 1) the extraction of a statically determinate structure from a statically indeterminate one; 2) checking prior to analysis whether a structure is kinematically unstable; 3) providing an alternative method of assembling the global stiffness matrix.

6.1 Statics Matrix \([\mathcal{B}]\)

The statics matrix \([\mathcal{B}]\) relates the vector of all the structure’s \(\{\mathbf{P}\}\) nodal forces in global coordinates to all the unknown forces (element internal forces in their local coordinate system and structure’s external reactions) \(\{\mathbf{F}\}\), through equilibrium relationships and is defined as:

\[
\begin{align*}
\{\mathbf{P}\} & \equiv [\mathcal{B}] \{\mathbf{F}\} \\
\end{align*}
\] \((6.1) \)

4 \([\mathcal{B}]\) would have as many rows as the total number of independent equations of equilibrium; and as many columns as independent internal forces. This is reminiscent of the equilibrium matrix obtained in analyzing trusses by the “method of joints”.

5 Depending on the type of structure, the internal element forces, and the equilibrium forces will vary according to Table 6.1. As with the flexibility method, there is more than one combination
<table>
<thead>
<tr>
<th>Type</th>
<th>Internal Forces</th>
<th>Equations of Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truss</td>
<td>Axial force at one end</td>
<td>$\Sigma F_X = 0, \Sigma F_Y = 0$</td>
</tr>
<tr>
<td>Beam 1</td>
<td>Shear and moment at one end</td>
<td>$\Sigma F_y = 0, \Sigma M_z = 0$</td>
</tr>
<tr>
<td>Beam 2</td>
<td>Shear at each end</td>
<td>$\Sigma F_y = 0, \Sigma M_z = 0$</td>
</tr>
<tr>
<td>Beam 3</td>
<td>Moment at each end</td>
<td>$\Sigma F_y = 0, \Sigma M_z = 0$</td>
</tr>
<tr>
<td>2D Frame 1</td>
<td>Axial, Shear, Moment at each end</td>
<td>$\Sigma F_x = 0, \Sigma F_y = 0, \Sigma M_z = 0$</td>
</tr>
</tbody>
</table>

Table 6.1: Internal Element Force Definition for the Statics Matrix

of independent element internal forces which can be selected.

Matrix $[B]$ will be a square matrix for a statically determinate structure, and rectangular (more columns than rows) otherwise.

Example 6-1: Statically Determinate Truss Statics Matrix

Considering the truss shown in Fig. 6.1, it has 8 unknown forces (4 internal member forces and 4 external reactions), and 8 equations of equilibrium (2 at each of the 4 nodes). Assuming all the element forces to be tensile, and the reactions as shown in the figure, the equilibrium equations are:

$$
\begin{align*}
\text{Node 1:} & \quad \Sigma F_X = 0 \quad \Sigma F_Y = 0 \\
& \quad P_{x1} + F_3C - R_{x1} = 0 \quad P_{y1} + F_1 + F_3S - R_{y1} = 0 \\
\text{Node 2:} & \quad P_{x2} + F_2 = 0 \quad P_{y2} - F_1 = 0 \\
\text{Node 3:} & \quad P_{x3} - F_2 - F_3C = 0 \quad P_{y3} - F_2 - F_3S = 0 \\
\text{Node 4:} & \quad P_{x4} + R_{x4} = 0 \quad P_{y4} + F_4 - R_{y4} = 0
\end{align*}
$$

where $\cos \alpha = \frac{L}{\sqrt{L^2 + H^2}} = C$ and $\sin \alpha = \frac{H}{\sqrt{L^2 + H^2}} = S$ Those equations of equilibrium can be cast in matrix form

$$\Sigma F_x^1: \quad \begin{pmatrix} P_{x1} \\ P_{y1} \\ P_{x2} \\ P_{y2} \\ P_{x3} \\ P_{y3} \\ P_{x4} \\ P_{y4} \end{pmatrix} = \begin{pmatrix} 0 & 0 & -C & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & -S & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & C & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \\ R_{x1} \\ R_{y1} \\ R_{x4} \\ R_{y4} \end{pmatrix}
$$

(6.2)
Figure 6.1: Example of $[B]$ Matrix for a Statically Determinate Truss
the unknown forces and reactions can be determined through inversion of $[B]$:

$$
\begin{bmatrix}
F_1 \\
F_2 \\
F_3 \\
F_4 \\
R_{x1} \\
R_{y1} \\
R_{x4} \\
R_{y4}
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{C} & 0 & \frac{1}{C} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{S} & 0 & \frac{1}{S} & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & \frac{1}{C} & 1 & \frac{1}{C} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & -\frac{S}{C} & 0 & -\frac{S}{C} & 1 & 0 & 1
\end{bmatrix}^{-1}
\begin{bmatrix}
P_1 \\
M_1 \\
P_2 \\
M_2 \\
P_3 \\
M_3 \\
P_4 \\
P_5
\end{bmatrix}
=
\begin{bmatrix}
P_{y2} \\
-P_{x2} \\
P_{x2} \\
P_{y2} \\
P_{x2} \\
-P_{y2}P_{x2} \\
P_{x2} + P_{y2} \\
0
\end{bmatrix}
$$

(6.3)

We observe that the matrix $[B]$ is totally independent of the external load, and once inverted can be used for multiple load cases with minimal computational efforts.

Example 6-2: Beam Statics Matrix

Considering the beam shown in Fig. 6.2, we have 3 elements, each with 2 unknowns (v and m) plus two unknown reactions, for a total of 8 unknowns. To solve for those unknowns we have 2 equations of equilibrium at each of the 4 nodes. Note that in this problem we have selected as primary unknowns the shear and moment at the right end of each element. The left components can be recovered from equilibrium. From equilibrium we thus have:

$$
\begin{bmatrix}
P_1 \\
M_1 \\
P_2 \\
M_2 \\
P_3 \\
M_3 \\
P_4 \\
P_5
\end{bmatrix}
=
\begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -3 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5 \\
v_6 \\
v_7
\end{bmatrix}
=
\begin{bmatrix}
m_1 \\
m_2 \\
m_3 \\
m_4 \\
m_5 \\
m_6 \\
m_7 \\
R_1 \\
R_2
\end{bmatrix}
$$

(6.4)
Figure 6.2: Example of $[B]$ Matrix for a Statically Determinate Beam
Inverting this 8 by 8 matrix would yield

\[
\begin{bmatrix}
 v_1 \\
m_1 \\
v_2 \\
m_2 \\
v_3 \\
m_3 \\
R_1 \\
R_2
\end{bmatrix} = \begin{bmatrix}
 0 & -\frac{1}{8} & 0 & -\frac{1}{8} & -\frac{1}{4} & -\frac{1}{8} & -\frac{5}{8} & -\frac{1}{8} \\
 0 & 0 & 0 & 1 & 2 & 1 & 5 & 1 \\
 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1 & 3 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 0 & -\frac{1}{8} & 0 & -\frac{1}{8} & -\frac{1}{4} & -\frac{1}{8} & -\frac{3}{8} & -\frac{1}{8} \\
 0 & \frac{1}{8} & 1 & \frac{1}{8} & \frac{5}{4} & \frac{1}{8} & \frac{13}{8} & \frac{1}{8} \\
\end{bmatrix}^{-1} \begin{bmatrix}
 0 \\
 0 \\
-20 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0
\end{bmatrix} = \begin{bmatrix}
 5 \\
-40 \\
-20 \\
 0 \\
 0 \\
 0 \\
 5 \\
-25
\end{bmatrix} \quad (6.5)
\]

For the case of a statically indeterminate structure, Eq. 6.1 can be generalized as:

\[
\begin{bmatrix}
 \mathbf{P}
\end{bmatrix}_{2n \times 1} = \begin{bmatrix}
 [\mathbf{B}_0]_{2n \times 2n} & [\mathbf{B}_x]_{2n \times r}
\end{bmatrix} \begin{bmatrix}
 \mathbf{F}_0 \\
 \mathbf{F}_x
\end{bmatrix} \quad (6.6)
\]

where \([\mathbf{B}_0]\) is a square matrix, \(\{\mathbf{F}_0\}\) the vector of unknown internal element forces or external reactions, and \(\{\mathbf{F}_x\}\) the vector of unknown redundant internal forces or reactions.

Hence, we can determine \(\{\mathbf{F}_0\}\) from

\[
\begin{bmatrix}
 \mathbf{F}_0
\end{bmatrix} = [\mathbf{B}_0]^{-1} \begin{bmatrix}
 \mathbf{P}
\end{bmatrix} - [\mathbf{B}_0]^{-1} [\mathbf{B}_x] \begin{bmatrix}
 \mathbf{F}_x
\end{bmatrix} \quad (6.7)
\]

\[
\begin{bmatrix}
 \mathbf{F}_0
\end{bmatrix} = \begin{bmatrix}
 \mathbf{F}_0 \\
 \mathbf{F}_x
\end{bmatrix} = \begin{bmatrix}
 \mathbf{C}_1 \\
 \mathbf{C}_2
\end{bmatrix} \quad (2n+r) \times 1 \quad (6.8)
\]

Note the following definitions which will be used later:

\[
[\mathbf{B}_0]^{-1} \equiv \begin{bmatrix}
 \mathbf{C}_1
\end{bmatrix} \quad (6.9)
\]

\[
-\begin{bmatrix}
 \mathbf{B}_0 \\
 \mathbf{B}_x
\end{bmatrix}^{-1} \equiv \begin{bmatrix}
 \mathbf{C}_2
\end{bmatrix} \quad (6.10)
\]

Example 6-3: Statically Indeterminate Truss Statics Matrix

Revisiting the first example problem, but with an additional member which makes it statically indeterminate, Fig. 6.3, it now has 9 unknown forces (5 internal member forces and 4 external reactions), and only 8 equations of equilibrium. Selecting the fifth element force as the redundant force, and with \(r = 1\), we write Eq. 6.6

Victor Saouma Matrix Structural Analysis
Figure 6.3: Example of $[B]$ Matrix for a Statically Indeterminate Truss
\[
\{\mathbf{P}\}_{2n \times 1} = [\mathbf{B}_0]_{2n \times 2n} [\mathbf{B}_x]_{2n \times r} \left\{ \frac{\mathbf{F}_0}{\mathbf{F}_x} \right\}_{(2n+r) \times 1}
\]

\[
\{\mathbf{P}\} = [\mathbf{B}_0] \{\mathbf{F}_0\} + [\mathbf{B}_x] \{\mathbf{F}_x\}
\]

\[
\begin{bmatrix}
 P_{x1} \\
 P_{y1} \\
 P_{x2} \\
 P_{y2} \\
 P_{x3} \\
 P_{y3} \\
 P_{x4} \\
 P_{y4}
\end{bmatrix}
=
\begin{bmatrix}
 0 & 0 & -C & 0 & 1 & 0 & 0 & 0 \\
 -1 & 0 & -S & 0 & 0 & 1 & 0 & 0 \\
 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & S & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & S & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 F_1 \\
 F_2 \\
 F_3 \\
 F_4 \\
 R_{x1} \\
 R_{y1} \\
 R_{x4} \\
 R_{y4}
\end{bmatrix}
+
\begin{bmatrix}
 0 \\
 0 \\
 -C \\
 S \\
 0 \\
 0 \\
 C \\
 -S
\end{bmatrix}
\]

We can solve for the internal forces in terms of the (still unknown) redundant force

\[
\{\mathbf{F}_0\} = [\mathbf{B}_0]^{-1} \{\mathbf{P}\} - [\mathbf{B}_0]^{-1} [\mathbf{B}_x] \{\mathbf{F}_x\}
\]

\[
\begin{bmatrix}
 F_1 \\
 F_2 \\
 F_3 \\
 F_4 \\
 R_{x1} \\
 R_{y1} \\
 R_{x4} \\
 R_{y4}
\end{bmatrix}
=
\begin{bmatrix}
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & \frac{1}{C} & 0 & \frac{1}{C} & 0 & 0 & 0 \\
 0 & 0 & -\frac{S}{C} & 0 & -\frac{S}{C} & 1 & 0 & 0 \\
 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
 0 & 1 & \frac{S}{C} & 1 & \frac{S}{C} & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & -\frac{S}{C} & 0 & -\frac{S}{C} & 1 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 P_{x2} \\
 P_{y2} \\
 0 \\
 0
\end{bmatrix}
+
\begin{bmatrix}
 0 \\
 0 \\
 -C \\
 S \\
 0 \\
 0 \\
 C \\
 -S
\end{bmatrix}
\]

Or using the following relations $[\mathbf{B}_0]^{-1} \equiv [\mathbf{C}_1]$ and $-[\mathbf{B}_0]^{-1} [\mathbf{B}_x] \equiv [\mathbf{C}_2]$ we obtain

\[
\begin{bmatrix}
 F_1 \\
 F_2 \\
 F_3 \\
 F_4 \\
 R_{x1} \\
 R_{y1} \\
 R_{x4} \\
 R_{y4}
\end{bmatrix}
=
\begin{bmatrix}
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & \frac{1}{C} & 0 & \frac{1}{C} & 0 & 0 & 0 \\
 0 & 0 & -\frac{S}{C} & 0 & -\frac{S}{C} & 1 & 0 & 0 \\
 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
 0 & 1 & \frac{S}{C} & 1 & \frac{S}{C} & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & -\frac{S}{C} & 0 & -\frac{S}{C} & 1 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 0 \\
 0 \\
 -S \\
 -C \\
 1 \\
 -S \\
 C \\
 0
\end{bmatrix}
\]

\[
\text{Victor Saouma} \quad \text{Matrix Structural Analysis}
\]
6.1 Statics Matrix $[B]

Note, that this equation is not sufficient to solve for the unknown forces, as $\{F_x\}$ must be obtained through force displacement relations ($[D]$ or $[K]$).

6.1.1 Identification of Redundant Forces

Whereas the identification of redundant forces was done by mere inspection of the structure in hand based analysis of structure, this identification process can be automated.

Starting with

$$\begin{align*}
\{P\}_{2n \times 1} &= \begin{bmatrix} B & \mathbf{0} \end{bmatrix}_{2n \times (2n+r)} \begin{bmatrix} F \end{bmatrix}_{(2n+r) \times 1} \\
\begin{bmatrix} B & \mathbf{0} \end{bmatrix}_{2n \times (2n+r)} \begin{bmatrix} F \end{bmatrix}_{2n+r \times 1} - \begin{bmatrix} \mathbf{0} \end{bmatrix}_{2n \times 2n} \{P\}_{2n \times 1} &= \{0\} \\
\begin{bmatrix} B & \mathbf{0} \end{bmatrix}_{2n \times (4n+r)} \begin{bmatrix} F \end{bmatrix} = \{0\}
\end{align*}$$

where $\begin{bmatrix} B & \mathbf{0} \end{bmatrix}$ corresponds to the augmented matrix.

If we apply a Gauss-Jordan elimination process to the augmented matrix, Eq. 6.14 is then transformed into:

$$\begin{align*}
\begin{bmatrix} \mathbf{0} \end{bmatrix}_{2n \times 2n} - \begin{bmatrix} C_1 \end{bmatrix}_{2n \times 2n} \begin{bmatrix} F \end{bmatrix} = \{0\} \\
\begin{bmatrix} \mathbf{0} \end{bmatrix}_{4n+r \times 1} = \{0\}
\end{align*}$$

or:

$$\begin{align*}
\{F\}_{2n \times 1} &= \begin{bmatrix} C_1 \end{bmatrix}_{2n \times 2n} \{P\}_{2n \times 1} + \begin{bmatrix} C_2 \end{bmatrix}_{2n \times r} \{F_x\}_{r \times 1}
\end{align*}$$

which is identical to Eq. 6.8; As before, F_x are the redundant forces and their solution obviously would depend on the elastic element properties.

Example 6-4: Selection of Redundant Forces

Revisiting the statically determined truss of Example 1, but with the addition of a fifth element, the truss would now be statically indeterminate to the first degree. The equation of
6–10 EQUATIONS OF STATICS and KINEMATICS

equilibrium 6.2 will then be written as:

\[
\begin{align*}
\sum F_x^1 & : A = \begin{bmatrix}
0 & 0 & -C & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{bmatrix}, \\
\sum F_y^1 & : B = \begin{bmatrix}
-1 & 0 & -S & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}, \\
\sum F_x^2 & : C = \begin{bmatrix}
0 & -1 & 0 & 0 & -C & 0 & 0 & 0 & 0 & -1
\end{bmatrix}, \\
\sum F_y^2 & : D = \begin{bmatrix}
1 & 0 & 0 & 0 & S & 0 & 0 & 0 & 0 & 0
\end{bmatrix}, \\
\sum F_x^3 & : E = \begin{bmatrix}
0 & 1 & C & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}, \\
\sum F_y^3 & : F = \begin{bmatrix}
0 & 0 & S & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}, \\
\sum F_x^4 & : G = \begin{bmatrix}
0 & 0 & 0 & 0 & C & 0 & 0 & 1 & 0 & 0
\end{bmatrix}, \\
\sum F_y^4 & : H = \begin{bmatrix}
0 & 0 & 0 & -1 & -S & 0 & 0 & 0 & 1 & 0
\end{bmatrix}.
\end{align*}
\]

\[
\begin{bmatrix}
\begin{bmatrix}
F_1 \\
F_2 \\
F_3 \\
F_4 \\
F_5 \\
R_{x1} \\
R_{y1} \\
R_{x4} \\
R_{y4} \\
P_{x2} \\
P_{y2}
\end{bmatrix}
\end{bmatrix} = \begin{bmatrix}
A & B & -I
\end{bmatrix} \begin{bmatrix}
\{ F \}
\end{bmatrix}
\]

(6.17)

Note that since load is applied only on node 2, we have considered a subset of the identity matrix \([I]\).

1. We start with the following matrix

\[
\begin{bmatrix}
F_1 & F_2 & F_3 & F_4 & F_5 & R_{x1} & R_{y1} & R_{x4} & R_{y4} & P_{x2} & P_{y2}
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D \\
E \\
F \\
G \\
H
\end{bmatrix} = \begin{bmatrix}
0 & 0 & -C & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & -S & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -C & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & S & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & C & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & S & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & C & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -S & 0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

(6.18)

2. Interchange columns

\[
\begin{bmatrix}
R_{x1} & R_{y1} & F_2 & F_1 & F_3 & F_4 & F_5 & R_{x4} & R_{y4} & P_{x2} & P_{y2}
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D \\
E \\
F \\
G \\
H
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 & -C & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -S & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & -C & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & S & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & C & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & S & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & C & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -S & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

(6.19)
3. Operate as indicates

\[
\begin{bmatrix}
R_{x1} & R_{y1} & F_2 & F_1 & F_3 & F_4 & F_5 & R_{x4} & R_{y4} & P_{x2} & P_{y2}
\end{bmatrix}
\]

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B' = B + DB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-S</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-C</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E' = \frac{E + C}{C}</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1/C</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-S</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(6.20)

4. Operate as indicated

\[
\begin{bmatrix}
R_{x1} & R_{y1} & F_2 & F_1 & F_3 & F_4 & F_5 & R_{x4} & R_{y4} & P_{x2} & P_{y2}
\end{bmatrix}
\]

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A' = A + CE'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-C</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>B'' = B' + SE'</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1/C</td>
</tr>
<tr>
<td>C' = -C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1/C</td>
</tr>
<tr>
<td>F'' = F - SE'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>S/C</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H' = H + F'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>S/C</td>
</tr>
</tbody>
</table>

(6.21)

5. Interchange columns and observe that \(F_5 \) is the selected redundant.

\[
\begin{bmatrix}
R_{x1} & R_{y1} & F_2 & F_1 & F_3 & F_4 & F_5 & R_{x4} & R_{y4} & P_{x2} & P_{y2}
\end{bmatrix}
\]

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-C</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>B''</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-S/C</td>
<td>-1</td>
</tr>
<tr>
<td>C''</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>C</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>E'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1/C</td>
<td>0</td>
</tr>
<tr>
<td>F''</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>S</td>
<td>S/C</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>S/C</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(6.22)
From Eq. 6.8 we have

\[
\begin{bmatrix}
R_{x1} \\
R_{y1} \\
F_2 \\
F_1 \\
F_3 \\
F_4 \\
R_{x4} \\
R_{y4}
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
S/C & 1 \\
-1 & 0 \\
0 & 1 \\
1/C & 0 \\
-S/C & 0 \\
0 & 0 \\
-S/C & 0
\end{bmatrix}
\begin{bmatrix}
P_{x2} \\
P_{y2}
\end{bmatrix}
+ \begin{bmatrix}
C \\
0 \\
-1 \\
0 \\
-S \\
-1 \\
-C \\
0
\end{bmatrix}
\begin{bmatrix}
F_5 \\
F_x
\end{bmatrix}
\]

(6.23)

which is identical to the results in Eq. 6.13 except for the order of the terms.

\[\text{□}\]

6.1.2 Kinematic Instability

Kinematic instability results from a structure with inadequate restraint in which rigid body motion can occur.

For example in Fig. 6.4, there is no adequate restraint for the frame against displacement in the horizontal direction, and the truss may rotate with respect to point O. Kinematic instability will result in a matrix which is singular, and decomposition of this matrix will result in a division by zero causing a computer program to “crash”. Hence, it is often desirable for “large” structures to determine \textit{a priori} whether a structure is kinematically instable before the analysis is performed.

Conditions for static determinacy and instability can be stated as a function of the rank of \([\mathcal{B}]\). If \([\mathcal{B}]\) has \(n\) rows (corresponding to the number of equilibrium equations), \(u\) columns (corresponding to the number of internal forces and reactions), and is of rank \(r\), then conditions of kinematic instability are summarized in Table 6.2

Note that kinematic instability is not always synonymous with structure collapse. In some cases equilibrium will be recovered only after geometry would have been completely altered (such as with a flexible cable structures) and equations of equilibrium would have to be completely rewritten with the new geometry.

6.2 Kinematics Matrix \([\mathcal{A}]\)

The kinematics matrix \([\mathcal{A}]\) relates all the structure’s \(\{\Delta\}\) nodal displacements in global coordinates to the element relative displacements in their local coordinate system and the
Figure 6.4: *Examples of Kinematic Instability

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n > u$</td>
<td>Kinematically Instable</td>
</tr>
<tr>
<td>$n = u$</td>
<td>Statically Determinate</td>
</tr>
<tr>
<td>$n = u = r$</td>
<td>Stable</td>
</tr>
<tr>
<td>$n = u > r$</td>
<td>Instable with $n - r$ modes of kinematic instability</td>
</tr>
<tr>
<td>$n < r$</td>
<td>Statically Indeterminate (degree $u - n$)</td>
</tr>
<tr>
<td>$n = r$</td>
<td>Stable</td>
</tr>
<tr>
<td>$n > r$</td>
<td>Instable with $n - r$ modes of kinematic instability</td>
</tr>
</tbody>
</table>

Table 6.2: Conditions for Static Determinacy, and Kinematic Instability
support displacement (which may not be zero if settlement occurs) \({\{\Upsilon}\}\), through kinematic relationships and is defined as:

\[\{\Upsilon\} \equiv [A] \{\Delta\}\] (6.24)

18 \([A]\) is a rectangular matrix which number of rows is equal to the number of the element internal displacements, and the number of columns is equal to the number of nodal displacements. Contrarily to the rotation matrix introduced earlier and which transforms the displacements from global to local coordinate for one single element, the kinematics matrix applies to the entire structure.

19 It can be easily shown that for trusses:

\[\Upsilon^e = (u_2 - u_1) \cos \alpha + (v_2 - v_1) \sin \alpha\] (6.25)

where \(\alpha\) is the angle between the element and the \(X\) axis. whereas for flexural members:

\[
\begin{align*}
 v_{21} &= v_2 - v_1 - \theta_{z1} L \\
 \theta_{z21} &= \theta_{z2} - \theta_{z1}
\end{align*}
\] (6.26) (6.27)

Example 6-5: Kinematics Matrix of a Truss

Considering again the statically indeterminate truss of the previous example, the kinematic matrix will be given by:

\[
\begin{bmatrix}
 \Delta_1^e \\
 \Delta_2^e \\
 \Delta_3^e \\
 \Delta_4^e \\
 \Delta_5^e
\end{bmatrix}
=
\begin{bmatrix}
 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
 -C & -S & 0 & 0 & C & S & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & -C & S & 0 & 0 & C & -S \\
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 v_1 \\
 u_2 \\
 v_2 \\
 v_3 \\
 u_4 \\
 v_4
\end{bmatrix}
\] (6.28)
Applying the constraints:

\[\begin{align*}
 u_1 &= 0; \\
 v_1 &= 0; \\
 u_4 &= 0; \\
 v_4 &= 0
\end{align*} \]

we obtain:

\[
\begin{bmatrix}
 \Delta_1^e \\
 \Delta_2^e \\
 \Delta_3^e \\
 \Delta_4^e \\
 \Delta_5^e
\end{bmatrix} =
\begin{bmatrix}
 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
 -C & -S & 0 & 0 & C & S & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
 0 & 0 & -C & S & 0 & 0 & C & -S
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 v_1 \\
 u_2 \\
 v_2 \\
 u_3 \\
 v_3 \\
 u_4 \\
 v_4
\end{bmatrix}
\]

(6.29)

We should observe that \([A]\) is indeed the transpose of the \([B]\) matrix in Eq. 6.17.

6.3 Statics-Kinematics Matrix Relationship

Having defined both the statics \([B]\) and kinematics \([A]\) matrices, it is intuitive that those two matrices must be related. In this section we seek to determine this relationship for both the statically determinate and statically indeterminate cases.

6.3.1 Statically Determinate

The external work being defined as

\[
W_{\text{ext}} = \frac{1}{2} [P] [\Delta] \quad \{P\} = [B] \{F\}
\]

\[
W_{\text{ext}} = \frac{1}{2} [F] [B]^T \{\Delta\}
\]

(6.30)

Alternatively, the internal work is given by:

\[
W_{\text{int}} = \frac{1}{2} [F] [\Upsilon] \quad \{\Upsilon\} = [A] \{\Delta\}
\]

\[
W_{\text{int}} = \frac{1}{2} [F] [A] \{\Delta\}
\]

(6.31)

Equating the external to the internal work \(W_{\text{ext}} = W_{\text{int}}\) we obtain:

\[
\frac{1}{2} [F] [B]^T \{\Delta\} = \frac{1}{2} [F] [A] \{\Delta\}
\]

(6.32)

\[
[B]^T = [A]
\]

(6.33)
6.3.2 Statically Indeterminate

Whereas in the preceding case we used Eq. 6.1 for B, for the most general case of statically indeterminate structures we can start from Eq. 6.6 and write:

$$ \{P\} = [B_0 \mid B_x] \begin{bmatrix} F_0 \\ F_x \end{bmatrix} \quad (6.34) $$

where F_x correspond to the redundant forces. The external work will then be

$$ W_{ext} = \frac{1}{2} [F_0 \mid F_x] \begin{bmatrix} [B_0]^t \\ [B_x]^t \end{bmatrix} \{\Delta\} \quad (6.35) $$

Again, we can generalize Eq. 6.24 and write

$$ \begin{bmatrix} \Upsilon_0 \\ \Upsilon_x \end{bmatrix} = \begin{bmatrix} A_0 \\ A_x \end{bmatrix} \{\Delta\} \quad (6.36) $$

where $\{\Upsilon_0\}$ and $\{\Upsilon_x\}$ are relative displacements corresponding to $\{F_0\}$ and $\{F_x\}$ respectively.

Consequently the internal work would be given by:

$$ W_{int} = \frac{1}{2} [F_0 \mid F_x] \begin{bmatrix} [A_0] \\ [A_x] \end{bmatrix} \{\Delta\} \quad (6.37) $$

As before, equating the external to the internal work $W_{ext} = W_{int}$ and simplifying, we obtain:

$$ [B_0]^T = [A_0] \quad (6.38) $$

$$ [B_x]^T = [A_x] \quad (6.39) $$

6.4 Kinematic Relations through Inverse of Statics Matrix

We now seek to derive some additional relations between the displacements through the inverse of the statics matrix. Those relations will be used later in the flexibility methods, and have no immediate applications.

Rewriting Eq. 6.36 as

$$ \{\Delta\} = [A_0]^{-1} \{\Upsilon_0\} = ([B_0]^t)^{-1} \{\Upsilon_0\} = ([B_0]^{-1})^t \{\Upsilon_0\} \quad (6.40) $$

we can solve for $\{F_0\}$ from Eq. 6.8

$$ \begin{bmatrix} F_0 \end{bmatrix} = \begin{bmatrix} [B_0]^{-1} \{P\} - [B_0]^{-1} [B_x] \{F_x\} \end{bmatrix} \quad (6.41) $$
Combining this equation with $[B_0]^{-1} = [C_1]$ from Eq. 6.41, and with Eq. 6.40 we obtain

$$\{\Delta\} = [C_1]^T \{\Upsilon_0\}$$ (6.42)

Similarly, we can revisit Eq. 6.36 and write

$$\{\Upsilon_x\} = [A_x]^T \{\Delta\}$$ (6.43)

When the previous equation is combined with the rightmost side of Eq. 6.40 and 6.39 we obtain

$$\{\Upsilon_x\} = [B_x]^T \left([B_0]^{-1}\right)^T \{\Upsilon_0\}$$ (6.44)

Thus, with $[B_0]^{-1}[B_x] = -[C_2]$ from Eq. 6.41

$$\{\Upsilon_x\} = -[C_2]^T \{\Upsilon_0\}$$ (6.45)

This equation relates the unknown relative displacements to the relative known ones.

6.5 Congruent Transformation Approach to $[K]$

Note: This section is largely based on section 3.3 of Gallagher, *Finite Element Analysis*, Prentice Hall.

For an arbitrary structure composed of n elements, we can define the *unconnected* nodal load and displacement vectors in global coordinate as

$$\{P_e\} = \begin{bmatrix} \{P_1\} & \{P_2\} & \ldots & \{P_n\} \end{bmatrix}^T$$ (6.46)

$$\{\Upsilon_e\} = \begin{bmatrix} \{\Upsilon_1\} & \{\Upsilon_2\} & \ldots & \{\Upsilon_n\} \end{bmatrix}^T$$ (6.47)

where $\{P_i\}$ and $\{\Delta_i\}$ are the nodal load and displacements arrays of element i. The size of each submatrix (or more precisely of each subarray) is equal to the total number of d.o.f. in global coordinate for element i.

Similarly, we can define the unconnected (or unassembled) global stiffness matrix of the structure as $[K^e]$:

$$\{F\} = [K^e] \{\Upsilon\}$$ (6.48)

$$[K^e] = \begin{bmatrix} [K_1] & & \\
& [K_2] & \\
& & \ddots \\
& & & [K_n] \end{bmatrix}$$ (6.49)
Note that all other terms of this matrix are equal to zero, and that there is no intersection between the various submatrices. Hence, this matrix does not reflect the connectivity among all the elements.

We recall the following relations (Eq. 6.1, 6.24, and 6.33 respectively)

\[
\{\Upsilon\} = [A]\{\Delta\} \quad (6.50)
\]

\[
\{P\} = [B]\{F\} \quad (6.51)
\]

\[
[B]^T = [A] \quad (6.52)
\]

We now combine those matrices with the definition of the stiffness matrix:

\[
\begin{bmatrix}
\{P\} \\
\{P\} \\
[B]
\end{bmatrix} =
\begin{bmatrix}
[A]^T\{F\} \\
[K]\{\Delta\} \\
[A]^T
\end{bmatrix}
\quad \begin{bmatrix}
[\Upsilon] \\
[K^e]\{\Upsilon\}
\end{bmatrix} =
\begin{bmatrix}
[A]^T[K^e][A]
\end{bmatrix}
\quad (6.53)
\]

Thus, we have just defined a congruent transformation on the unconnected global stiffness matrix written in terms of \([K^e]\) to obtain the structure stiffness matrix. We shall note that:

1. If \([K^e]\) is expressed in global coordinates, then \([A]\) is a boolean matrix.

2. If \([K^e]\) is in local coordinates, then \([A]\) must include transformation from element to global coordinate systems, and is no longer boolean.

3. \([K]\) accounts for the B.C. as those terms associated with the restrained d.o.f. are not included.

4. Note the similarity between the direct stiffness method: \([K] = \sum_{i=1}^{n} [\Gamma]^T[k][\Gamma]\) and the congruent transformation approach: \([K] = [A]^T[K^e][A]\).

5. If the structure is a frame with \(n\) elements, then we would have \([K]_{neq \times neq} = \sum_{i=1}^{n} [\Gamma]_{6 \times 6}[k]_{6 \times 6}[\Gamma]_{6 \times 6}\) and the congruent transformation approach: \([K]_{neq \times neq} = [A]_{neq \times 6n}[K^e]_{6n \times 6n}[A]_{6n \times neq}\).

6. Congruent approach appears to be less efficient than the direct stiffness method as both \([K^e]\) and \([A]\) are larger than \([K]\).

Example 6-6: Congruent Transformation

Assemble the global stiffness matrix of the grid shown in Fig. 6.5 using the direct stiffness method and the congruent transformation method.

Solution:

The 2 element stiffness matrices in global coordinate system are given by:

\[
\begin{bmatrix}
\end{bmatrix}
\]

Victor Saouma
Matrix Structural Analysis
We shall determine the global stiffness matrix using the two approaches:

Direct Stiffness

\[[\mathbf{ID}] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 0 \end{bmatrix} \]
\[\{\mathbf{LM}^1\} = [0 \ 0 \ 0 \ 1 \ 2 \ 3]^T \]
\[\{\mathbf{LM}^2\} = [1 \ 2 \ 3 \ 0 \ 0]^T \]

\[
\begin{bmatrix} (7.692 + 1 \times 10^5) & (0. + 0.) & (18.75 + 0.) \\ (0. + 0.) & (4 \times 10^5 + 14.423) & (12. + 0.) \\ (0. + 18.75) & (12. + 0.) & (0.0048 + 0.00469) \end{bmatrix}
\]

Figure 6.5: Example 1, Congruent Transfer
6–20

Draft

EQUATIONS OF STATICS and KINEMATICS

\[
\begin{bmatrix}
1 \times 10^5 & 0 & 18.75 \\
0 & .4 \times 10^5 & 12 \\
18.75 & 12 & .00949
\end{bmatrix}
\]

Congruent Transformation

1. The unassembled stiffness matrix \([K^e]\), for node 2, is given by:

\[
\{F\} = \{K^e\} \{\Upsilon\}
\]

Note that the B.C. are implicitly accounted for by ignoring the restrained d.o.f. however the connectivity of the elements is not reflected by this matrix.

2. The kinematics matrix is given by:

\[
\{\Upsilon\} = [A] \{\Delta\}
\]

As for the kinematics matrix, we are relating the local displacements of each element to the global ones. Hence this matrix is analogous to the connectivity matrix. Whereas the connectivity matrix defined earlier reflected the element connection, this one reflects the connectivity among all the unrestrained degrees of freedom.

3. If we take the product: \([A]^T[K^e][A]\) then we will recover \([K]\) as shown above.

Example 6-7: Congruent Transformation of a Frame

Assemble the stiffness matrix of the frame shown in Fig. 6.6 using the direct stiffness method, and the two congruent approaches.

Solution:
The stiffness matrices of elements AB and BC in local coordinate system are given by:

$$[k]_{AB} = [k]_{BC} = 200 \begin{bmatrix} .75 & 0. & 0. & -.75 & 0. & 0. \\ .00469 & 18.75 & 0 & -.0048 & 18.75 \\ 1 \times 10^5 & 0 & -18.75 & .5 \times 10^5 \\ .75 & 0. & 0. & 0. & 0. \\ \text{sym} & .00469 & -18.75 \\ 1 \times 10^5 \end{bmatrix} \quad (6.64)$$

while the rotation matrix is given by:

$$[\Gamma]_{AB} = \begin{bmatrix} .9272 & .375 & 0. & 0. & 0. \\ -.375 & .927 & 0. & 0. & 0. \\ 0. & 0. & 1 & 0. & 0. \\ 0. & 0. & 0. & .9272 & .375 \\ 0. & 0. & 0. & -.375 & .9272 \end{bmatrix} \quad (6.65)$$

$$[\Gamma]_{BC} = [I] \quad (6.66)$$

The element stiffness matrices in global coordinates will then be given by:

$$[K]_{AB} = [\Gamma]^T_{AB}[k]_{AB}[\Gamma]_{AB} \quad (6.67-a)$$

$$= 200 \begin{bmatrix} .645 & .259 & -7.031 & -.645 & -.259 & -7.031 \\ .109 & 17.381 & -.259 & -.109 & 17.381 \\ 1 \times 10^5 & 7.031 & -17.381 & .5 \times 10^5 \\ .645 & .259 & 7.031 \\ \text{sym} & .109 & -17.381 \\ 1 \times 10^5 \end{bmatrix} \quad (6.67-b)$$

and $$[K]_{BC} = [k]_{BC}$$
Direct Stiffness: We can readily assemble the global stiffness matrix:

$$[K] = 200 \begin{bmatrix} (.645 + .75) & (.259 + 0.) & (7.031 + 0.) \\ sym & (.109 + .00469) & (-17.38 + 18.75) \\ & & (1 + 1) \times 10^5 \end{bmatrix} \quad (6.68)$$

$$= 200 \begin{bmatrix} 1.395 & .259 & 7.031 \\ .1137 & 1.37 \end{bmatrix} \quad (6.69)$$

Congruent Transformation, global axis, Boolean $[A]$

1. We start with the unconnected global stiffness matrix in global coordinate system:

$$\{F\} = [K^e] \{\Upsilon\} \quad (6.70)$$

$$\begin{bmatrix} P_1^L \\
 P_2^L \\
 M_M^L \end{bmatrix} = 200 \begin{bmatrix} .645 & .259 & 7.031 \\
 sym & .109 & -17.38 \\
 & 1 \times 10^5 & 0 \end{bmatrix} \begin{bmatrix} u_1^e \\
 v_1^e \\
 \theta_1^e \end{bmatrix} \quad (6.71)$$

2. Next we determine the kinematics matrix A:

$$\{\Upsilon\} = [A] \{\Delta\} \quad (6.72)$$

$$\begin{bmatrix} u^1 \\
 v^1 \\
 \theta^1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\
 & 1 & 0 \\
 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\
 v \\
 \theta \end{bmatrix} \quad (6.73)$$

3. Finally, if we take the product $[A]^T [K^e] [A]$ we obtain the structure global stiffness matrix $[K]$ in Eq. 6.69

Congruent Transformation (local axis):

1. Unconnected stiffness matrix in local coordinates:

$$\{p^e\} = [k^e] \{\theta^e\} \quad (6.74)$$

$$\begin{bmatrix} P_1^L \\
 P_2^L \\
 M_M^L \end{bmatrix} = 200 \begin{bmatrix} .75 & .00469 & 0. \\
 sym & 1 \times 10^5 & -18.75 \\
 & & 1 \times 10^5 \end{bmatrix} \begin{bmatrix} u_1^e \\
 v_1^e \\
 \theta_1^e \end{bmatrix} \quad (6.75)$$
2. The kinematics matrix \([A]\) is now given by:

\[
\{\delta^e\} = [A] \{\Delta\} = \begin{bmatrix}
\frac{u_1^1}{u_2^1} \\
\frac{v_1^1}{v_2^1} \\
\frac{\theta_1}{\theta_2}
\end{bmatrix} = \begin{bmatrix}
.9272 & .375 & 0. \\
-.375 & .9272 & 0. \\
0. & 0. & 1.
\end{bmatrix}
\begin{bmatrix}
U_X \\
V_Y \\
\Theta_Z
\end{bmatrix}
\]

(6.76)

(6.77)

3. When the product: \([A]^T[k^e][A]\) we recover the structure global stiffness matrix
Chapter 7

FLEXIBILITY METHOD

7.1 Introduction

Recall the definition of the flexibility matrix

\[
\{ \Upsilon \} \equiv [d] \{ p \}
\] \hspace{1cm} (7.1)

where \(\{ \Upsilon \} \), \([d] \), and \(\{ p \} \) are the element relative displacements, element flexibility matrix, and forces at the element degrees of freedom free to displace.

As with the congruent approach for the stiffness matrix, we define:

\[
\{ F^e \} = \begin{bmatrix} \{ F^1 \} & \{ F^2 \} & \cdots & \{ F^n \} \end{bmatrix}^T
\] \hspace{1cm} (7.2)

\[
\{ \Upsilon^e \} = \begin{bmatrix} \{ \Upsilon^1 \} & \{ \Upsilon^2 \} & \cdots & \{ \Upsilon^n \} \end{bmatrix}^T
\] \hspace{1cm} (7.3)

for \(n \) elements, and where \(\{ F^i \} \) and \(\{ \Upsilon^i \} \) are the nodal load and displacements vectors for element \(i \). The size of these vectors is equal to the total number of global dof for element \(i \).

Denoting by \(\{ R \} \) the reaction vector, and by \(\{ \Upsilon^R \} \) the corresponding displacements, we define the unassembled structure flexibility matrix as:

\[
\left\{ \begin{array}{c} \Upsilon^e \\ \Upsilon^R \end{array} \right\} = \begin{bmatrix} [d^e] & 0 \end{bmatrix} \left\{ \begin{array}{c} F^e \\ R \end{array} \right\}
\] \hspace{1cm} (7.4)

where \([d^e] \) is the unassembled global flexibility matrix.

In its present form, Eq. 7.4 is of no help as the element forces \(\{ F^e \} \) and reactions \(\{ R \} \) are not yet known.
7.2 Flexibility Matrix

We recall from Sect. 6.1.1 that we can automatically identify the redundant forces \([F_x]\) and rewrite Eq. 7.4 as:

\[
\begin{bmatrix}
\{\Upsilon_0 \} \\
\{\Upsilon_x \}
\end{bmatrix} = \begin{bmatrix} \mathbf{d}_{00} & \mathbf{0} \\
\mathbf{0} & \mathbf{d}_{xx}^c \end{bmatrix} \begin{bmatrix} \mathbf{F}_0 \\
\mathbf{F}_x \end{bmatrix}
\]

(7.5)

where \([\mathbf{d}_{00}^c]\) and \([\mathbf{d}_{xx}^c]\) correspond to the unassembled global flexibility matrix, and \(\{\mathbf{F}_0\}\) and \(\{\mathbf{F}_x\}\) are the corresponding forces.

Next we must relate the redundant and nonredundant forces (which together constitute the unknown element forces and reactions) to the externally applied load \(\{\mathbf{P}\}\). Hence we recall from Eq. 6.16:

\[
\{\mathbf{F}_0\} = [\mathbf{C}_1] \{\mathbf{P}\} + [\mathbf{C}_2] \{\mathbf{F}_x\}
\]

(7.6)

which can be rewritten (for convenience:) as:

\[
\begin{bmatrix} \mathbf{F}_0 \\
\mathbf{F}_x \end{bmatrix} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\
\mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{P} \\
\mathbf{F}_x \end{bmatrix}
\]

(7.7)

From Eq. 6.42 we had: \(\{\Delta\} = [\mathbf{C}_1]^t \{\Upsilon_0\}\) and from Eq. 6.45: \(\{\Upsilon_x\} = -[\mathbf{C}_2]^t \{\Upsilon_0\}\) which lead to

\[
\begin{bmatrix} \mathbf{\Delta}_p \\
\mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{0} \\
\mathbf{C}_2 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{\Upsilon}_0 \\
\mathbf{\Upsilon}_x \end{bmatrix}
\]

(7.8)

where the subscript \(p\) in \(\{\mathbf{\Delta}_p\}\) has been added to emphasize that we are referring only to the global displacements corresponding to \(\{\mathbf{P}\}\).

Finally we substitute Eq. 7.7 into Eq. 7.5 and the results into Eq. 7.8 to obtain:

\[
\begin{bmatrix} \mathbf{\Delta}_p \\
\mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{0} \\
\mathbf{C}_2 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{d}_{00}^c & \mathbf{0} \\
\mathbf{0} & \mathbf{d}_{xx}^c \end{bmatrix} \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\
\mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{P} \\
\mathbf{F}_x \end{bmatrix}
\]

(7.9)

or:

\[
\begin{bmatrix} \mathbf{\Delta}_p \\
\mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{D}_{pp} \\
\mathbf{D}_{px} \end{bmatrix} \begin{bmatrix} \mathbf{P} \\
\mathbf{F}_x \end{bmatrix}
\]

(7.10)

where:

\[
[\mathbf{D}_{pp}] = [\mathbf{C}_1]^t [\mathbf{d}_{00}^c] [\mathbf{C}_1]
\]

(7.11)

\[
[\mathbf{D}_{px}] = [\mathbf{C}_1]^t [\mathbf{d}_{00}^c] [\mathbf{C}_2]
\]

(7.12)

\[
[\mathbf{D}_{xx}] = [\mathbf{C}_2]^t [\mathbf{d}_{00}^c] [\mathbf{C}_2] + [\mathbf{d}_{xx}^c]
\]

(7.13)

This equation should be compared with Eq. 7.1 and will be referred to as the unsolved global assembled flexibility equation.
7.2 Flexibility Matrix

7.2.1 Solution of Redundant Forces

We can solve for the redundant forces (recall that in the flexibility method, redundant forces are the primary unknowns as opposed to displacements in the stiffness method) by solving the lower partition of Eq. 7.10:

\[
\{F_x\} = -[D_{xx}]^{-1} [D_{xp}] \{P\}
\] \hspace{1cm} (7.14)

7.2.2 Solution of Internal Forces and Reactions

The internal forces and reactions can in turn be obtained through Eq. 6.16:

\[
\{F_0\} = [C_1] \{P\} + [C_2] \{F_x\}
\] \hspace{1cm} (7.15)

which is combined with Eq. 7.14 to yield:

\[
\{F_0\} = \left[[C_1] - [C_2] [D_{xx}]^{-1} [D_{xp}] \right] \{P\}
\] \hspace{1cm} (7.16)

7.2.3 Solution of Joint Displacements

Joint displacements are in turn obtained by considering the top partition of Eq. 7.10:

\[
\{\Delta_p\} = \left[[D_{pp}] - [D_{px}] [D_{xx}]^{-1} [D_{xp}] \right] \{P\}
\] \hspace{1cm} (7.17)

Example 7-1: Flexibility Method

Solve for the internal forces and displacements of joint 2 of the truss in example 6.1.1. Let \(H = 0.75L\) and assign area \(A\) to members 3 and 5, and 0.5\(A\) to members 1, 2, and 4. Let \(f_5\) be the redundant force, and use the \([C_1]\) and \([C_2]\) matrices previously derived.

Solution:

\(C = \frac{L}{\sqrt{L^2 + H^2}} = 0.8\) and \(S = \frac{H}{\sqrt{L^2 + H^2}} = 0.6\)

From Eq. 7.5 we obtain

\[
\left\{ \begin{array}{c} \Upsilon_0 \\ \Upsilon_x \end{array} \right\} = \left[\begin{array}{cc} \frac{d_0}{d_{xx}} & 0 \\ 0 & \frac{d_c}{d_{xx}} \end{array} \right] \left\{ \begin{array}{c} F_0 \\ F_x \end{array} \right\}
\] \hspace{1cm} (7.18-a)
\[
\begin{pmatrix}
 u_1 \\
v_1 \\
\Delta e_2 \\
\Delta e_1 \\
\Delta e_3 \\
u_4 \\
v_4 \\
\Delta e_5
\end{pmatrix}
= \frac{L}{AE}
\begin{bmatrix}
 0 & 0 & 2 & 1.5 & 1.25 \\
 0 & 1.5 & 0 & 1.25 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
-1 & 0 & 1.25 & -0.75 & 0 \\
0 & 0 & 0 & -0.75 & 0 \\
-1 & 0 & 0 & 0 & -0.75
\end{bmatrix}
\begin{pmatrix}
R_{x1} \\
R_{y1} \\
f_2 \\
f_1 \\
f_3 \\
f_4 \\
R_{x4} \\
R_{y4} \\
f_5
\end{pmatrix}
\] (7.18-b)

From Example 6.1.1 we have

\[
[C_1] = \begin{bmatrix}
1 & 0 \\
S/C & 1 \\
-1 & 0 \\
0 & 1 \\
1/C & 0 \\
-S/C & 0 \\
0 & 0 \\
-S/C & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
0.75 & 1 \\
-1 & 0 \\
0 & 1 \\
1.25 & 0 \\
-0.75 & 0 \\
0 & 0 \\
-0.75 & 0
\end{bmatrix}
\quad [C_2] = \begin{bmatrix}
C \\
-C \\
-S \\
1 \\
-S \\
-C \\
0 \\
0
\end{bmatrix}
\] (7.19)

From Eq. 7.11

\[
[D_{pp}] = [C_1]^t [d_{00}] [C_1] = \frac{L}{AE}
\begin{bmatrix}
4.797 & 0 \\
0 & 1.50
\end{bmatrix}
\] (7.20)

From Eq. 7.12

\[
[D_{px}] = [C_1]^t [d_{00}] [C_2] = \frac{L}{AE}
\begin{bmatrix}
3.838 \\
-0.900
\end{bmatrix}
\] (7.21)

From Eq. 7.13

\[
[D_{xx}] = [C_2]^t [d_{00}] [C_2] + [d_{xx}] = \frac{L}{AE}(4.860)
\] (7.22)

We can now solve for the redundant force \(f_5\) from Eq. 7.14

\[
\left\{F_x\right\} = -[D_{xx}]^{-1} [D_{xp}] \left\{P\right\} = -\frac{1}{4.860} \begin{bmatrix} 3.8387 \end{bmatrix} - 0.900 \begin{bmatrix} P_{x2} \\
0
\end{bmatrix}
\] (7.23-a)

\[
f_5 = -0.790 P_{x2} + 0.185 P_{y2}
\] (7.23-b)

The nonredundant forces are now obtained from Eq. 7.16

\[
\left\{F_0\right\} = \left[C_1 - [C_2] [D_{xx}]^{-1} [D_{xp}]\right] \left\{P\right\}
\] (7.24-a)
\[
\begin{bmatrix}
R_{x1} \\
R_{y1} \\
f_2 \\
f_1 \\
f_3 \\
f_4 \\
R_{x4} \\
R_{y4} \\
f_5
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
0.75 & 1 \\
-1 & 0 \\
0 & 1 \\
1.25 & 0 \\
-0.75 & 0 \\
0 & 0 \\
-0.75 & 0 \\
0.368 & 0.148 \\
0.75 & 1.000 \\
-0.368 & -0.148 \\
0.474 & 0.889 \\
0.460 & 0.185 \\
-0.276 & -0.111 \\
0.632 & -0.148 \\
-0.750 & 0
\end{bmatrix}
\begin{bmatrix}
P_{x2} \\
P_{y2}
\end{bmatrix}
\] (7.24-b)

\[
\begin{bmatrix}
P_{x2} \\
P_{y2}
\end{bmatrix}
= \begin{bmatrix}
0.632 & -0.148 \\
-0.632 & 0.148 \\
-0.474 & 0.111 \\
0.790 & -0.185 \\
-0.474 & 0.111 \\
0.632 & 0.148 \\
0.790 & -0.185 \\
-0.474 & 0.111 \\
0.790 & -0.185 \\
-0.474 & 0.111 \\
0.632 & 0.148 \\
0.790 & -0.185 \\
-0.474 & 0.111 \\
0.632 & 0.148
\end{bmatrix}
\begin{bmatrix}
P_{x2} \\
P_{y2}
\end{bmatrix}
\] (7.24-c)

Finally, the displacements are obtained from Eq. 7.17

\[
\{\Delta_p\} = \begin{bmatrix} D_{pp} \end{bmatrix} - \begin{bmatrix} D_{px} \end{bmatrix} \begin{bmatrix} D_{xx} \end{bmatrix}^{-1} \begin{bmatrix} D_{xp} \end{bmatrix} \{P\}
\] (7.25-a)

\[
\begin{bmatrix}
u_2 \\
v_2
\end{bmatrix}
= \frac{L}{AE} \begin{bmatrix}
4.797 & 0 \\
0 & 1.500
\end{bmatrix} - \frac{1}{4.860} \begin{bmatrix}
14.730 & -3.454 \\
-3.454 & 0.810
\end{bmatrix} \begin{bmatrix}
P_{x2} \\
P_{y2}
\end{bmatrix}
\] (7.25-b)

\[
\begin{bmatrix}
u_2 \\
v_2
\end{bmatrix}
= \frac{L}{AE} \begin{bmatrix}
1.766 & 0.711 \\
0.711 & 1.333
\end{bmatrix} \begin{bmatrix}
P_{x2} \\
P_{y2}
\end{bmatrix}
\] (7.25-c)

It should be noted that whereas we have used the flexibility method in its algorithmic implementation (as it would lead itself to computer implementation) to analyse this simple problem, the solution requires a formidable amount of matrix operations in comparison with the “classical” (hand based) flexibility method.

\section{7.3 Stiffness Flexibility Relations}

Having introduced both the stiffness and flexibility methods, we shall rigorously consider the relationship among the two matrices \([k]\) and \([d]\) at the structure level.

Let us generalize the stiffness relation by partitioning it into two groups: 1) subscript ‘s’ for
those d.o.f.'s which are supported, and 2) subscript 'f' for those dof which are free.

\[
\begin{bmatrix}
P_f \\
P_s
\end{bmatrix} =
\begin{bmatrix}
k_{ff} & k_{fs} \\
k_{sf} & k_{ss}
\end{bmatrix}
\begin{bmatrix}
\Delta_f \\
\Delta_s
\end{bmatrix}
\]

(7.26)

7.3.1 From Stiffness to Flexibility

To obtain \([d]\) the structure must be supported in a stable and statically determinate way, as for the beam in Fig. 7.1. for which we would have:

\[
\begin{bmatrix}
\Delta_f \\
\Delta_s
\end{bmatrix} =
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
v_1 \\
v_2 \\
M_1 \\
M_2 \\
V_1 \\
V_2
\end{bmatrix}
\]

(7.27-7.30)

Since \(\{\Delta_s\} = \{0\}\) the above equation reduces to:

\[
\begin{bmatrix}
P_f \\
P_s
\end{bmatrix} =
\begin{bmatrix}
k_{ff} & k_{fs} \\
k_{sf} & k_{ss}
\end{bmatrix}
\begin{bmatrix}
\Delta_f
\end{bmatrix}
\]

(7.31)

and we would have:

\[
\begin{bmatrix}
P_f
\end{bmatrix} = [k_{ff}] \{\Delta_f\}
\]

(7.32)

\[
[d] = [k_{ff}]^{-1}
\]

(7.33)

Example 7-2: Flexibility Matrix
7.3 Stiffness Flexibility Relations

![Image](7.3 Stiffness Flexibility Relations)

Figure 7.2: Example 1, \([k] \rightarrow [d]\)

From Fig. 7.2

\[
\begin{bmatrix}
M_1 \\
M_2
\end{bmatrix} = \frac{EI}{L} \begin{bmatrix}
4 & 2 \\
2 & 4
\end{bmatrix} \begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}
\]

(7.34)

\([k_{ff}]^{-1} = [d] = \frac{L}{EI} \begin{bmatrix}
4 & -2 \\
-2 & 4
\end{bmatrix} = \frac{L}{6EI} \begin{bmatrix}
2 & -1 \\
-1 & 2
\end{bmatrix}
\]

(7.35)

7.3.2 From Flexibility to Stiffness

16 \([k_{ff}]\): From Eq. 7.26, \([k]\) was subdivided into free and supported d.o.f.'s, and we have shown that \([k_{ff}] = [d]^{-1}\), or \([P_f] = [k_{ff}] \{A_f\}\) but we still have to determine \([k_{fs}], [k_{sf}], \) and \([k_{ss}]\).

17 \([k_{sf}]\): Since \([d]\) is obtained for a stable statically determinate structure, we have:

\[
\{P_s\} = [B] \{P_f\}
\]

(7.36)

\[
\{P_s\} = [B][k_{ff}] \{A_f\}
\]

(7.37)

\[
[k_{sf}] = [B][d]^{-1}
\]

(7.38)

18 \([k_{fs}]\): Equating the external to the internal work:

1. External work: \(W_{ext} = \frac{1}{2} \{A_f\} [P_f]\)

2. Internal work: \(W_{int} = \frac{1}{2} [P_s] \{A_s\}\)

Equating \(W_{ext}\) to \(W_{int}\) and combining with

\[
[P_s] = [A_f][k_{sf}]^T
\]

(7.39)

from Eq. 7.26 with \(\{A_s\} = \{0\}\) (zero support displacements) we obtain:

\[
[k_{fs}] = [k_{sf}]^T = [d]^{-1} [B]^T
\]

(7.40)
19 \([k_{ss}]\): This last term is obtained from

\[
\{P_s\} = [B] \{P_f\} \quad (7.41)
\]

\[
\{P_f\} = [k_{fs}] \{\Delta_s\} \quad (7.42)
\]

\[
[k_{fs}] = [d]^{-1} [B]^T \quad (7.43)
\]

Combining Eqns. 7.42, 7.41, and 7.43 we obtain:

\[
\{P_s\} = [B][d]^{-1}[B]^T \{\Delta_s\} \quad (7.44)
\]

20 In summary we have:

\[
[k] = \begin{bmatrix}
[d]^{-1} & [d]^{-1}[B]^T \\
[B][d]^{-1} & [B][d]^{-1}[B]^T
\end{bmatrix} \quad (7.45)
\]

21 A very important observation, is that the stiffness matrix is obviously singular, since the second “row” is linearly dependent on the first one (through \([B]\)) and thus, its determinant is equal to zero.

Example 7-3: Flexibility to Stiffness

With reference to Fig. 7.2, and with both \(M_1\) and \(M_2\) assumed to be positive (ccw):

1. The flexibility matrix is given by:

\[
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix} = \frac{L}{6EI} \begin{bmatrix}
2 & -1 \\
-1 & 2
\end{bmatrix} \begin{bmatrix}
M_1 \\
M_2
\end{bmatrix} \quad (7.46)
\]

2. The statics matrix \([B]\) relating external to internal forces is given by:

\[
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} = \frac{1}{L} \begin{bmatrix}
1 & 1 \\
-1 & -1
\end{bmatrix} \begin{bmatrix}
M_1 \\
M_2
\end{bmatrix} \quad (7.47)
\]

3. \([k_{ff}]\): would simply be given by:

\[
[k_{ff}] = [d]^{-1} = \frac{EI}{L} \begin{bmatrix}
4 & 2 \\
2 & 4
\end{bmatrix} \quad (7.48)
\]
7.4 Stiffness Matrix of a Curved Element

4. \([k_{fs}]\): The upper off-diagonal
\[
[k_{fs}] = [d]^{-1} [B]^T = \frac{EI}{L} \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \frac{1}{L} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \frac{EI}{L^2} \begin{bmatrix} 6 & -6 \\ 6 & -6 \end{bmatrix}
\] (7.49)

5. \([k_{sf}]\): Lower off-diagonal term
\[
[k_{sf}] = [B][d]^{-1} = \frac{1}{L} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \frac{EI}{L} \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} = \frac{EI}{L^2} \begin{bmatrix} 6 & 6 \\ -6 & -6 \end{bmatrix}
\] (7.50)

6. \([k_{ss}]\):
\[
[k_{ss}] = [B][d]^{-1}[B]^T = [k_{sf}][B]^T
\]
\[
= \frac{EI}{L^2} \frac{1}{L} \begin{bmatrix} 6 & 6 \\ -6 & -6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \frac{EI}{L^3} \begin{bmatrix} 12 & -12 \\ -12 & 12 \end{bmatrix}
\] (7.51)

Let us observe that we can rewrite:
\[
\begin{bmatrix} M_1 \\ M_2 \\ V_1 \\ V_2 \end{bmatrix} = \frac{EI}{L^3} \begin{bmatrix} 4L^2 & 2L^2 & 6l & -6l \\ 2L^2 & 4L^2 & 6l & -6l \\ 6l & 6l & 12 & -12 \\ -6l & -6l & -12 & 12 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ v_1 \\ v_2 \end{bmatrix}
\] (7.53)

If we rearrange the stiffness matrix we would get:
\[
\begin{bmatrix} V_1 \\ M_1 \\ V_2 \\ M_2 \end{bmatrix} = \frac{EI}{L} \begin{bmatrix} 12 & L & 6 & L \\ L & 12 & L & 6 \\ 6L & 6L & 4 & L \\ 6L & 6L & 2L & 4 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ v_1 \\ v_2 \end{bmatrix}
\] (7.54)

and is the same stiffness matrix earlier derived.

7.4 Stiffness Matrix of a Curved Element

We seek to determine the stiffness matrix of a circular arc of radius \(R\) and sustaining an angle \(\theta\).

First, we determine the flexibility matrix of a cantilevered arc from
\[
\delta U = \int_s \delta M \frac{M}{EI} dx = \frac{R}{EI} \int_0^\theta \delta M M d\phi
\] (7.55)
where M is the real moment at arbitrary point A caused by loads and δM is the virtual moment at A caused by unit load.

The flexibility matrix will thus be given by:

$$
\begin{bmatrix}
u \\
v \\
\theta
\end{bmatrix} =
\begin{bmatrix}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{bmatrix}
\begin{bmatrix}
N \\
V \\
M
\end{bmatrix}
$$

and

\begin{align}
M &= M_3 + N(R - R \cos \phi) + V(R_2 \sin \phi) \\
\delta M &= 1_3 = R(1 - \cos_1 \phi) + R \sin_2 \phi \\
f_{ij} &= \text{Disp. in DOF caused by unit load in } DOF_j \\
f_{11} &= \frac{R}{EI} \int_0^\theta \delta M p_1 \cdot M D_1 d\phi \\
&= \frac{R}{EI} \int_0^\theta R^2 (1 - \cos \phi)^2 d\phi \\
&= \frac{R^3}{EI} \int_0^\theta (1 - 2 \cos \phi + \cos^2 \phi) d\phi \\
&= \frac{R^3}{EI} \left[\phi - 2 \sin \phi + \phi/2 = 1/4 \sin 2\phi \right]_0^\theta \\
&= \frac{R^3}{EI} \left[\frac{3}{2} \theta - 2 \sin \theta + \frac{1}{4} \sin 2\theta \right] \\
f_{12} &= f_{21} = \frac{R}{EI} \int_0^\theta R^2 \sin \phi (1 - \cos \phi) d\phi \\
&= \frac{R^3}{EI} \int_0^\theta (\sin \phi - \cos \phi \sin \phi) d\phi \\
&= \frac{R^3}{EI} \left[- \cos \phi - \frac{1}{2} \sin^2 \phi \right]_0^\theta \\
&= \frac{R^3}{EI} \left[- \cos \phi - \frac{1}{2} \sin^2 \theta \right] - \left[\cos \phi \right]_0^\theta \\
&= \frac{R^3}{EI} \left[1 - \cos \theta - \frac{1}{2} \sin^2 \theta \right] \\
f_{13} &= f_{31} = \frac{R}{EI} \int_0^\theta R(1 - \cos \phi) d\phi \\
&= \frac{R^2}{EI} \left[\phi - \sin \phi \right]_0^\theta \\
&= \frac{R^2}{EI} \left[1 - \sin \theta \right] \\
f_{22} &= \frac{R}{EI} \int_0^\theta R^2 \sin^2 \phi d\phi \\
&= \frac{R^3}{EI} \left[\sin \phi \right]_0^\theta \\
&= \frac{R^3}{EI} \left[\frac{1}{2} \sin 2\phi \right]_0^\theta \\
&= \frac{R^3}{EI} \left[\sin \phi \right]_0^\theta \\
&= \frac{R^3}{EI} \left[\frac{1}{2} \sin 2\theta \right]_0^\theta \\
\end{align}
7.5 Duality between the Flexibility and the Stiffness Methods

\[R \frac{d^3}{d \theta^3} \left[\phi - \frac{1}{4} \sin 2\theta \right] \bigg|_0 = \left(7.57-r \right) \]

\[f_{23} = f_{32} = R \frac{d}{d \theta} \int_0^\theta R \sin \phi d\phi \quad \left(7.57-t \right) \]

\[f_{33} = R \frac{d}{d \theta} \int_0^\theta \sin \phi d\phi \quad \left(7.57-w \right) \]

7.5 Duality between the Flexibility and the Stiffness Methods

<table>
<thead>
<tr>
<th>Indeterminancy</th>
<th>Static</th>
<th>Kinematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Unknowns</td>
<td>Nodal Forces</td>
<td>Nodal Displacements</td>
</tr>
<tr>
<td>Variational Principle</td>
<td>Virtual Force</td>
<td>Virtual Displacement</td>
</tr>
<tr>
<td>{ p } = { B^t } { P }</td>
<td>{ \delta } = { \Gamma } { \Delta }</td>
<td></td>
</tr>
</tbody>
</table>

\[D = B^t [d] B \]

\[k = \Sigma \{ \Gamma \} [k] \{ \Gamma \} \]

\[\{ \Delta_P \} = D_{11}^{-1} \{ \{ \Delta_R \} - D_{21} \{ p \} \} \]

\[\{ \Delta_f \} = K_{ff}^{-1} \{ \{ P \} - k_{frf} \{ \Delta_r \} \} \]

\[\{ \Delta_P \} = D_{11}^{-1} \{ \{ P \} + D_{12} \{ R \} \} \]

\[\{ \Delta_f \} = K_{ff}^{-1} \{ \{ P \} + k_{frf} \{ \Delta_r \} \} \]

\[\{ p \} = \{ B \} \{ P \} \]

\[\{ p \} = \{ k \} \{ \Gamma \} \{ \Delta \} \]
Part II

Introduction to Finite Elements
Chapter 8

REVIEW OF ELASTICITY

8.1 Stress

A stress, Fig 8.1 is a second order cartesian tensor, σ_{ij} where the 1st subscript (i) refers to the direction of outward facing normal, and the second one (j) to the direction of component force.

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$ (8.1)

Figure 8.1: Stress Components on an Infinitesimal Element
8.2 The stress tensor is symmetric $\sigma_{ij} = \sigma_{ji}$; this can easily be proved through rotational equilibrium.

8.1.1 Stress Traction Relation

3 The relation between stress tensor σ_{ij} at a point and the stress vector t_i (or traction) on a plane of arbitrary orientation, can be established through the following, Fig. 8.2.

![Figure 8.2: Stress Traction Relations](image)

$$t_i = n_j \sigma_{ij}$$

$$\begin{bmatrix} t_1 & t_2 & t_3 \end{bmatrix} = \begin{bmatrix} n_1 & n_2 & n_3 \end{bmatrix} \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

where \mathbf{n} is a unit outward vector normal to the plane.

4 Note that the stress is defined at a point, and a traction is defined at a point and with respect to a given plane orientation.

5 When expanded in cartesian coordinates, the previous equation yields

$$
\begin{align*}
t_x &= \sigma_{xx}n_x + \sigma_{xy}n_y + \sigma_{xz}n_z \\
t_y &= \sigma_{yx}n_x + \sigma_{yy}n_y + \sigma_{yz}n_z \\
t_z &= \sigma_{zx}n_x + \sigma_{zy}n_y + \sigma_{zz}n_z
\end{align*}
$$
8.2 Strain

6 Given the displacement u_i of a point, the strain ε_{ij} is defined as

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

(8.5)

or

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

(8.6)

7 When expanded in 2D, this equation yields:

$$\varepsilon_{11} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_1} + \frac{\partial u_1}{\partial x_1} \right) = \frac{\partial u_1}{\partial x_1}$$

(8.7-a)

$$\varepsilon_{12} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) = \frac{\gamma_{12}}{2}$$

(8.7-b)

$$\varepsilon_{22} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_2} + \frac{\partial u_2}{\partial x_2} \right) = \frac{\partial u_2}{\partial x_2}$$

(8.7-c)

$$\varepsilon_{21} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} \right) = \frac{\gamma_{21}}{2}$$

(8.7-d)

8 Initial (or thermal strain)

$$\varepsilon_{ij} = \begin{cases} \alpha \Delta T \\ \alpha \Delta T \\ 0 \end{cases} = (1 + \nu) \begin{cases} \alpha \Delta T \\ \alpha \Delta T \\ 0 \end{cases}$$

Plane Stress Plane Strain

(8.8)

note there is no shear strains caused by thermal expansion.

9 The strain may also be expressed as

$$\varepsilon = \mathbf{L} \mathbf{u}$$

(8.9)

or

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \\ \varepsilon_{xz} \\ \varepsilon_{yz} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$

(8.10)
8.3 Fundamental Relations in Elasticity

8.3.1 Equation of Equilibrium

Starting with the set of forces acting on an infinitesimal element of dimensions \(dx_1 \times dx_2 \times dx_3 \), Fig. 8.3 and writing the summation of forces, will yield

\[
\sigma_{ij,j} + \rho b_i = 0
\]

(8.11)

where \(\rho \) is the density, \(b_i \) is the body force (including inertia).

Figure 8.3: Equilibrium of Stresses, Cartesian Coordinates

When expanded in 3D, this equation yields:

\[
\frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} + \rho b_1 = 0
\]

\[
\frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3} + \rho b_2 = 0
\]

(8.12-a)

\[
\frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} + \rho b_3 = 0
\]
Alternatively, the equation of equilibrium can be written as

\[
L^T \sigma + b = 0
\]

or

\[
\begin{bmatrix}
\frac{\partial}{\partial x} & 0 & 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial z} & 0 \\
0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial z} & 0 \\
0 & 0 & \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y}
\end{bmatrix}
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\sigma_{xy} \\
\sigma_{xz} \\
\sigma_{yz}
\end{bmatrix}
+ \begin{bmatrix}
b_x \\
b_y \\
b_z
\end{bmatrix} = 0
\]

(8.14)

8.3.2 Compatibility Equation

If \(\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \) then we have six differential equations (in 3D the strain tensor has a total of 9 terms, but due to symmetry, there are 6 independent ones) for determining (upon integration) three unknowns displacements \(u_i \). Hence the system is overdetermined, and there must be some linear relations between the strains.

It can be shown (through appropriate successive differentiation of Eq. ??) that the compatibility relation for strain reduces to:

\[
\frac{\partial^2 \varepsilon_{ik}}{\partial x_j \partial x_j} + \frac{\partial^2 \varepsilon_{jj}}{\partial x_i \partial x_k} - \frac{\partial^2 \varepsilon_{jk}}{\partial x_i \partial x_j} - \frac{\partial^2 \varepsilon_{ij}}{\partial x_j \partial x_k} = 0.
\]

(8.16)

In 3D, this would yield 9 equations in total, however only six are distinct. In 2D, this results in (by setting \(i = 2, j = 1 \) and \(l = 2 \)):

\[
\frac{\partial^2 \varepsilon_{11}}{\partial x_2^2} + \frac{\partial^2 \varepsilon_{22}}{\partial x_1^2} = \frac{\partial^2 \gamma_{12}}{\partial x_1 \partial x_2}
\]

(8.17)

(recall that \(2 \varepsilon_{12} = \gamma_{12} \)).

When the compatibility equation is written in terms of the stresses, it yields:

\[
\frac{\partial^2 \sigma_{11}}{\partial x_2^2} - \nu \frac{\partial^2 \sigma_{22}}{\partial x_2^2} + \frac{\partial^2 \sigma_{22}}{\partial x_1^2} - \nu \frac{\partial^2 \sigma_{11}}{\partial x_1^2} = 2 (1 + \nu) \frac{\partial^2 \sigma_{21}}{\partial x_1 \partial x_2}
\]

(8.18)
8.4 Stress-Strain Relations in Elasticity

The Generalized Hooke’s Law can be written as:

\[\sigma_{ij} = D_{ijkl} \varepsilon_{kl} \quad i, j, k, l = 1, 2, 3 \]

(8.19)

The (fourth order) tensor of elastic constants \(C_{ijkl} \) has 81 \((3^4)\) components however, due to the symmetry of both \(\sigma \) and \(\varepsilon \), there are at most 36 \(\left(\frac{9(9-1)}{2} \right) \) distinct elastic terms.

For the purpose of writing Hooke’s Law, the double indexed system is often replaced by a simple indexed system with a range of six:

\[\sigma_k = D_{km} \varepsilon_m \quad k, m = 1, 2, 3, 4, 5, 6 \]

(8.20)

For isotropic bodies (elastic properties independent of reference system used to describe it), it can be shown that the number of independent elastic constants is two. The stress strain relations can be written in terms of \(E \) and \(\nu \) as:

\[
\varepsilon_{ij} = \frac{1 + \nu}{E} \sigma_{ij} - \frac{\nu}{E} \delta_{ij} \sigma_{kk} \quad (8.21)
\]

\[
\sigma_{ij} = \frac{E}{1 + \nu} \left(\varepsilon_{ij} + \frac{\nu}{1 - 2\nu} \delta_{ij} \varepsilon_{kk} \right) \quad (8.22)
\]

where \(\delta_{ij} \) is the kroneker delta and is equal to 1 if \(i = j \) and to 0 if \(i \neq j \). When the strain equation is expanded in 3D cartesian coordinates it would yield:

\[
\varepsilon_{xy} = \frac{1}{E} [\sigma_{xx} - \nu(\sigma_{yy} + \sigma_{zz})]
\]

\[
\varepsilon_{yy} = \frac{1}{E} [\sigma_{yy} - \nu(\sigma_{zz} + \sigma_{xx})]
\]

\[
\varepsilon_{zz} = \frac{1}{E} [\sigma_{zz} - \nu(\sigma_{xx} + \sigma_{yy})]
\]

\[
\varepsilon_{xy} = \frac{E}{1 + \nu} \sigma_{xy}
\]

\[
\varepsilon_{yz} = \frac{E}{1 + \nu} \sigma_{yz}
\]

\[
\varepsilon_{zx} = \frac{E}{1 + \nu} \sigma_{zx}
\]

(8.23)

When the stress equation is expanded in 3D cartesian coordinates, it will yield:

\[
\sigma_{xx} = \frac{E}{(1 - 2\nu)(1 + \nu)} \left[(1 - \nu)\varepsilon_{xx} + \nu(\varepsilon_{yy} + \varepsilon_{zz}) \right]
\]

\[
\sigma_{yy} = \frac{E}{(1 - 2\nu)(1 + \nu)} \left[(1 - \nu)\varepsilon_{yy} + \nu(\varepsilon_{zz} + \varepsilon_{xx}) \right]
\]

\[
\sigma_{zz} = \frac{E}{(1 - 2\nu)(1 + \nu)} \left[(1 - \nu)\varepsilon_{zz} + \nu(\varepsilon_{xx} + \varepsilon_{yy}) \right]
\]

\[
\sigma_{xy} = \mu \gamma_{xy}
\]

\[
\sigma_{yz} = \mu \gamma_{yz}
\]

\[
\sigma_{zx} = \mu \gamma_{zx}
\]

(8.24)
where μ is the shear modulus and $\gamma_{xy} = 2\varepsilon_{xy}$.

23 In terms of Lamé constant we would have

$$
\begin{align*}
\sigma_{ij} &= \lambda \varepsilon_{ij} \delta_{ij} + 2\mu \varepsilon_{ij} \\
\varepsilon_{ij} &= \frac{1}{2\mu} \left(\sigma_{ij} - \lambda \delta_{ij} \frac{\sigma_{kk}}{3\lambda + 2\mu} \right)
\end{align*}
$$

(8.25) (8.26)

where

$$
\begin{align*}
\lambda &= \frac{\nu E}{(1 + \nu)(1 - 2\nu)} \\
\mu &= \frac{E}{2(1 + \nu)}
\end{align*}
$$

(8.27) (8.28)

24 In terms of initial stresses and strains

$$
\sigma_{ij} = D_{ijkl}(\varepsilon_{kl} - \varepsilon_{kl}^0) + \sigma_{ij}^0
$$

(8.29)

8.5 Strain Energy Density

25 Any elastically deforming body possesses a uniquely defined strain energy\(^1\) density which can be expressed as:

$$
U_0 = \int_0^\varepsilon \sigma_{ij} d\varepsilon_{ij} = \frac{1}{2} \sigma_{ij} \varepsilon_{ij} = \frac{1}{2} D_{ijkl} \varepsilon_{ij} \varepsilon_{kl}
$$

(8.30)

8.6 Summary

26 Fig. 8.4 illustrates the fundamental equations in solid mechanics.

\(^1\)Used in the evaluation of Energy release rate later on.
Figure 8.4: Fundamental Equations in Solid Mechanics
Chapter 9

VARIATIONAL AND ENERGY METHODS

9.1 † Variational Calculus; Preliminaries

From Pilkey and Wunderlich book

9.1.1 Euler Equation

1 The fundamental problem of the calculus of variation\(^1\) is to find a function \(u(x)\) such that

\[
\Pi = \int_a^b F(x, u, u') \, dx
\]

(9.1)

is stationary. Or,

\[
\delta \Pi = 0
\]

(9.2)

where \(\delta\) indicates the variation

2 We define \(u(x)\) to be a function of \(x\) in the interval \((a, b)\), and \(F\) to be a known function (such as the energy density).

3 We define the domain of a functional as the collection of admissible functions belonging to a class of functions in function space rather than a region in coordinate space (as is the case for a function).

4 We seek the function \(u(x)\) which extremizes \(\Pi\).

\(^1\)Differential calculus involves a function of one or more variable, whereas variational calculus involves a function of a function, or a functional.
Letting \(\hat{u} \) to be a family of neighbouring paths of the extremizing function \(u(x) \) and we assume that at the end points \(x = a, b \) they coincide. We define \(\hat{u} \) as the sum of the extremizing path and some arbitrary variation, Fig. 9.1.

\[
\hat{u}(x, \varepsilon) = u(x) + \varepsilon \eta(x) = u(x) + \delta u(x) \tag{9.3}
\]

where \(\varepsilon \) is a small parameter, and \(\delta u(x) \) is the variation of \(u(x) \)

\[
\delta u = \hat{u}(x, \varepsilon) - u(x) \tag{9.4-a}
\]

\[
= \varepsilon \eta(x) \tag{9.4-b}
\]

and \(\eta(x) \) is twice differentiable, has undefined amplitude, and \(\eta(a) = \eta(b) = 0 \). We note that \(\hat{u} \) coincides with \(u \) if \(\varepsilon = 0 \)

It can be shown that the variation and derivation operators are commutative

\[
\frac{d}{dx}(\delta u) = \frac{d}{dx}(\delta u) = \delta \left(\frac{du}{dx} \right) \tag{9.5}
\]

Furthermore, the variational operator \(\delta \) and the differential calculus operator \(d \) can be similarly used, i.e.

\[
\delta(u')^2 = 2u'\delta u' \tag{9.6-a}
\]

\[
\delta(u + v) = \delta u + \delta v \tag{9.6-b}
\]

\[
\delta \left(\int u \, dx \right) = \int (\delta u) \, dx \tag{9.6-c}
\]

\[
\delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y \tag{9.6-d}
\]
however, they have clearly different meanings. du is associated with a neighbouring point at a distance dx, however δu is a small arbitrary change in u for a given x (there is no associated δx).

8 For boundaries where u is specified, its variation must be zero, and it is arbitrary elsewhere. The variation δu of u is said to undergo a virtual change.

9 To solve the variational problem of extremizing Π, we consider

$$\Pi(u + \varepsilon \eta) = \Phi(\varepsilon) = \int_a^b F(x, u + \varepsilon \eta, u' + \varepsilon \eta')dx$$

(9.7)

10 Since $\tilde{u} \to u$ as $\varepsilon \to 0$, the necessary condition for Π to be an extremum is

$$\frac{d\Phi(\varepsilon)}{d\varepsilon} \bigg|_{\varepsilon=0} = 0$$

(9.8)

11 From Eq. 9.3 $\tilde{u} = u + \varepsilon \eta$, and $\tilde{u}' = u' + \varepsilon \eta'$, and applying the chain rule

$$\frac{d\Phi(\varepsilon)}{d\varepsilon} = \int_a^b \left(\frac{\partial F}{\partial \tilde{u}} \frac{d\tilde{u}}{d\varepsilon} + \frac{\partial F}{\partial \tilde{u}'} \frac{d\tilde{u}'}{d\varepsilon} \right) dx = \int_a^b \left(\eta \frac{\partial F}{\partial \tilde{u}} + \eta' \frac{\partial F}{\partial \tilde{u}'} \right) dx$$

(9.9)

for $\varepsilon = 0$, $\tilde{u} = u$, thus

$$\frac{d\Phi(\varepsilon)}{d\varepsilon} \bigg|_{\varepsilon=0} = \int_a^b \left(\eta \frac{\partial F}{\partial u} + \eta' \frac{\partial F}{\partial u'} \right) dx = 0$$

(9.10)

Integration by part (Eq. 5.1 and 5.1) of the second term leads to

$$\int_a^b \left(\eta \frac{\partial F}{\partial u'} \right) dx = \eta \frac{\partial F}{\partial u} \bigg|_a^b - \int_a^b \eta \left(\frac{d}{dx} \frac{\partial F}{\partial u'} \right) dx$$

(9.11)

Using the end conditions $\eta(a) = \eta(b) = 0$, Eq. 9.10 leads to

$$\int_a^b \eta(x) \left(\frac{\partial F}{\partial u} - \frac{d}{dx} \frac{\partial F}{\partial u'} \right) dx = 0$$

(9.12)

12 The fundamental lemma of the calculus of variation states that for continuous $\Psi(x)$ in $a \leq x \leq b$, and with arbitrary continuous function $\eta(x)$ which vanishes at a and b, then

$$\int_a^b \eta(x) \Psi(x) dx = 0 \iff \Psi(x) = 0$$

(9.13)

Thus,

$$\frac{\partial F}{\partial u} - \frac{d}{dx} \frac{\partial F}{\partial u'} = 0$$

(9.14)
This differential equation is called the **Euler equation** associated with Π and is a necessary condition for $u(x)$ to extremize Π.

Generalizing for a functional Π which depends on two field variables, $u = u(x, y)$ and $v = v(x, y)$

$$\Pi = \int \int F(x, y, u, v, u_x, u_y, v_x, v_y, \cdots, v_{yy}) \, dx \, dy$$ \hspace{1cm} (9.15)

There would be as many Euler equations as dependent field variables

$$\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \frac{\partial F}{\partial u_x} + \frac{\partial^2}{\partial x^2} \frac{\partial F}{\partial u_{xx}} + \frac{\partial^2}{\partial x^2 \partial y} \frac{\partial F}{\partial u_{xx}} + \frac{\partial^2}{\partial y^2} \frac{\partial F}{\partial u_{yy}} = 0$$ \hspace{1cm} (9.16)

We note that the Functional and the corresponding Euler Equations, Eq. 9.1 and 9.14, or Eq. 9.15 and 9.16 describe the same problem.

The Euler equations usually correspond to the governing differential equation and are referred to as the **strong form** (or classical form).

The functional is referred to as the **weak form** (or generalized solution). This classification stems from the fact that equilibrium is enforced in an average sense over the body (and the field variable is differentiated m times in the weak form, and $2m$ times in the strong form).

It can be shown that in the principle of virtual displacements, the Euler equations are the equilibrium equations, whereas in the principle of virtual forces, they are the compatibility equations.

Euler equations are differential equations which can not always be solved by exact methods. An alternative method consists in bypassing the Euler equations and go directly to the variational statement of the problem to the solution of the Euler equations.

Finite Element formulation are based on the weak form, whereas the formulation of Finite Differences are based on the strong form.

We still have to define $\delta \Pi$. The first variation of a functional expression is

$$\delta F = \int_a^b \frac{\partial F}{\partial u} \delta u + \frac{\partial F}{\partial u'} \delta u' \, dx$$

$$\delta \Pi = \int_a^b \left(\frac{\partial F}{\partial u} \delta u + \frac{\partial F}{\partial u'} \delta u' \right) \, dx$$ \hspace{1cm} (9.17)

As above, integration by parts of the second term yields

$$\delta \Pi = \int_a^b \delta u \left(\frac{\partial F}{\partial u} - \frac{d}{dx} \frac{\partial F}{\partial u'} \right) \, dx$$ \hspace{1cm} (9.18)

We have just shown that finding the stationary value of Π by setting $\delta \Pi = 0$ is equivalent to finding the extremal value of Π by setting $\frac{\partial \Phi(\varepsilon)}{\partial \varepsilon} \bigg|_{\varepsilon=0} = 0$ equal to zero.

Similarly, it can be shown that as with second derivatives in calculus, the second variation $\delta^2 \Pi$ can be used to characterize the extremum as either a minimum or maximum.
9.1.2 Boundary Conditions

Revisiting the integration by parts of the second term in Eq. 9.10, we had

\[
\int_a^b \eta' \frac{\partial F}{\partial u'} dx = \eta \frac{\partial F}{\partial u'} \bigg|_a^b - \int_a^b \eta \frac{d}{dx} \frac{\partial F}{\partial u'} dx
\]

(9.19)

We note that

1. Derivation of the Euler equation required \(\eta(a) = \eta(b) = 0 \), thus this equation is a statement of the essential (or forced) boundary conditions, where \(u(a) = u(b) = 0 \).

2. If we left \(\eta \) arbitrary, then it would have been necessary to use \(\frac{\partial F}{\partial u'} = 0 \) at \(x = a \) and \(b \). These are the natural boundary conditions.

For a problem with one field variable, in which the highest derivative in the governing differential equation is of order \(2m \) (or simply \(m \) in the corresponding functional), then we have

Essential (or Forced, or geometric) boundary conditions, involve derivatives of order zero (the field variable itself) through \(m-1 \). Trial displacement functions are explicitly required to satisfy this B.C. Mathematically, this corresponds to **Dirichlet boundary-value problems**.

Nonessential (or Natural, or static) boundary conditions, involve derivatives of order \(m \) and up. This B.C. is implied by the satisfaction of the variational statement but not explicitly stated in the functional itself. Mathematically, this corresponds to **Neuman boundary-value problems**.

Table 9.1 illustrates the boundary conditions associated with some problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Axial Member</th>
<th>Flexural Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Equation</td>
<td>(AE \frac{d^2u}{dx^2} + q = 0)</td>
<td>(EI \frac{d^4w}{dx^4} - q = 0)</td>
</tr>
<tr>
<td>(m)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Essential B.C. ([0, m - 1])</td>
<td>(u)</td>
<td>(w, \frac{dw}{dx})</td>
</tr>
<tr>
<td>Natural B.C. ([m, 2m - 1])</td>
<td>(\frac{du}{dx}) or (\sigma_x = Eu_{,x})</td>
<td>(\frac{d^2w}{dx^2}) and (\frac{d^3w}{dx^3}) or (M = EI w_{,xx}) and (V = EI w_{,xxx})</td>
</tr>
</tbody>
</table>

Table 9.1: Essential and Natural Boundary Conditions

Example 9-1: Extension of a Bar

Victor Saouma
Matrix Structural Analysis
The total potential energy Π of an axial member of length L, modulus of elasticity E, cross sectional area A, fixed at left end and subjected to an axial force P at the right one is given by

$$
\Pi = \int_{0}^{L} \frac{EA}{2} \left(\frac{du}{dx} \right)^{2} \, dx - Pu(L) \tag{9.20}
$$

Determine the Euler Equation by requiring that Π be a minimum.

Solution:

Solution I The first variation of Π is given by

$$
\delta \Pi = \int_{0}^{L} \frac{EA}{2} \left(\frac{du}{dx} \right) \delta \left(\frac{du}{dx} \right) \, dx - P\delta u(L) \tag{9.21}
$$

Integrating by parts we obtain

$$
\delta \Pi = \int_{0}^{L} - \frac{d}{dx} \left(EA \frac{du}{dx} \right) \delta u \, dx + EA \frac{du}{dx} \delta u \bigg|_{0}^{L} - P\delta u(L) \tag{9.22-a}
$$

$$
\delta \Pi = - \int_{0}^{L} \delta u \frac{d}{dx} \left(EA \frac{du}{dx} \right) \, dx + \left[\left(EA \frac{du}{dx} \right) \right]_{x=L} - P \delta u(L) \tag{9.22-b}
$$

The last term is zero because of the specified essential boundary condition which implies that $\delta u(0) = 0$. Recalling that δ in an arbitrary operator which can be assigned any value, we set the coefficients of δu between $(0, L)$ and those for δu at $x = L$ equal to zero separately, and obtain

Euler Equation:

$$
- \frac{d}{dx} \left(EA \frac{du}{dx} \right) = 0 \quad 0 < x < L \tag{9.23}
$$

Natural Boundary Condition:

$$
EA \frac{du}{dx} - P = 0 \quad \text{at} \quad x = L \tag{9.24}
$$

Solution II We have

$$
F(x, u, u') = \frac{EA}{2} \left(\frac{du}{dx} \right)^{2} \tag{9.25}
$$

(note that since P is an applied load at the end of the member, it does not appear as part of $F(x, u, u')$) To evaluate the Euler Equation from Eq. 9.14, we evaluate

$$
\frac{\partial F}{\partial u} = 0 \quad \& \quad \frac{\partial F}{\partial u'} = EAu' \tag{9.26-a}
$$
Thus, substituting, we obtain
\[\frac{\partial F}{\partial u} - \frac{d}{dx} \left(\frac{\partial F}{\partial u'} \right) = 0 \quad \text{Euler Equation (9.27-a)} \]
\[\frac{d}{dx} \left(EA \frac{du}{dx} \right) = 0 \quad \text{B.C. (9.27-b)} \]

Example 9-2: Flexure of a Beam

The total potential energy of a beam is given by
\[\Pi = \int_0^L \left(\frac{1}{2} M \kappa - pw \right) dx = \int_0^L \left(\frac{1}{2} (EI w'') w'' - pw \right) dx \quad (9.28) \]

Derive the first variational of \(\Pi \).

Solution:
Extending Eq. 9.17, and integrating by part twice
\[
\delta \Pi = \int_0^L \delta F dx = \int_0^L \left(\frac{\partial F}{\partial w''} \delta w'' + \frac{\partial F}{\partial w} \delta w \right) dx \quad (9.29-a)
\]
\[= \int_0^L (EI w'' \delta w' - p \delta w) dx \quad (9.29-b) \]
\[= (EI w'' \delta w')|_0^L - \int_0^L [(EI w'')' \delta w' - p \delta w] dx \quad (9.29-c) \]
\[= (EI w'' \delta w')|_0^L - [(EI w'')' \delta w]|_0^L + \int_0^L [(EI w'')'' + p] \delta w dx = 0 \quad (9.29-d) \]

Or
\[(EI w'')'' = -p \quad \text{for all x} \]
which is the governing differential equation of beams and

<table>
<thead>
<tr>
<th>Essential</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta w' = 0)</td>
<td>(EI w'' = -M = 0)</td>
</tr>
<tr>
<td>(\delta w = 0)</td>
<td>((EI w'')' = -V = 0)</td>
</tr>
</tbody>
</table>

at \(x = 0 \) and \(x = L \)
9.2 Work, Energy & Potentials; Definitions

9.2.1 Introduction

27 Work is defined as the product of a force and displacement

\[W \overset{\text{def}}{=} \int_a^b F \, ds \]
\[dW = F_x \, dx + F_y \, dy \]

28 Energy is a quantity representing the ability or capacity to perform work.

29 The change in energy is proportional to the amount of work performed. Since only the change of energy is involved, any datum can be used as a basis for measure of energy. Hence energy is neither created nor consumed.

30 The first law of thermodynamics states

The time-rate of change of the total energy (i.e., sum of the kinetic energy and the internal energy) is equal to the sum of the rate of work done by the external forces and the change of heat content per unit time:

\[\frac{d}{dt} (K + U) = W_e + H \]

where \(K \) is the kinetic energy, \(U \) the internal strain energy, \(W \) the external work, and \(H \) the heat input to the system.

31 For an adiabatic system (no heat exchange) and if loads are applied in a quasi static manner (no kinetic energy), the above relation simplifies to:

\[W_e = U \]

9.2.2 Internal Strain Energy

32 The strain energy density of an arbitrary material is defined as, Fig. 9.2

\[U_0 \overset{\text{def}}{=} \int_0^\varepsilon \sigma \, d\varepsilon \]

33 The complementary strain energy density is defined

\[U^*_0 \overset{\text{def}}{=} \int_0^\sigma \varepsilon \, d\sigma \]

34 The strain energy itself is equal to...
To obtain a general form of the internal strain energy, we first define a stress-strain relationship accounting for both initial strains and stresses

\[\sigma = D (\epsilon - \epsilon_0) + \sigma_0 \]

(9.37)

where \(D \) is the constitutive matrix; \(\epsilon \) is the strain vector due to the displacements \(u \); \(\epsilon_0 \) is the initial strain vector; \(\sigma_0 \) is the initial stress vector; and \(\sigma \) is the stress vector.

The initial strains and stresses are the result of conditions such as heating or cooling of a system or the presence of pore pressures in a system.

The strain energy \(U \) for a linear elastic system is obtained by substituting

\[\sigma = D \epsilon \]

(9.38)

with Eq. 9.33 and 9.37

\[
U = \frac{1}{2} \int_\Omega \epsilon^T D \epsilon d\Omega - \int_\Omega \epsilon^T D \epsilon_0 d\Omega + \int_\Omega \epsilon^T \sigma_0 d\Omega
\]

(9.39)

where \(\Omega \) is the volume of the system.

Considering uniaxial stresses, in the absence of initial strains and stresses, and for linear elastic systems, Eq. 9.39 reduces to

\[
U = \frac{1}{2} \int_\Omega \epsilon \varepsilon d\Omega
\]

(9.40)
When this relation is applied to various one dimensional structural elements it leads to

Axial Members:

\[
\begin{align*}
U &= \int \frac{\varepsilon \sigma}{2} d\Omega \\
\sigma &= \frac{P}{A} \\
\varepsilon &= \frac{P}{AE} \\
d\Omega &= Adx \\
\end{align*}
\]

\[U = \frac{1}{2} \int_0^L \frac{P^2}{AE} dx \tag{9.41}
\]

Torsional Members:

\[
\begin{align*}
U &= \frac{1}{2} \int \frac{\varepsilon E \varepsilon}{\sigma} d\Omega \\
\tau_{xy} &= \frac{Tr}{J} \\
\gamma_{xy} &= \frac{\tau_{xy}}{G} \\
d\Omega &= rd\theta dr dx \\
\int_0^r \int_0^{2\pi} r^2 d\theta dr &= J \\
\end{align*}
\]

\[U = \frac{1}{2} \int_0^L \frac{T^2}{GJ} dx \tag{9.42}
\]

Flexural Members:

\[
\begin{align*}
U &= \frac{1}{2} \int \frac{\varepsilon E \varepsilon}{\sigma} d\Omega \\
\sigma_x &= \frac{M_y I_z}{E} \\
\varepsilon &= \frac{M_y I_z}{E I_z} \\
d\Omega &= dAdx \\
\int_A y^2 dA &= I_z \\
\end{align*}
\]

\[U = \frac{1}{2} \int_0^L \frac{M^2}{EI_z} dx \tag{9.43}
\]

9.2.2.1 Internal Work versus Strain Energy

During strain increment, the work done by internal forces in a differential element will be the negative of that performed by the stresses acting upon it.

\[W_i = - \int_\Omega \sigma d\epsilon d\Omega \tag{9.44}
\]

If the strained elastic solid were permitted to slowly return to their unstrained state, then the solid would return the work performed by the external forces. This is due to the release of strain energy stored in the solid.
Thus, in the absence of initial strains,

\[U = -W_i \]

(9.45)

The internal work depends on the load history, this is illustrated by considering an axial member subjected to two load cases, Fig. 9.3: a) Initial thermal strains (with no corresponding stress increase), followed by an external force; and b) External force, followed by thermal strain. In both cases the internal work is equal to the area under the curve ABCD.

\[
\begin{align*}
U_i &= \int_0^L \left(\int_0^{(\varepsilon_x)_F} \sigma_x d\varepsilon_x \right) A dx \\
W_i^a &= -U_i \\
W_i^b &= -U_i - \int_0^L \left(\int_0^{\varepsilon^0} \sigma_x d\varepsilon_x \right) A dx
\end{align*}
\]

(9.46-a)

(9.46-b)

(9.46-c)

Hence, \(W_i \) is not always equal to \(-U_i\).

9.2.3 External Work

External work \(W \) performed by the applied loads on an arbitrary system is defined as

\[
W_e \overset{\text{def}}{=} \int_{\Omega} \mathbf{u}^T \mathbf{bd}\Omega + \int_{\Gamma_t} \mathbf{u}^T \mathbf{t} d\Gamma
\]

(9.47)
where \(\mathbf{b} \) is the body force vector; \(\mathbf{t} \) is the applied surface traction vector; and \(\Gamma_t \) is that portion of the boundary where \(\mathbf{t} \) is applied, and \(\mathbf{u} \) is the displacement.

For point loads and moments, the external work is

\[
W_e = \int_0^{\Delta_f} P d\Delta + \int_0^{\theta_f} M d\theta
\]

(9.48)

For **linear elastic systems**, we have for point loads

\[
P = K \Delta_f \\
W_e = \int_0^{\Delta_f} P d\Delta
\]

\[
W_e = K \int_0^{\Delta_f} \Delta d\Delta = \frac{1}{2} K \Delta_f^2
\]

(9.49)

When this last equation is combined with \(P = K \Delta_f \) we obtain

\[
W_e = \frac{1}{2} P_f \Delta_f
\]

(9.50)

where \(K \) is the **stiffness** of the structure.

Similarly for an applied moment we have

\[
W_e = \frac{1}{2} M_f \theta_f
\]

(9.51)

9.2.3.1 Path Independence of External Work

In this section we seek to prove that the total work performed in going from state A to B is independent of the path.

In 2D the differential expression of the work is given by

\[
dW = F_x dx + F_y dy
\]

(9.52)

From calculus, a necessary and sufficient condition for \(dW \) to be an exact differential is that

\[
\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x}
\]

(9.53)

If the force were to move along a closed contour (or from A to B and then back to A along any arbitrary path), corresponding to \(\Gamma \), then from Green’s theorem (Eq. 5.3) we have

\[
\oint (R dx + S dy) = \int_\Gamma \left(\frac{\partial S}{\partial x} - \frac{\partial R}{\partial y} \right) dx dy
\]

(9.54)
If we let \(R = F_x \) and \(S = F_y \), then
\[
W = \oint (F_x dx + F_y dy) = \int_\Gamma \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) dx dy \tag{9.55}
\]

Thus, from Eq. 9.53 the work is equal to zero,

If we decompose the path
\[
W = \oint = \int_A^B + \int_B^A = 0 \Rightarrow \int_A^B = -\int_B^A \tag{9.56}
\]
then, the integration for the work leads to
\[
W = \int_A^B (F_x dx + F_y dy) \tag{9.57}
\]
which is path independent.

Note that if no net work is done in moving around a closed path, the system is said to be conservative. This is the case for purely elastic systems.

When friction or plastic (or damped) deformations occur, then we would have a nonconservative system.

9.2.4 Virtual Work

We define the virtual work done by the load on a body during a small, admissible (continuous and satisfying the boundary conditions) change in displacements.

Internal Virtual Work
\[
\delta W_i \overset{\text{def}}{=} -\int_\Omega \sigma \delta \epsilon d\Omega \tag{9.58}
\]

External Virtual Work
\[
\delta W_e \overset{\text{def}}{=} \int_{\Gamma_t} t \delta u d\Gamma + \int_\Omega b \delta u d\Omega \tag{9.59}
\]

where all the terms have been previously defined and \(b \) is the body force vector.

9.2.4.1 Internal Virtual Work

Next we shall derive a displacement based expression of \(\delta U \) for each type of one dimensional structural member. It should be noted that the Virtual Force method would yield analogous ones but based on forces rather than displacements.

Two sets of solutions will be given, the first one is independent of the material stress strain relations, and the other assumes a linear elastic stress strain relation.
9.2.4.1.1 Elastic Systems

In this set of formulation, we derive expressions of the virtual strain energies which are independent of the material constitutive laws. Thus δU will be left in terms of forces and displacements.

Axial Members:

$$\delta U = \int_0^L \sigma \delta \varepsilon d\Omega$$
$$d\Omega = Adx$$

$$\delta U = A \int_0^L \sigma \delta \varepsilon dx$$ (9.60)

Torsional Members: With reference to Fig. 9.4

$$\delta U = \int \tau_{xy} \delta \gamma_{xy} d\Omega$$
$$T = \int_A \tau_{xy} rdA$$
$$\delta \gamma_{xy} = r \delta \theta$$
$$d\Omega = dAdx$$

$$\delta U = \int_0^L (\int_A \tau_{xy} rdA) \delta \theta dx \Rightarrow \delta U = \int_0^L T \delta \theta dx$$ (9.61)

Shear Members:

$$\delta U = \int \tau_{xy} \delta \gamma_{xy} d\Omega$$
$$V = \int_A \tau_{xy} dA$$
$$d\Omega = dAdx$$

$$\delta U = \int_0^L (\int_A \tau_{xy} dA) \delta \gamma_{xy} dx \Rightarrow \delta U = \int_0^L V \delta \gamma_{xy} dx$$ (9.62)

Flexural Members: With reference to Fig. 9.5.
9.2 Work, Energy & Potentials; Definitions

Figure 9.5: Flexural Member

\[\delta U = \int \sigma_x \delta \varepsilon \, d\Omega \]
\[M = \int_A \sigma_x y \, dA \Rightarrow M = \int_A \sigma_x \, dA \]
\[\delta \phi = \frac{\delta y}{y} \Rightarrow \delta \phi y = \delta \varepsilon \]
\[d\Omega = \int_0^L \int_A dA \, dx \]

9.2.4.1.2 Linear Elastic Systems

\(\sigma = E \varepsilon \) then:

Axial Members:

\[\delta U = \int \sigma \delta \varepsilon \, d\Omega \]
\[\sigma_x = E \varepsilon_x = E \frac{du}{dx} \]
\[\delta \varepsilon = \frac{d(\delta u)}{dx} \]
\[d\Omega = Adx \]
\[\delta U = \int_0^L E \frac{du}{dx} \, \frac{d(\delta u)}{dx} \, Adx \] (9.63)

Torsional Members: With reference to Fig. 9.4

\[\delta U = \int_\Omega \tau_{xy} \delta \gamma_{xy} \, d\Omega = \int_\Omega \tau_r \delta \beta \, d\Omega \] (9.65)

For an infinitesimal element:

\[\tau = \frac{T_r}{d\theta} \]
\[d\theta = \frac{dx}{GJ} \]
\[\tau = GJ \frac{d\delta \theta_x}{dx} \] (9.66)

since the rate of change of rotation is the strain.

\[d\Omega = rd\theta dr \, dx \]
\[\delta U = \int_0^L \int_0^{2\pi} \int_0^r \left[\frac{GJ \, d\theta_x}{dx} \left(\frac{d(\delta \theta_x)}{dx} \right) \right] \, rd\theta dr \, dx \]
\[\int_0^r \int_0^{2\pi} \int_0^r \, d\theta dr = J \]
\[\delta U = \int_0^L GJ \frac{d\theta_x}{dx} \, \frac{d(\delta \theta_x)}{dx} \, dx \] (9.67)
Flexural Members: With reference to Fig. 9.5.

\[
\delta U = \int \sigma_x \delta \varepsilon_x d\Omega
\]

\[
\sigma_x = \frac{M_y}{I_z} \quad \text{and} \quad M = \frac{d^2 v}{dx^2} E y
\]

\[
\delta \varepsilon_x = \frac{\delta \sigma_x}{E} = \frac{d^2 (\delta v)}{dx^2} y
\]

\[
\delta U = \int_0^L \int_A \frac{d^2 v}{dx^2} E y \frac{d^2 (\delta v)}{dx^2} y dAdx
\]

or:

\[
\frac{1}{A} \int A y^2 dA = I_z
\]

Eq. 9.68

\[
\delta U = \int_0^L \int_A \frac{d^2 v}{dx^2} E y \frac{d^2 (\delta v)}{dx^2} dx
\]

(9.69)

9.2.4.2 External Virtual Work \(\delta W \)

For concentrated forces (and moments):

\[
\delta W = \int \delta \Delta q dx + \sum_i \left(\delta \Delta_i \right) P_i + \sum_i \left(\delta \theta_i \right) M_i
\]

(9.70)

where: \(\delta \Delta_i = \) virtual displacement.

9.2.5 Complementary Virtual Work

We define the complementary virtual work done by the load on a body during a small, admissible (continuous and satisfying the boundary conditions) change in displacements.

\[
\text{Complementary Internal Virtual Work} \quad \delta W_i^* \overset{\text{def}}{=} - \int_\Omega \varepsilon \sigma d\Omega
\]

(9.71)

\[
\text{Complementary External Virtual Work} \quad \delta W_e^* \overset{\text{def}}{=} \int_{\Gamma_u} \hat{u} \delta t d\Gamma
\]

(9.72)

9.2.5.1 Internal Complementary Virtual Strain Energy \(\delta U^* \)

Again we shall consider two separate cases.

9.2.5.1.1 Arbitrary System

In this set of formulation, we derive expressions of the complementary virtual strain energies which are independent of the material constitutive laws. Thus \(\delta U^* \) will be left in terms of forces and displacements.
Axial Members:

\[
\delta U^* = \int_0^L \delta \sigma \varepsilon d\Omega \\
\frac{d\Omega}{d\varepsilon} = A dx
\]

(9.73)

Torsional Members: With reference to Fig. 9.4

\[
\begin{aligned}
\delta U^* &= \int_\Omega \delta \tau \gamma d\Omega \\
\delta T &= \int_A \delta \tau \gamma dA \\
\gamma &= \tau \theta \\
d\Omega &= dA dx
\end{aligned}
\]

(9.74)

Shear Members:

\[
\begin{aligned}
\delta U^* &= \int_\Omega \delta \tau \gamma d\Omega \\
\delta V &= \int_A \delta \tau \gamma dA \\
d\Omega &= dA dx
\end{aligned}
\]

(9.75)

Flexural Members: With reference to Fig. 9.5.

\[
\begin{aligned}
\delta U^* &= \int \delta \sigma \varepsilon d\Omega \\
\delta M &= \int_A \delta \sigma v y dA \\
\phi &= \frac{\varepsilon}{y} \\
d\Omega &= \int_0^L \int_A dA dx
\end{aligned}
\]

(9.76)

9.2.5.1.2 Linear Elastic Systems

\[
\begin{aligned}
\delta U^* &= \int_\Omega \delta P d\Omega \\
\delta \sigma &= \frac{\delta P}{\Omega} \\
\varepsilon &= \frac{\delta P}{AE} \\
d\Omega &= Adx
\end{aligned}
\]

(9.77)
Torsional Members:

\[\delta U^* = \int_\Omega \varepsilon E \delta \varepsilon \, dvol \]

\[\delta U^* = \int_\Omega \delta \tau_{xy} G \tau_{xy} \, dvol \]

\[\tau_{xy} = \frac{T}{J} \]

\[\gamma_{xy} = \frac{\tau_{xy}}{G} \]

\[d\Omega = rd\theta dr dx \]

\[\int_0^{2\pi} \int_0^r r^2 d\theta dr = J \]

Flexural Members:

\[\delta U^* = \int_\Omega \varepsilon E \delta \varepsilon \, dvol \]

\[\sigma_x = \frac{M y}{I_z} \]

\[\varepsilon = \frac{M y}{E I_z} \]

\[d\Omega = dA dx \]

\[\int_A y^2 dA = I_z \]

9.2.5.2 External Complementary Virtual Work \(\delta W^* \)

For concentrated forces (and moments):

\[\delta W^* = \sum_i (\Delta_i) \delta P_i \] (9.80)

where: \(\Delta_i \) = actual displacement. Or:

\[\delta W^* = \sum_i (\theta_i) \delta M_i \] (9.81)

For distributed load:

\[\delta W^* = \int \Delta \delta q dx + \sum_{i=1}^n (\Delta_i) \delta P_i + \sum_{i=1}^n (\theta_i) \delta M_i \] (9.82)

9.2.6 Potential Energy

9.2.6.1 Potential Functions

If during loading and unloading, \(U \) and \(U^* \) are independent of the path of deformation (i.e. no initial strains), but depend only on the initial and final states, then the differential \(dU_0 \) and \(dU_0^* \) are exact differentials and \(U_0 \) and \(U_0^* \) are then potential functions.
9.2.6.2 Potential of External Work

The potential of external work W in an arbitrary system is defined as

$$W_e \overset{\text{def}}{=} \int_{\Omega} u^T b d\Omega + \int_{\Gamma_t} u^T \hat{t} d\Gamma + uP$$ (9.83)

where u are the displacements, b is the body force vector; \hat{t} is the applied surface traction vector; Γ_t is that portion of the boundary where \hat{t} is applied, and P are the applied nodal forces.

Note that the potential of the external work is different from the external work itself (usually by a factor of $1/2$)

9.2.6.3 Potential Energy

The potential energy of a system is defined as

$$\Pi \overset{\text{def}}{=} U - W_e$$ (9.84)

$$= \int_{\Omega} U_0 d\Omega - \left(\int_{\Omega} u b d\Omega + \int_{\Gamma_t} u \hat{t} d\Gamma + uP \right)$$ (9.85)

Note that in the potential the full load is always acting, and through the displacements of its points of application it does work but loses an equivalent amount of potential, this explains the negative sign.

9.3 Principle of Virtual Work and Complementary Virtual Work

The principles of Virtual Work and Complementary Virtual Work relate force systems which satisfy the requirements of equilibrium, and deformation systems which satisfy the requirement of compatibility:

1. In any application the force system could either be the actual set of external loads $d \mathbf{p}$ or some virtual force system which happens to satisfy the condition of equilibrium $\delta \mathbf{p}$. This set of external forces will induce internal actual forces $d \mathbf{\sigma}$ or internal hypothetical forces $\delta \mathbf{\sigma}$ compatible with the externally applied load.

2. Similarly the deformation could consist of either the actual joint deflections $d \mathbf{u}$ and compatible internal deformations $d \mathbf{\epsilon}$ of the structure, or some hypothetical external and internal deformation $\delta \mathbf{\mathbf{u}}$ and $\delta \mathbf{\mathbf{\epsilon}}$ which satisfy the conditions of compatibility.

Thus we may have 4 possible combinations, Table 9.2: where: d corresponds to the actual, and δ (with an overbar) to the hypothetical values.

This table calls for the following observations
<table>
<thead>
<tr>
<th></th>
<th>Force</th>
<th>Deformation</th>
<th>IVW</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>Internal</td>
<td>External</td>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>dp</td>
<td>$d\sigma$</td>
<td>du</td>
<td>$d\epsilon$</td>
</tr>
<tr>
<td>2</td>
<td>δp</td>
<td>$\delta \sigma$</td>
<td>δu</td>
<td>$\delta \epsilon$</td>
</tr>
<tr>
<td>3</td>
<td>dp</td>
<td>$d\sigma$</td>
<td>δu</td>
<td>$\delta \epsilon$</td>
</tr>
<tr>
<td>4</td>
<td>δp</td>
<td>$\delta \sigma$</td>
<td>δu</td>
<td>$\delta \epsilon$</td>
</tr>
</tbody>
</table>

Table 9.2: Possible Combinations of Real and Hypothetical Formulations

1. The second approach is the same one on which the method of virtual or unit load is based. It is simpler to use than the third as a internal force distribution compatible with the assumed virtual force can be easily obtained for statically determinate structures. This approach will yield exact solutions for statically determinate structures.

2. The third approach is favoured for kinematically indeterminate problems or in conjunction with approximate solution. It requires a proper “guess” of a displacement shape and is the basis of the stiffness method.

9.3.1 Principle of Virtual Work

9.3.1.1 Derivation

Derivation of the principle of virtual work starts with the assumption of that forces are in equilibrium and satisfaction of the static boundary conditions.

The Equation of equilibrium (Eq. 8.11) which is rewritten as

\[
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + b_x = 0 \tag{9.86}
\]

\[
\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + b_y = 0 \tag{9.87}
\]

where b representing the body force. In matrix form, this can be rewritten as

\[
\begin{bmatrix}
\frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} + \begin{bmatrix}
b_x \\
b_y
\end{bmatrix} = 0 \tag{9.88}
\]

or

\[
L^T \sigma + b = 0 \tag{9.89}
\]

Note that this equation can be generalized to 3D.
The surface Γ of the solid can be decomposed into two parts Γ_t and Γ_u where tractions and displacements are respectively specified.

\[
\Gamma = \Gamma_t + \Gamma_u \quad (9.90-a)
\]

\[
t = \hat{t} \quad \text{on } \Gamma_t \quad \text{Natural B.C.} \quad (9.90-b)
\]

\[
u = \hat{u} \quad \text{on } \Gamma_u \quad \text{Essential B.C.} \quad (9.90-c)
\]

Equations 9.89 and 9.90-b constitute a statically admissible stress field.

We now express the local condition of equilibrium Eq. 9.89 and the static boundary condition Eq. 9.90-b in global (or integral) form. This is accomplished by multiplying both equations by a virtual displacement δu and integrating the first equation over Ω and the second one over Γ_t, and we then take the sum of these two integrals (each of which must be equal to zero)

\[
-\int_{\Omega} \delta u^T \left(L^T \sigma + b \right) d\Omega + \int_{\Gamma_t} \delta u^T (t - \hat{t}) d\Gamma = 0 \quad (9.91)
\]

Note that since each term is equal to zero, the negative sign is introduced to maintain later on consistency with previous results. Furthermore, according to the fundamental lemma of the calculus of variation (Eq. 9.13), this equation is still equivalent to Eq. 9.89 and 9.89.

Next, we will focus our attention on $\int_{\Gamma_t} \delta u^T t d\Gamma$ which will be replaced (from Eq. 9.90-a) by

\[
\int_{\Gamma_t} \delta u^T t d\Gamma = \int_{\Omega} \text{div} (\delta u^T \sigma) d\Omega \quad (9.92)
\]

and which we seek to convert into a volume integral through Gauss Theorem, Eq. 5.6 and 5.7.

But first let us recall the definition of the traction vector

\[
t = \sigma \cdot n \quad \text{or} \quad t_i = \sigma_{ij} n_j \quad (9.93-a)
\]

applying Gauss theorem we obtain

\[
\int_{\Gamma} \delta u^T t d\Gamma = \int_{\Omega} \left(\delta u^T \sigma \right) n d\Omega = \int_{\Omega} \text{div} (\delta u^T \sigma) d\Omega \quad (9.94-a)
\]

\[
= \int_{\Omega} \text{div} \delta u^T \sigma d\Omega + \int_{\Omega} \delta u^T \text{div} \sigma d\Omega \quad (9.94-b)
\]

However, from Eq. 9.89 we have $\text{div} \sigma = L^T \sigma$ thus

\[
\int_{\Gamma} \delta u^T t d\Gamma = \int_{\Omega} \text{div} \delta u^T \sigma d\Omega + \int_{\Omega} \delta u^T L^T \sigma d\Omega \quad (9.95)
\]

Combining Eq. 9.92 with the previous equation, leads to

\[
\int_{\Gamma_t} \delta u^T t d\Gamma = \int_{\Omega} \text{div} \delta u^T \sigma d\Omega + \int_{\Omega} \delta u^T L^T \sigma d\Omega - \int_{\Gamma_u} \delta u^T t d\Gamma \quad (9.96)
\]
We next substitute this last equation into Eq. 9.91 and reduce

\[- \int_{\Omega} \delta u^T L^T \sigma d\Omega - \int_{\Omega} \delta u^T b d\Omega + \int_{\Omega} \text{div} \delta u^T \sigma d\Omega + \int_{\Omega} \delta u^T L^T \sigma d\Omega \]
\[- \int_{\Gamma_u} \delta u^T t d\Gamma - \int_{\Gamma_t} \delta u^T \hat{t} d\Gamma = 0 \quad (9.97-a)\]
\[- \int_{\Omega} \delta u^T b d\Omega + \int_{\Omega} \text{div} \delta u^T \sigma d\Omega - \int_{\Gamma_u} \delta u^T t d\Gamma - \int_{\Gamma_t} \delta u^T \hat{t} d\Gamma = 0 \quad (9.97-b)\]

The strain displacement relation can be written as

\[\text{div} \delta u = \delta \epsilon\]

Substituting in the previous equation, we get

\[- \int_{\Omega} \delta u^T b d\Omega + \int_{\Omega} \delta \epsilon^T \sigma d\Omega - \int_{\Gamma_u} \delta u^T t d\Gamma - \int_{\Gamma_t} \delta u^T \hat{t} d\Gamma = 0 \quad (9.99)\]

Virtual displacement must be kinematically admissible, i.e. \(\delta u\) must satisfy the essential boundary conditions \(u = 0\) on \(\Gamma_u\), (note that the exact solution had to satisfy the natural B.C. instead), hence the previous equation reduces to

\[\int_{\Omega} \delta \epsilon^T \sigma d\Omega - \int_{\Gamma_u} \delta u^T b d\Omega - \int_{\Gamma_t} \delta u^T \hat{t} d\Gamma = 0 \quad (9.100)\]

Each of the preceding equations is a work expression, (Eq. 9.59). The first one corresponds to the internal virtual work, and the last two are expressions of the work done by the body forces and the surface tractions through the corresponding virtual displacement \(\delta u\), hence

\[- \delta W_i = \delta W_e \quad (9.101)\]

or

\[\delta U_i = \delta W_e \quad (9.102)\]

which is the expression of the principle of virtual work (or more specifically of virtual displacement) which can be stated as

A deformable system is in equilibrium if the sum of the external virtual work and the internal virtual work is zero for virtual displacements \(\delta u\) which are kinematically admissible.

The major governing equations are summarized

Victor Saouma Matrix Structural Analysis
9.3 Principle of Virtual Work and Complementary Virtual Work 9–23

\[\int_{\Omega} \delta \epsilon^T \sigma d\Omega - \int_{\Omega} \delta u^T b d\Omega - \int_{\Gamma_t} \delta u^T t d\Gamma - \delta W_i - \delta W_e = 0 \quad (9.103) \]

\[\delta \epsilon = L \delta u \quad \text{in} \quad \Omega \quad (9.104) \]

\[\delta u = 0 \quad \text{on} \quad \Gamma_u \quad (9.105) \]

Note that the principle is independent of material properties, and that the primary unknowns are the displacements.

For one dimensional elements, with no initial strains \((U = -W_i)\)

\[\int_{\Omega} \sigma \delta \varepsilon d\Omega = P \delta \psi \quad (9.106) \]

Example 9-3: Tapered Cantilever Beam, Virtual Displacement

Analyse the problem shown in Fig. 9.6, by the virtual displacement method.

Solution:

For this flexural problem, we must apply the expression of the virtual internal strain energy as derived for beams in Eq. 9.69. And the solutions must be expressed in terms of the displacements which in turn must satisfy the essential boundary conditions.

The approximate solutions proposed to this problem are

\[v = \left(1 - \cos \frac{\pi x}{2L} \right) v_2 \quad (9.107) \]

\[v = \left[3 \left(\frac{x}{L} \right)^2 - 2 \left(\frac{x}{L} \right)^3 \right] v_2 \quad (9.108) \]
Note that these equations do indeed satisfy the essential B.C.

Using the virtual displacement method we evaluate the displacements v_2 from three different combination of virtual and actual displacement:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Total</th>
<th>Virtual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eqn. 9.107</td>
<td>Eqn. 9.108</td>
</tr>
<tr>
<td>2</td>
<td>Eqn. 9.107</td>
<td>Eqn. 9.107</td>
</tr>
<tr>
<td>3</td>
<td>Eqn. 9.108</td>
<td>Eqn. 9.108</td>
</tr>
</tbody>
</table>

Where actual and virtual values for the two assumed displacement fields are given below.

<table>
<thead>
<tr>
<th>Trigonometric (Eqn. 9.107)</th>
<th>Polynomial (Eqn. 9.108)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>$(1 - \cos \frac{\pi x}{2L}) v_2$</td>
</tr>
<tr>
<td>δv</td>
<td>$(1 - \cos \frac{\pi x}{2L}) \delta v_2$</td>
</tr>
<tr>
<td>v''</td>
<td>$\frac{\pi^2}{4L^2} \cos \frac{\pi x}{2L} v_2$</td>
</tr>
<tr>
<td>$\delta v''$</td>
<td>$\frac{\pi^2}{4L^2} \cos \frac{\pi x}{2L} \delta v_2$</td>
</tr>
</tbody>
</table>

Note that both Eqn. 9.107 and Eqn. 9.108 satisfy the essential (geometric) B.C.

\[
\delta U = \int_0^L \delta v'' EI_1 v'' \, dx = P_2 \delta v_2 \tag{9.109}
\]
\[
\delta W = P_2 \delta v_2 \tag{9.110}
\]

Solution 1:

\[
\delta U = \int_0^L \frac{\pi^2}{4L^2} \cos \left(\frac{\pi x}{2L} \right) v_2 \left(\frac{6}{L^2} - \frac{12x}{L^3} \right) \delta v_2 EI_1 \left(1 - \frac{x}{2L} \right) \, dx
\]
\[
= 3\pi EI_1 \left[1 - \frac{10}{\pi} + \frac{16}{\pi^2} \right] v_2 \delta v_2
\]
\[
= P_2 \delta v_2 \tag{9.111}
\]

which yields:

\[
v_2 = \frac{P_2 L^3}{2.648 EI_1} \tag{9.112}
\]

Solution 2:

\[
\delta U = \int_0^L \frac{\pi^4}{16L^4} \cos^2 \left(\frac{\pi x}{2L} \right) v_2 \delta v_2 EI_1 \left(1 - \frac{x}{2L} \right) \, dx
\]
\[
= \frac{\pi^4 EI_1}{32L^3} \left[\frac{3}{4} + \frac{1}{\pi^2} \right] v_2 \delta v_2
\]
\[
= P_2 \delta v_2 \tag{9.113}
\]

which yields:

\[
v_2 = \frac{P_2 L^3}{2.57 EI_1} \tag{9.114}
\]
9.3 Principle of Virtual Work and Complementary Virtual Work

Solution 3:

\[\delta U = \int_0^L \left(\frac{6}{L^2} - \frac{12x}{L^3} \right)^2 \left(1 - \frac{x}{2l} \right) EI_1 \delta v_2 v_2 dx \]

\[= \frac{9EI}{L^3} v_2 \delta v_2 \]

\[= P_2 \delta v_2 \]

which yields:

\[v_2 = \frac{P_2 L^3}{9EI} \]

(9.116)

9.3.2 Principle of Complementary Virtual Work

9.3.2.1 Derivation

Derivation of the principle of complementary virtual work starts from the assumption of a kinematicaly admissible displacements and satisfaction of the essential boundary conditions.

Whereas we have previously used the vector notation for the principle of virtual work, we will now use the tensor notation for this derivation.

The kinematic condition (strain-displacement) was given in Eq. 8.5.

\[\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \]

(9.117)

The essential boundary conditions are expressed as

\[u_i = \hat{u} \quad \text{on} \quad \Gamma_u \]

(9.118)

Those two equations are rewritten as

\[\varepsilon_{ij} - u_{i,j} = 0 \]

(9.119-a)

\[u_i - \hat{u} = 0 \]

(9.119-b)

We premultiply the first equation by a virtual stress field \(\partial \sigma_{ij} \) and integrate over the volume; and we premultiply the second by corresponding virtual tractions \(\delta t_i \) and integrate over the corresponsing surface

\[\int_{\Omega} (\varepsilon_{ij} - u_{i,j}) \partial \sigma_{ij} d\Omega - \int_{\Gamma_u} (u_i - \hat{u}) \delta t_i d\Gamma = 0 \]

(9.120)

Note that since each term is equal to zero, the negative sign is introduced to maintain later on consistency with previous results. Furthermore, according to the fundamental lemma of the
calculus of variation (Eq. 9.13), this equation is still equivalent to the kinematic conditions 9.117 and 9.118.

Since the arbitrary stresses must be statically admissible, it follows that they must satisfy the equation of equilibrium

Next, we will focus our attention on \(\int_{\Gamma_u} u_i \delta t_i d\Gamma \) which will be replaced (from Eq. 9.90-a) by

\[
\int_{\Gamma_u} u_i \delta t_i d\Gamma = \int_{\Gamma} u_i \delta t_i d\Gamma - \int_{\Gamma_t} u_i \delta t_i d\Gamma \tag{9.121}
\]

and note that the second term on the right hand side is zero since

\[
\delta t_i = 0 \quad \text{on} \quad \Gamma_t \tag{9.122}
\]
in order to satisfy the boundary conditions.

We now seek to convert the previous expression into a volume integral through Gauss Theorem, Eq. 5.6 and 5.7.

\[
\int_{\Gamma_u} u_i \delta t_i d\Gamma = \int_{\Gamma} u_i \delta t_i d\Gamma = \int_{\Omega} u_i \delta \sigma_{ij} n_j d\Gamma \tag{9.123-a}
\]

\[
= \int_{\Omega} u_i \delta \sigma_{ij,j} d\Omega + \int_{\Omega} u_{i,j} \delta \sigma_{ij} d\Omega \tag{9.123-b}
\]

However, the virtual stresses must be in equilibrium within \(\Omega \), thus from Eq. 8.11, and in the absence of body forces

\[
\delta \sigma_{ij,j} = 0 \quad \text{in} \quad \Omega \tag{9.124}
\]

thus

\[
\int_{\Gamma_u} u_i \delta t_i d\Gamma = \int_{\Omega} u_{i,j} \delta \sigma_{ij} d\Omega \tag{9.125}
\]

Combining this last equation with Eq. 9.120 leads to

\[
\int_{\Omega} \varepsilon_{ij} \delta \sigma_{ij} d\Omega - \int_{\Omega} u_{i,j} \delta \sigma_{ij} d\Omega - \int_{\Gamma_u} \hat{u} \delta t_i d\Gamma + \int_{\Omega} u_{i,j} \delta \sigma_{ij} d\Omega = 0 \tag{9.126}
\]

which simplifies into

\[
\int_{\Omega} \varepsilon_{ij} \delta \sigma_{ij} d\Omega - \int_{\Gamma_u} \hat{u} \delta t_i d\Gamma = 0 \tag{9.127}
\]

We note that each of the preceding term is a work expression, and that the first one corresponds to the internal complementary virtual work, and the second to the external complementary virtual work, Eq. 9.72

\[
- \delta W_i^* - \delta W_e^* = 0 \tag{9.128}
\]

which is the expression of the principle of virtual complementary work (or more specifically of virtual force) which can be stated as
A deformable system satisfies all kinematical requirements if the sum of the external complementary virtual work and the internal complementary virtual work is zero for all statically admissible virtual stresses $\delta\sigma_{ij}$.

The major governing equations are summarized

\[
\begin{align*}
\int_{\Omega} \varepsilon_{ij} \delta\sigma_{ij} d\Omega - \int_{\Gamma_u} \delta u_i d\Gamma & = 0 \quad (9.129) \\
\int_{\Gamma_e} \delta W_e^* & = - \delta W^*_i \\
\delta\sigma_{ij,j} & = 0 \quad \text{in } \Omega \quad (9.130) \\
\delta t_i & = 0 \quad \text{on } \Gamma_t \quad (9.131)
\end{align*}
\]

Note that the principle is independent of material properties, and that the primary unknowns are the stresses.

The principle of virtual forces leads to the flexibility matrix.

Example 9-4: Tapered Cantilivered Beam; Virtual Force

“Exact” solution of previous problem using principle of virtual work with virtual force.

\[
\int_0^L \delta M \frac{M}{EI_2} dx = \delta P \Delta \quad (9.132)
\]

Note: This represents the internal virtual strain energy and external virtual work written in terms of forces and should be compared with the similar expression derived in Eq. 9.69 written in terms of displacements:

\[
\delta U^* = \int_0^L \frac{EI_2}{\sigma} \frac{d^2 v}{dx^2} \frac{d^2(\delta v)}{dx^2} dx \quad (9.133)
\]

Here: δM and δP are the virtual forces, and $\frac{M}{EI_2}$ and Δ are the actual displacements. See Fig. 9.7 If $\delta P = 1$, then $\delta M = x$ and $M = P_2 x$ or:

\[
(1) \Delta = \int_0^L x \frac{P_2 x}{EI_1\left(5 + \frac{15}{L}\right)} dx = \frac{P_2}{EI_1} \int_0^L \frac{x^2}{L+x} dx = \frac{P_2 x^2}{\frac{2}{3}EI_1} \int_0^L \frac{x^2}{L+x} dx
\]

Victor Saouma

Matrix Structural Analysis
Figure 9.7: Tapered Cantilevered Beam Analysed by the Virtual Force Method

From Mathematica we note that:

\[
\int_{0}^{a} \frac{x^2}{a + bx} = \frac{1}{b^3} \left[\frac{1}{2}(a + bx)^2 - 2a(a + bx) + a^2 \ln(a + bx) \right]
\]

(9.135)

Thus substituting \(a = L \) and \(b = 1 \) into Eqn. 9.135, we obtain:

\[
\Delta = \frac{2P_2L}{EI_1} \left[\frac{1}{2}(L + x)^2 - 2L(L + x) + L^2 \ln(L + x) \right] \bigg|_{0}^{L}
\]

\[
= \frac{2P_2L}{EI_1} \left[2L^2 - 4L^2 + L^2 \ln 2L - \frac{L^2}{2} + 2L^2 + L^2 \log L \right]
\]

\[
= \frac{2P_2L}{EI_1} \left[L^2 \ln 2 - \frac{1}{2} \right]
\]

\[
= \frac{P_2L^3}{2.5887EI_1}
\]

(9.136)

This exact value should be compared with the approximate one obtained with the Virtual Displacement method in which a displacement field was assumed in Eq. 9.215 of \(\frac{P_2L^3}{2.55EI_1} \).

Similarly:

\[
\theta = \int_{0}^{L} \frac{M(1)}{EI_1 \left(\frac{5}{2} + \frac{x}{L} \right)}
\]

\[
= \frac{2ML}{EI_1} \int_{0}^{L} \frac{1}{L + x}
\]

\[
= \frac{2ML}{EI_1} \ln(L + x) \bigg|_{0}^{L}
\]

\[
= \frac{2ML}{EI_1} (\ln 2L - \ln L)
\]

\[
= \frac{2ML}{EI_1} \ln 2
\]

\[
= \frac{ML}{.721EI_1}
\]

(9.137)
Example 9-5: Three Hinged Semi-Circular Arch

We seek to determine the vertical deflection of the crown of the three hinged statically determined semi-circular arch under its own dead weight \(w \). Fig. 9.8 We first seek to determine the analytical expression of the moment diagram. From statics, it can be shown that the vertical and horizontal reactions are

\[
R_v = \frac{\pi}{2} w R \quad \text{and} \quad R_h = \left(\frac{\pi}{2} - 1 \right) w R.
\]

Next considering the free body diagram of the arch, and summing the forces in the radial direction \((\Sigma F_R = 0)\):

\[
- \left(\frac{\pi}{2} - 1 \right) w R \cos \theta + \frac{\pi}{2} w R \sin \theta - \int_{\alpha=0}^{\theta} w R d\alpha \sin \theta + V = 0 \tag{9.138}
\]

\[
V = w R \left(\left(\frac{\pi}{2} - 1 \right) \cos \theta + \left(\theta - \frac{\pi}{2} \right) \sin \theta \right) \tag{9.139}
\]

Similarly, if we consider the summation of forces in the axial direction \((\Sigma F_T = 0)\):

\[
\left(\frac{\pi}{2} - 1 \right) w R \sin \theta + \frac{\pi}{2} w R \cos \theta - \int_{\alpha=0}^{\theta} w R d\alpha \cos \theta + N = 0 \tag{9.140}
\]

\[
N = w R \left(\left(\theta - \frac{\pi}{2} \right) \cos \theta - \left(\frac{\pi}{2} - 1 \right) \sin \theta \right) \tag{9.141}
\]

Now we can consider the third equation of equilibrium \((\Sigma M_\theta = 0)\):

\[
\left(\frac{\pi}{2} - 1 \right) w R \cdot R \sin \theta - \frac{\pi}{2} w R^2 (1 - \cos \theta) + \int_{\alpha=0}^{\theta} w R d\alpha \cdot R (\cos \alpha - \cos \theta) + M = 0 \tag{9.142}
\]

\[
M = w R^2 \left[\frac{\pi}{2} (1 - \sin \theta) + \left(\theta - \frac{\pi}{2} \right) \cos \theta \right] \tag{9.143}
\]

The real curvature \(\phi \) is obtained by dividing the moment by \(EI \)

\[
\phi = \frac{w R^2}{EI} \left[\frac{\pi}{2} (1 - \sin \theta) + \left(\theta - \frac{\pi}{2} \right) \cos \theta \right] \tag{9.144}
\]

The virtual force \(\delta P \) will be a unit vertical point in the direction of the desired deflection, causing a virtual internal moment

\[
\delta M = \frac{R}{2} \left[1 - \cos \theta - \sin \theta \right] \quad 0 \leq \theta \leq \frac{\pi}{2} \tag{9.145}
\]

Hence, application of the virtual work equation yields:

\[
\int_{\theta=0}^{\frac{\pi}{2}} \frac{1}{\delta P} \Delta = 2 \int_{\theta=0}^{\frac{\pi}{2}} \frac{w R^2}{EI} \left[\frac{\pi}{2} (1 - \sin \theta) + \left(\theta - \frac{\pi}{2} \right) \cos \theta \right] \cdot \frac{R}{2} \left[1 - \cos \theta - \sin \theta \right] \cdot \frac{\delta M}{dx} \cdot Rd\theta
\]

\[
= \frac{w R^4}{16 EI} \left[7\pi^2 - 18\pi - 12 \right]
\]

\[
= .0337 \frac{w R^4}{EI} \quad (9.146)
\]
Figure 9.8: Three Hinge Semi-Circular Arch
Example 9-6: Cantilivered Semi-Circular Bow Girder

Considering the semi-circular cantilevered box girder shown in Fig. 9.9 subjected to its own weight \(w \), and with a rectangular cross-section of width \(b \) and height \(d = 2b \) and with Poisson’s ratio \(\nu = 0.3 \).

First, we determine the internal forces by applying the three applicable equations of equilibrium:

\[
\begin{align*}
\Sigma F_Z &= 0 \quad V - \int_0^\theta wRd\alpha = 0 \quad V = wr\theta \\
\Sigma M_R &= 0 \quad M - \int_0^\theta (wRd\alpha)(R\sin \alpha) = 0 \quad M = wR^2(1 - \cos \theta) \\
\Sigma M_T &= 0 + \int_0^\theta (wRd\alpha)R(1 - \cos \alpha) = 0 \quad T = -wR^2(\theta - \sin \theta)
\end{align*}
\]

(9.147)

Noting that the member will be subjected to both flexural and torsional deformations, we seek to determine the two stiffnesses.

The flexural stiffness \(EI \) is given by \(EI = E\frac{bd^4}{12} = E\frac{b(2b)^3}{12} = \frac{2Eb^4}{3} = .667Eb^4 \).
The torsional stiffness of solid rectangular sections $J = kb^3 d$ where b is the shorter side of the section, d the longer, and k a factor equal to .229 for $\frac{d}{b} = 2$. Hence $G = \frac{E}{2(1+\nu)} = \frac{E}{2(1+.3)} = .385E$, and $GJ = (.385E)(.229b^4) = .176Eb^4$.

Considering both flexural and torsional deformations, and replacing dx by $rd\theta$:

$$\frac{\delta P}{\delta W^*} = \int_0^\pi \left[\frac{M}{EI} \delta M \text{ flexural} + \frac{T}{GJ} \delta T \text{ torsional} \right] Rd\theta$$

where the real moments were given above.

Assuming a unit virtual downward force $\delta P = 1$, we have

$$\delta M = R \sin \theta \quad (9.149)$$
$$\delta T = -R(1 - \cos \theta) \quad (9.150)$$

Substituting these expression into Eq. 9.148

$$\frac{1}{\delta P} = \frac{wR^4}{EI} \left[\int_0^\pi (\sin \theta - \sin \theta \cos \theta) d\theta + \frac{1}{265} (\theta - \theta \cos \theta - \sin \theta + \sin \theta \cos \theta) \right]$$
$$= \frac{wR^4}{EI} \left[\frac{2}{265} + 18.56 \right]$$
$$= 20.56 \frac{wR^4}{EI}$$

$$\Delta = 20.56 \frac{wR^4}{EI}$$

9.4 Potential Energy

9.4.1 Derivation

From section 9.2.6.1, if U_0 is a potential function, we take its differential

$$dU_0 = \frac{\partial U_0}{\partial \varepsilon_{ij}} d\varepsilon_{ij} \quad (9.152-a)$$
$$dU_0^* = \frac{\partial U_0}{\partial \sigma_{ij}} d\sigma_{ij} \quad (9.152-b)$$
However, from Eq. 9.33

\[\begin{align*}
U_0 &= \int_0^{\varepsilon_{ij}} \sigma_{ij} d\varepsilon_{ij} \quad \text{(9.153-a)} \\
dU_0 &= \sigma_{ij} d\varepsilon_{ij} \quad \text{(9.153-b)}
\end{align*} \]

thus,

\[\begin{align*}
\frac{\partial U_0}{\partial \varepsilon_{ij}} &= \sigma_{ij} \quad \text{(9.154)} \\
\frac{\partial U_0}{\partial \sigma_{ij}} &= \varepsilon_{ij} \quad \text{(9.155)}
\end{align*} \]

We now define the variation of the strain energy density at a point\(^2\)

\[\delta U_0 = \frac{\partial U}{\partial \varepsilon_{ij}} \delta \varepsilon_{ij} = \sigma_{ij} \delta \varepsilon_{ij} \quad \text{(9.156)} \]

The principle of virtual work, Eq. 9.103, \(\int_{\Omega} \varepsilon_{ij} \sigma_{ij} d\Omega - \int_{\Omega} \delta u_i b_i d\Omega - \int_{\Gamma_t} \delta u_i t_i d\Gamma = 0 \) can be rewritten as

\[\int_{\Omega} \delta U_0 d\Omega - \int_{\Omega} \delta u_i b_i d\Omega - \int_{\Gamma_t} \delta u_i t_i d\Gamma = 0 \quad \text{(9.157)} \]

If nor the surface tractions, nor the body forces alter their magnitudes or directions during deformation, the previous equation can be rewritten as

\[\delta \left[\int_{\Omega} U_0 d\Omega - \int_{\Omega} u_i b_i d\Omega - \int_{\Gamma_t} u_i t_i d\Gamma \right] = 0 \quad \text{(9.158)} \]

Hence, comparing this last equation, with Eq. 9.85 we obtain

\[\delta \Pi = 0 \quad \text{(9.159)} \]

\[\Pi \overset{\text{def}}{=} U - W_e \quad \text{(9.160)} \]

\[\overset{\text{def}}{=} \int_{\Omega} U_0 d\Omega - \left(\int_{\Omega} u b d\Omega + \int_{\Gamma_t} u t d\Gamma + u P \right) \quad \text{(9.161)} \]

We have thus derived the principle of stationary value of the potential energy:

Of all kinematically admissible deformations (displacements satisfying the essential boundary conditions), the actual deformations (those which correspond to stresses which satisfy equilibrium) are the ones for which the total potential energy assumes a stationary value.

\(^2\)Note that the variation of strain energy density is, \(\delta U_0 = \sigma_{ij} \delta \varepsilon_{ij} \), and the variation of the strain energy itself is \(\delta U = \int_{\Omega} \delta U_0 d\Omega \).
For problems involving multiple degrees of freedom, it results from calculus that
\[
d\Pi = \frac{\partial \Pi}{\partial \Delta_1} d\Delta_1 + \frac{\partial \Pi}{\partial \Delta_2} d\Delta_2 + \ldots + \frac{\partial \Pi}{\partial \Delta_n} d\Delta_n
\]
(9.162)

It can be shown that the minimum potential energy yields a lower bound prediction of displacements.

As an illustrative example (adapted from Willam, 1987), let us consider the single dof system shown in Fig. 9.10. The strain energy \(U \) and potential of the external work \(W \) are given by
\[
U = \frac{1}{2} u(Ku) = 250u^2 \quad \text{(9.163-a)}
\]
\[
W = mg u = 100u \quad \text{(9.163-b)}
\]

Thus the total potential energy is given by
\[
\Pi = 250u^2 - 100u \quad \text{(9.164)}
\]

and will be stationary for
\[
\frac{d\Pi}{du} = 0 \Rightarrow 500u - 100 = 0 \Rightarrow u = 0.2 \text{ in} \quad \text{(9.165)}
\]

Substituting, this would yield
\[
U = 250(0.2)^2 = 10 \text{ lbf-in}
\]
\[
W = 100(0.2) = 20 \text{ lbf-in} \quad \text{(9.166)}
\]
\[
\Pi = 10 - 20 = -10 \text{ lbf-in}
\]

Fig. 9.11 illustrates the two components of the potential energy.
9.4 Potential Energy

9.4.2 Euler Equations of the Potential Energy

A variational statement is obtained by taking the first variation of the variational principle and setting this scalar quantity equal to zero.

The variational statement for the general form of the potential energy functional (i.e. Equation 9.174) is

$$
\delta \Pi = \int_{\Omega} \delta \epsilon^T D \epsilon d\Omega - \int_{\Omega} \delta \epsilon^T \sigma_0 d\Omega + \int_{\Omega} \delta \epsilon^T \sigma d\Omega - \int_{\Gamma_t} \delta \epsilon^T b d\Gamma = 0
$$

which is the Principle of Virtual Work.

Since the differential operator L is linear, the variation of the strains $\delta \epsilon$ can be expressed in terms of the variation of the displacements δu

$$
\delta \epsilon = \delta (Lu) = L \delta u
$$

This relationship is exploited to obtain a form of the variational statement in which only variations of the displacements δu are present

$$
\delta \Pi = \int_{\Omega} \delta (Lu)^T D \epsilon d\Omega - \int_{\Omega} \delta (Lu)^T \sigma_0 d\Omega + \int_{\Omega} \delta (Lu)^T \sigma d\Omega - \int_{\Gamma_t} \delta u^T b d\Gamma = 0
$$

which is best suited for obtaining the corresponding Euler equations.
A form of the variational statement in which strain-displacement relationship (i.e. Equation ??) is substituted into Equation 9.169

\[
\delta \Pi = \int_{\Omega} \delta (Lu)^T D(Du) d\Omega - \int_{\Omega} \delta (Lu)^T De_0 d\Omega + \int_{\Omega} \delta (Lu)^T \sigma_0 d\Omega
- \int_{\Omega} \delta u^T b d\Omega - \int_{\Gamma} \delta u^T \hat{t} d\Gamma = 0
\]

is better suited for obtaining the discrete system of equations.

To obtain the Euler equations for the general form of the potential energy variational principle the volume integrals defining the virtual strain energy \(\delta U \) in Equation 9.169 must be integrated by parts in order to convert the variation of the strains \(\delta (Lu) \) into a variation of the displacements \(\delta u \).

Integration by parts of these integrals using Green’s theorem (Kreyszig 1988) yields

\[
\begin{align*}
\int_{\Omega} \delta (Lu)^T De d\Omega &= \oint_{\partial \Omega} \delta u^T G(D\epsilon) d\Gamma - \int_{\Omega} \delta u^T L^T D\epsilon d\Omega \\
\int_{\Omega} \delta (Lu)^T De_0 d\Omega &= \oint_{\partial \Omega} \delta u^T G(De_0) d\Gamma - \int_{\Omega} \delta u^T L^T (De_0) d\Omega \\
\int_{\Omega} \delta (Lu)^T \sigma_0 d\Omega &= \oint_{\partial \Omega} \delta u^T G\sigma_0 d\Gamma - \int_{\Omega} \delta u^T L^T \sigma_0 d\Omega
\end{align*}
\]

where \(G \) is a transformation matrix containing the direction cosines for a unit normal vector such that the surface tractions \(t \) are defined as \(t = G\sigma \) and the surface integrals are over the entire surface of the body \(\partial \Omega \).

Substituting Equation 9.171 into Equation 9.169, the variational statement becomes

\[
\delta \Pi = - \int_{\Omega} \delta u^T \{ L^T [D(\epsilon) - \epsilon_0] + b \} d\Omega + \int_{\partial \Omega} \delta u^T \{ G(D(\epsilon) - \epsilon_0) + \sigma_0 \} d\Gamma = 0
\]

Since \(\delta u \) is arbitrary the expressions in the integrands within the braces must both be equal to zero for \(\delta \Pi \) to be equal to zero. Recognizing that the stress-strain relationship (i.e. Equation 9.37) appears in both the volume and surface integrals, the Euler equations are

\[
\begin{align*}
L^T \sigma + b &= 0 \quad \text{on } \Omega \\
G\sigma - \hat{t} &= 0 \quad \text{on } \Gamma_t
\end{align*}
\]

where the first Euler equation is the equilibrium equation and the second Euler equation defines the natural boundary conditions. The natural boundary conditions are defined on \(\Gamma_t \) rather than \(\partial \Omega \) because both the applied surface tractions \(\hat{t} \) and the matrix-vector product \(G\sigma \) are identically zero outside \(\Gamma_t \).
Starting from the Euler equations, it is possible to derive the total potential energy functional by performing the operations just presented in reverse order.

Substituting Equations 9.39 and 9.83 into the expression for the total potential energy the functional for the general form of the potential energy variational principle is obtained

\[\Pi = \frac{1}{2} \int_{\Omega} \mathbf{e}^T \mathbf{D} \mathbf{e} \, d\Omega - \int_{\Omega} \mathbf{e}^T \mathbf{e} \, d\Omega + \int_{\Omega} \mathbf{e}^T \mathbf{\sigma} \, d\Omega - \int_{\Gamma} \mathbf{u}^T \mathbf{b} \, d\Gamma - \int_{\Gamma} \mathbf{u}^T \mathbf{t} \, d\Gamma \]

(9.174)

9.4.3 Castigliano’s First Theorem

A global version of Eq. 9.155 \(\frac{\partial \Pi}{\partial \epsilon_{ij}} = \sigma_{ij} \), is Castigliano’s theorem.

Since we are now considering a general structure, we consider an arbitrary three dimensional structure subjected to a set of external forces (or moments) \(\hat{P}_1, \hat{P}_2, \cdots, \hat{P}_n \) with corresponding unknown displacements \(\Delta_1, \Delta_2, \cdots, \Delta_n \). The total potential energy is given by

\[\Pi = W_i + W_e = -U + \sum_{i=1}^{n} \hat{P}_i \Delta_i \]

(9.175)

The strain energy can also be expressed in terms of the displacements \(\Delta_i \); thus the potential energy will be defined in terms of generalized coordinates or generalized displacements.

For the solid to be in equilibrium, \(\delta \Pi = 0 \) or

\[\delta \Pi = -\frac{\partial U}{\partial \Delta_1} \delta \Delta_1 - \frac{\partial U}{\partial \Delta_2} \delta \Delta_2 - \cdots - \frac{\partial U}{\partial \Delta_n} \delta \Delta_n + \hat{P}_1 \delta \Delta_1 + \hat{P}_2 \delta \Delta_2 + \cdots + \hat{P}_n \delta \Delta_n = 0 \]

(9.176-a)

or

\[\left(-\frac{\partial U}{\partial \Delta_1} + \hat{P}_1 \right) \delta \Delta_1 + \left(-\frac{\partial U}{\partial \Delta_2} + \hat{P}_2 \right) \delta \Delta_2 + \cdots + \left(-\frac{\partial U}{\partial \Delta_n} + \hat{P}_n \right) \delta \Delta_n = 0 \]

(9.177)

but since the variation \(\delta \Delta_i \) is arbitrary, then each factor within the parenthesis must be equal to zero. Thus

\[\frac{\partial U}{\partial \Delta_k} = \hat{P}_k \]

(9.178)

which is Castigliano’s first theorem:

If the strain energy of a body is expressed in terms of displacement components in the direction of the prescribed forces, then the first partial derivative of the strain energy with respect to a displacement, is equal to the corresponding force.

Example 9-7: Fixed End Beam, Variable I

Victor Saouma
Matrix Structural Analysis
Considering the beam shown in Fig. 9.12, we can assume the following solution:

\[
v = a_1 x^3 + a_2 x^2 + a_3 x + a_4
\]

(9.179)

1. First, this solution must satisfy the essential B.C.: \(v = v' = 0 \) at \(x = 0 \); and \(v = v_{\text{max}} \) and \(v' = 0 \) at \(x = \frac{L}{2} \). This will be enforced by determining the four parameters in terms of a single unknown quantity (4 equations and 4 B.C.’s):

\[
\begin{align*}
\text{at} \ x = 0 & \quad v = 0 \quad \Rightarrow a_4 = 0 \\
\text{at} \ x = 0 & \quad \frac{dv}{dx} = 0 \quad \Rightarrow a_3 = 0 \\
\text{at} \ x = \frac{L}{2} & \quad v = v_{\text{max}} \quad \Rightarrow v_{\text{max}} = a_1 \frac{L^3}{8} + a_2 \frac{L^2}{4} \\
\text{at} \ x = \frac{L}{2} & \quad \frac{dv}{dx} = 0 \quad \Rightarrow \frac{3}{4} a_1 L^2 + a_2 L = 0 \quad \Rightarrow a_2 = -\frac{3}{4} a_1 L
\end{align*}
\]

Upon substitution, we obtain:

\[
v = \left(-\frac{16x^3}{L^3} + \frac{12x^2}{L^2} \right) v_{\text{max}}
\]

(9.181)

Hence, in this problem the solution is in terms of only one unknown variable \(v_{\text{max}} \).

2. In order to apply the principle of Minimum Potential Energy we should evaluate:

Internal Strain Energy \(U \): for flexural members is given by \(U = \int \frac{M^2}{2EI_z} dx \) (Eq. 9.43);

recalling that \(\frac{M}{EI_z} = \frac{dv}{dx} \), thus we must evaluate \(\frac{dv}{dx} \) from above:

\[
\frac{dv}{dx} = \left(-\frac{48x^2}{L^3} + \frac{24x}{L^2} \right) v_{\text{max}}
\]

(9.182)
\[
\frac{d^2 v}{dx^2} = -\frac{24}{L^2} \left(1 - \frac{4x}{L}\right) v_{\text{max}}
\]

(9.183)

which yields

\[
U = 2 \left[\frac{1}{2} \int E \left(\frac{d^2 v}{dx^2}\right)^2 I_z dx \right]
\]

(9.184)

or:

\[
\frac{U}{2} = \frac{E}{2} \int_0^L \frac{4 \cdot 24^2}{L^4} \left(1 - \frac{4x}{L}\right)^2 v_{\text{max}}^2 \frac{I_z}{2} dx
\]

\[
+ \frac{E}{2} \int_0^L \frac{4 \cdot 24^2}{L^4} \left(1 - \frac{4x}{L}\right)^2 v_{\text{max}}^2 I_z dx
\]

\[
U = \frac{72EI_z}{L^3} v_{\text{max}}^2
\]

(9.185-a)

Potential of the External Work \(W\): For a point load, \(W = P v_{\text{max}}\)

3. Finally,

\[
\frac{\partial \Pi}{\partial v_{\text{max}}} = 0
\]

(9.186-a)

\[
\frac{\partial U}{\partial v_{\text{max}}} - \frac{\partial W}{\partial v_{\text{max}}} = 0
\]

(9.186-b)

\[
\frac{144EI_z}{L^3} v_{\text{max}} = P
\]

(9.186-c)

\[
v_{\text{max}} = \frac{PL^3}{144EI_z}
\]

(9.186-d)

4. Note, that had we applied Castigliano’s theorem, then

\[
\frac{\partial U}{\partial v_{\text{max}}} \overset{\text{def}}{=} P
\]

(9.187-a)

\[
\frac{144EI_z}{L^3} v_{\text{max}} = P
\]

(9.187-b)

\[
v_{\text{max}} = \frac{PL^3}{144EI_z}
\]

(9.187-c)

which is identical to the solution obtained through the principle of minimum potential energy.

\[
\square
\]
9.4.4 Rayleigh-Ritz Method

Continuous systems have an infinite number of degrees of freedom, those are the displacements at every point within the structure. Their behavior can be described by the Euler Equation, or the partial differential equation of equilibrium. However, only the simplest problems have an exact solution which (satisfies equilibrium, and the boundary conditions).

An approximate method of solution is the Rayleigh-Ritz method which is based on the principle of virtual displacements. In this method we approximate the displacement field by a function

\[u_1 \approx \sum_{i=1}^{n} c_i^{1} \phi_i^1 + \phi_0^1 \]

\[u_2 \approx \sum_{i=1}^{n} c_i^{2} \phi_i^2 + \phi_0^2 \]

\[u_3 \approx \sum_{i=1}^{n} c_i^{3} \phi_i^3 + \phi_0^3 \]

where \(c_i^j \) denote undetermined parameters, and \(\phi \) are appropriate functions of positions.

\(\phi \) should satisfy three conditions:

1. Be continuous.
2. Must be admissible, i.e. satisfy the essential boundary conditions (the natural boundary conditions are included already in the variational statement. However, if \(\phi \) also satisfy them, then better results are achieved).
3. Must be independent and complete (which means that the exact displacement and their derivatives that appear in \(\Pi \) can be arbitrary matched if enough terms are used. Furthermore, lowest order terms must also be included).

In general \(\phi \) is a polynomial or trigonometric function.

We determine the parameters \(c_i^j \) by requiring that the principle of virtual work for arbitrary variations \(\delta c_i^j \), or

\[\delta \Pi(u_1, u_2, u_3) = \sum_{i=1}^{n} \left(\frac{\partial \Pi}{\partial c_i^1} \delta c_i^1 + \frac{\partial \Pi}{\partial c_i^2} \delta c_i^2 + \frac{\partial \Pi}{\partial c_i^3} \delta c_i^3 \right) = 0 \]

for arbitrary and independent variations of \(\delta c_i^1, \delta c_i^2, \) and \(\delta c_i^3 \), thus it follows that

\[\frac{\partial \Pi}{\partial c_i^j} = 0 \quad i = 1, 2, \cdots, n; j = 1, 2, 3 \]
Thus we obtain a total of $3n$ linearly independent simultaneous equations. From these displacements, we can then determine strains and stresses (or internal forces). Hence we have replaced a problem with an infinite number of d.o.f by one with a finite number.

Some general observations

1. c_i^j can either be a set of coefficients with no physical meanings, or variables associated with nodal generalized displacements (such as deflection or displacement).

2. If the coordinate functions ϕ satisfy the above requirements, then the solution converges to the exact one if n increases.

3. For increasing values of n, the previously computed coefficients remain unchanged.

4. Since the strains are computed from the approximate displacements, strains and stresses are generally less accurate than the displacements.

5. The equilibrium equations of the problem are satisfied only in the energy sense $\delta \Pi = 0$ and not in the differential equation sense (i.e. in the weak form but not in the strong one). Therefore the displacements obtained from the approximation generally do not satisfy the equations of equilibrium.

6. Since the continuous system is approximated by a finite number of coordinates (or d.o.f.), then the approximate system is stiffer than the actual one, and the displacements obtained from the Ritz method converge to the exact ones from below.

Example 9-8: Uniformly Loaded Simply Supported Beam; Polynomial Approximation

For the uniformly loaded beam shown in Fig. 9.13 let us assume a solution given by the following infinite series:

$$ v = a_1 x(L - x) + a_2 x^2(L - x)^2 + \ldots $$

(9.191)

for this particular solution, let us retain only the first term:

$$ v = a_1 x(L - x) $$

(9.192)

We observe that:

1. Contrarily to the previous example problem the geometric B.C. are immediately satisfied at both $x = 0$ and $x = L$.

2. We can keep v in terms of a_1 and take $\frac{\partial \Pi}{\partial a_1} = 0$ (If we had left v in terms of a_1 and a_2 we should then take both $\frac{\partial \Pi}{\partial a_1} = 0$, and $\frac{\partial \Pi}{\partial a_2} = 0$).

3. Or we can solve for a_1 in terms of $v_{\text{max}}(\text{at} x = \frac{L}{2})$ and take $\frac{\partial \Pi}{\partial v_{\text{max}}} = 0$.

Victor Saouma
Matrix Structural Analysis
Figure 9.13: Uniformly Loaded Simply Supported Beam Analysed by the Rayleigh-Ritz Method

\[\Pi = U - W = \int_0^L \frac{M^2}{2EIz} \, dx - \int_0^L wv(x) \, dx \] \hspace{1cm} (9.193)

Recalling that: \(\frac{M}{EI_z} = \frac{d^2v}{dx^2} \), the above simplifies to:

\[
\Pi = \int_0^L \left[\frac{EI_z}{2} \left(\frac{d^2v}{dx^2} \right)^2 - wv(x) \right] \, dx \\
= \int_0^L \left[\frac{EI_z}{2} (-2a_1)^2 - a_1w(L-x) \right] \, dx \\
= \frac{EI_z}{2} a_1^2L - a_1w \frac{L^3}{2} + a_1w \frac{L^3}{3} \\
= 2a_1^2EI_zL - \frac{a_1wL^3}{6} \hspace{1cm} (9.194)
\]

If we now take \(\frac{\partial \Pi}{\partial a_1} = 0 \), we would obtain:

\[4a_1EI_zL - \frac{wL^3}{6} = 0 \]
\[a_1 = \frac{wL^2}{24EI_z} \hspace{1cm} (9.195) \]

Having solved the displacement field in terms of \(a_1 \), we now determine \(v_{\text{max}} \) at \(\frac{L}{2} \):

\[v = \frac{wL^4}{24EI_z} \left(\frac{x}{L} - \frac{x^2}{L^2} \right) \]
\[v(x) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi x}{L} \] (9.198)

we note that the B.C. are satisfied \((v = 0 \text{ at } x = 0 \text{ and } x = L)\). The potential energy is given by:

\[\Pi = U - W \]
\[= \int_0^L \left[\frac{EI_z}{2} \left(\frac{d^2 v}{dx^2} \right)^2 - wv(x) \right] dx \]
\[= \sum \int_0^L \left[\frac{EI_z}{2} \left(- \frac{n^2 \pi^2 a_n}{L^2} \sin \frac{n\pi x}{L} \right)^2 - wa_n \sin \frac{n\pi x}{L} \right] dx \]
\[= \ldots \]
\[= \frac{EI_z}{4L^3} \sum_{n=1}^{\infty} a_n^2 n^4 - \frac{2wL}{\pi} \sum_{n=1,3,5}^{\infty} a_n \]
(9.199)

Note that for \(n\) even, the second term vanishes.

We now take:
\[\frac{\partial \Pi}{\partial a_1} = 0 \quad \frac{\partial \Pi}{\partial a_2} = 0 \quad \ldots \quad \frac{\partial \Pi}{\partial a_n} = 0 \] (9.200)

which would yield:
\[a_n = \frac{4wL^4}{EI_z(n\pi)^5} \quad n = 1,3,5 \] (9.201)
or:
\[v = \frac{4wL^4}{EI_z \pi^5 \sum_{n=1,3,5}^{\infty} \left(\frac{1}{n} \right)^5 \sin \frac{n\pi x}{L}} \] (9.202)
and for \(x = \frac{L}{2} \) we would get:

\[
v = v_{\text{max}} = \frac{4wL^4}{EI_z}\left(1 - \frac{1}{3^5} + \frac{1}{5^5} - \frac{1}{7^5} + \ldots\right)
\]

(9.203)

Note that should we consider only the 1st term, then:

\[
v_{\text{max}} = \frac{wL^4}{76.5EI_z} \approx v_{\text{exact}}
\]

(9.204)

Example 9-10: Tapered Beam; Fourier Series

Revisiting the previous problem of a tapered beam subjected to a point load, Fig. 9.14 and using the following approximation

\[
v = \sum_{n=1,3,\ldots} a_n \left(1 - \cos \frac{n\pi x}{2l}\right)
\]

(9.205)

we seek to solve for \(v_2 \) and \(\theta_2 \), for \(n = 1 \) and \(n = 3 \).

Solution:

\[
v'' = \sum a_n \left(\frac{n\pi}{2l}\right)^2 \cos \frac{n\pi x}{2l}
\]

(9.206)

\[
U = \frac{1}{2} \int_0^L (v'')^2 EI_z \, dx
\]

(9.207)

\[
= \frac{EI_1}{2} \int_0^L \left[\sum_{n=1,3,\ldots} a_n \left(\frac{n\pi}{2l}\right)^2 \cos \frac{n\pi x}{2l} \right]^2 \left(1 - \frac{x}{L}\right) \, dx
\]

(9.208)

Victor Saouma

Matrix Structural Analysis
9.4 Potential Energy

However, we recall that:

\[
\int_0^L \cos \frac{m\pi x}{2l} \cos \frac{n\pi x}{2l} \, dx = \begin{cases}
0 & m \neq n \\
\frac{L}{2} & m = n
\end{cases} \tag{9.209}
\]

\[
\int_0^L x \cos \frac{m\pi x}{2l} \cos \frac{n\pi x}{2l} \, dx = \begin{cases}
0 & m \neq n \\
\frac{L^2}{8} - \frac{L^2}{2n^2\pi^2} & m = n
\end{cases} \tag{9.210}
\]

Thus combining Eqns. 9.208, 9.209, and 9.210, we obtain:

\[
U = \frac{\pi^4EI}{64L^3} \sum_{1,3,5} \frac{3}{4} \left(3 + \frac{1}{n^2\pi^2} \right) n^4a_n^2 \tag{9.211}
\]

The potential of the external work \(W\) in turn is given by:

\[
W = P_2 \sum_n a_n + \frac{M_2\pi}{L} \sum_n (-1)^{n+1} \frac{a_n}{n} \tag{9.212}
\]

Finally, taking

\[
\frac{\partial \Pi}{\partial a_n} = \frac{\partial U}{\partial a_n} - \frac{\partial W}{\partial a_n} = 0 \tag{9.213}
\]

Combining Eqns. 9.211, 9.212, and 9.213 we solve for \(a_n\):

\[
a_n = \frac{32L^3}{\pi^4EI} \left(P + \frac{n\pi}{2L} (-1)^{n+1} \frac{M}{n} \right) \tag{9.214}
\]

Solving for \(v_2 = \sum_a n\) we obtain:

\[
v_2 = \begin{cases}
P \frac{L^3}{2.55EI} + \frac{ML^2}{1.66EI} & n = 1 \\
\frac{P}{2.55EI} + \frac{ML^2}{1.66EI} & n = 3
\end{cases} \tag{9.215}
\]

Similarly we solve for \(\theta_2 = \frac{\pi}{2} \sum n(-1)^{n-1} a_n\):

\[
\theta_2 = \begin{cases}
P \frac{L^3}{1.65EI} + \frac{ML}{1.05EI} & n = 1 \\
\frac{P}{1.65EI} + \frac{ML}{1.05EI} & n = 3
\end{cases} \tag{9.216}
\]
9.5 † Complementary Potential Energy

9.5.1 Derivation

Eq. 9.129, \(\int_{\Omega} \varepsilon_{ij} \delta \sigma_{ij} d\Omega - \int_{\Gamma_u} \hat{u}_i \delta t_i d\Gamma = 0 \) can be rewritten as

\[
\delta \left[\int_{\Omega} U_0 d\Omega - \int_{\Gamma_u} \hat{u}_i \delta t_i d\Gamma \right] = 0 \tag{9.217}
\]

or

\[
\begin{aligned}
\delta \Pi^* &= 0 \tag{9.218} \\
\Pi^* &\overset{\text{def}}{=} U^* - W^*_e \tag{9.219}
\end{aligned}
\]

Check this section which is the principle of stationary complementary energy which states that of all statically admissible states of stress (stresses satisfying the equation of equilibrium), the actual state of stress (the one which satisfy the kinematic conditions) are the ones for which the total complementary potential energy assumes a stationary value.

9.5.2 Castigliano’s Second Theorem

Considering again a three dimensional structure subjected to external displacements (or rotations) (or moments) \(\hat{\Delta}_1, \hat{\Delta}_2, \cdots, \hat{\Delta}_n \) with corresponding unknown forces (or moments) \(P_1, P_2, \cdots, P_n \). The total complementary potential energy is given by

\[
\Pi^* = W^*_i + W^*_e = U^*_i - \sum_{i=1}^{n} \hat{\Delta}_i P_i \tag{9.220}
\]

The complementary strain energy can also be expressed in terms of the forces \(P_i \) thus the complementary potential energy will be defined in terms of generalized coordinates or generalized forces.

For the solid to be in equilibrium, \(\delta \Pi^* = 0 \) or

\[
\begin{aligned}
\delta \Pi^* &= \frac{\partial W^*_i}{\partial P_1} \delta P_1 + \frac{\partial W^*_i}{\partial P_2} \delta P_2 + \cdots + \frac{\partial W^*_i}{\partial P_n} \delta P_n \\
&- \hat{\Delta}_1 \delta P_1 - \hat{\Delta}_2 \delta P_2 - \cdots - \hat{\Delta}_n \delta P_n = 0 \tag{9.221-a}
\end{aligned}
\]

or

\[
\left(\frac{\partial W^*_i}{\partial \hat{\Delta}_1} - \hat{\Delta}_1 \right) \delta P_1 + \left(\frac{\partial W^*_i}{\partial \hat{\Delta}_2} - \hat{\Delta}_2 \right) \delta P_2 + \cdots + \left(\frac{\partial W^*_i}{\partial \hat{\Delta}_n} - \hat{\Delta}_n \right) \delta P_n \tag{9.222}
\]
but since the variation δP_i is arbitrary, then each factor within the parenthesis must be equal to zero. Thus

$$\frac{\partial W_i^*}{\partial P_k} = \Delta_k$$ (9.223)

which is Castigliano’s second theorem:

If the complementary strain energy of a body is expressed in terms of forces then the first partial derivative of the strain energy with respect to any one of the forces, is equal to the corresponding displacement at the point where the force is located.

Example 9-11: Cantilivered beam

Solve for the displacement of the tip of a cantiliver loaded by a point load.

Solution:

From Eq. 9.43, the strain energy is $U = \frac{1}{2} \int_0^L \frac{M^2}{EI} dx$, and for a point load, the external work is $W_e = P\Delta$ thus the potential energy of the system is

$$\Pi = W_e - U = P\Delta - \frac{1}{2} \int_0^L \frac{M^2}{EI} dx$$

However, for the point load, the moment is $M = Px$, substituting above

$$\Pi = P\Delta - \frac{1}{2} \int_0^L \frac{P^2 x^2}{EI} dx$$

$$\Rightarrow \frac{d\Pi}{dP} = \Delta - \frac{1}{6} \frac{P^2 L^3}{EI} = 0$$

$$\Rightarrow \Delta = \frac{1}{3} \frac{P^2 L^3}{EI}$$

9.5.2.1 Distributed Loads

Castigliano’s theorem can easily be applied to problems in which the structure is subjected to point load or moments, and we seek the deflection under these loads.

However when a structure is subjected to say a uniform load, and we wish to determine the deflection at a point where no point load is applied, then we must introduce a fictitious corresponding force R and then write the complementary strain energy in terms of R and the applied load.
Example 9-12: Deflection of a Uniformly loaded Beam using Castigliano’s Theorem

Considering a simply supported uniformly beam, we seek the midspan deflection.

Solution:

We introduce a fictitious force R at midspan, and the moment is thus $M(x) = \frac{wL}{2}x + \frac{R}{2}x - w\frac{x^2}{2}$. The complementary strain energy is $U^* = 2 \int_0^L \frac{M(x)^2}{2EI} dx$ and the displacement

$$\Delta = \left. \frac{\partial U^*}{\partial R} \right|_{R=0} = \left. \left(\frac{2}{EI} \int_0^L M \frac{\partial M}{\partial R} dx \right) \right|_{R=0} = \left. \left\{ \frac{2}{EI} \int_0^L \left[\left(\frac{wL}{2} + \frac{R}{2} \right)x - w\frac{x^2}{2} \right] \frac{R}{2} dx \right\} \right|_{R=0}$$

9.6 Comparison of Alternate Approximate Solutions

While we were able to assess the accuracy of our approximate solutions with respect to the exact one, (already known), in general this is not possible. (i.e., If an exact solution is known, there is no need for an approximate one). Thus the question is, given two or more alternate approximate solutions which one is the best?

This can be determined by evaluating the potential energy of each approximate solution and identify the lowest one.

Example 9-13: Comparison of MPE Solutions

With reference to examples (simply supported uniformly loaded beams) we can determine for each one its Potential Energy $\Pi = U - W$:

Polynomial Solution: From Eq. 9.196 and 9.195 respectively, we had:

$$a_1 = \frac{wL^2}{24EI_z}$$

$$\Pi = 2a_1^2 EI_z L - \frac{a_1 wL^3}{6}$$

$$= 2 \left(\frac{wL^2}{24EI_z} \right)^2 EI_z l - \left(\frac{wL^2}{24EI_z} \right) \frac{wL^3}{6}$$
\[
\begin{align*}
\Pi &= \frac{\pi^4 EI_z}{4L^3} \sum_{n=1}^{\infty} a_n^2 n^4 - \frac{2wL}{\pi} \sum_{n=1,2,3} \frac{a_n}{n} \\
\Pi &= \frac{\pi^4 EI_z}{4L^3} \left[8 \right] - \frac{2wL}{\pi} \left[\frac{4wL^4}{EI_z \pi^5} \right] \\
\Pi &= \frac{w^2 L^5}{EI_z} \left[\frac{16}{4\pi^6} - \frac{8}{\pi^6} \right] \\
\Pi &= \frac{4 w^2 L^5}{\pi^6 EI_z} \\
\Pi &= \frac{1 w^2 L^5}{240 EI_z}
\end{align*}
\]

We note that the Trigonometric solution has a lower potential energy than the polynomial approximation and is thus more accurate (the exact displacement is \(v_{\text{max}} = \frac{wL^4}{76.8 EI_z}\)) as shown in Table 9.3.

<table>
<thead>
<tr>
<th>Solution</th>
<th>(\Pi)</th>
<th>(v_{\text{max}})</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial</td>
<td>(-\frac{1}{288})</td>
<td>(\frac{1}{192})</td>
<td>17%</td>
</tr>
<tr>
<td>Trigonometric</td>
<td>(-\frac{1}{240})</td>
<td>(\frac{1}{192})</td>
<td>1%</td>
</tr>
</tbody>
</table>

Table 9.3: Comparison of 2 Alternative Approximate Solutions

9.7 Summary

A summary of the various methods introduced in this chapter is shown in Fig. 9.15.

The duality between the two variational principles is highlighted by Fig. 9.16, where beginning with kinematically admissible displacements, the principle of virtual work provides...
VARIATIONAL AND ENERGY METHODS

Natural B.C.

Essential B.C.

\[
\text{div } \sigma + \rho \textbf{b} = 0 \\
t - \hat{t} = 0 \quad \Gamma_t \\
U_0 \overset{\text{def}}{=} \int_0^\Omega \sigma \text{d} \varepsilon
\]

\[
\Omega \varepsilon - D\delta \textbf{u} = 0 \\
\delta \textbf{u} = 0 \quad \Gamma_u \\
U_0 \overset{\text{def}}{=} \int_0^\Omega \varepsilon \text{d} \sigma
\]

Gauss

Principle of Virtual Work

\[
\int_\Omega \delta \varepsilon^T \sigma \text{d} \Omega - \int_\Omega \delta \textbf{u}^T \textbf{b} \text{d} \Omega - \int_{\Gamma_t} \delta \textbf{u}^T \hat{\textbf{t}} \text{d} \Gamma = 0 \\
\delta W_i - \delta W_e = 0
\]

Principle of Complementary Virtual Work

\[
\int_\Omega \varepsilon_{ij} \delta \sigma_{ij} \text{d} \Omega - \int_{\Gamma_u} \hat{\textbf{u}}_i \delta t_i \text{d} \Gamma = 0 \\
\delta W_i^* - \delta W_e^* = 0
\]

Principle of Stationary Potential Energy

\[
\delta \Pi = 0 \\
\Pi \overset{\text{def}}{=} U - W_e \\
\Pi = \int_\Omega U_0 \text{d} \Omega - \left(\int_\Omega u_i b_i \text{d} \Omega + \int_{\Gamma_u} u_i \hat{t}_i \text{d} \Gamma \right)
\]

Principle of Complementary Stationary Potential Energy

\[
\delta \Pi^* = 0 \\
\Pi^* \overset{\text{def}}{=} W_i^* + W_e^* \\
\Pi^* = \int_\Omega U_0 \text{d} \Omega + \int_{\Gamma_u} \hat{\textbf{u}}_i \delta t_i \text{d} \Gamma
\]

Castigliano’s First Theorem

\[
\frac{\partial W_i}{\partial \Delta_k} = \tilde{P}_k
\]

Castigliano’s Second Theorem

\[
\frac{\partial W_i^*}{\partial \tilde{P}_k} = \tilde{\Delta}_k
\]

Rayleigh-Ritz

\[
u_j \approx \sum_{i=1}^n \phi_i^j + \phi_0^j \\
\frac{\partial \Pi}{\partial \phi_i^j} = 0 \quad i = 1, 2, \cdots, n; \quad j = 1, 2, 3
\]

Figure 9.15: Summary of Variational Methods
Kinematically Admissible Displacements

Displacements satisfy the kinematic equations and the kinematic boundary conditions.

| Principle of Stationary Complementary Energy |
| Principle of Complementary Virtual Work |
| Principle of Virtual Work |
| Principle of Stationary Potential Energy |

Statically Admissible Stresses

Stresses satisfy the equilibrium conditions and the static boundary conditions.

Figure 9.16: Duality of Variational Principles

...admissible solutions. Similarly, for statically admissible stresses, the principle of complementary virtual work leads to kinematically admissible solutions.

Finally, Table 9.4 summarizes some of the major equations associated with one dimensional rod elements.
Table 9.4: Summary of Variational Terms Associated with One Dimensional Elements

<table>
<thead>
<tr>
<th></th>
<th>Virtual Displacement δU</th>
<th>Virtual Force δU^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
<td>Linear</td>
</tr>
<tr>
<td>Axial</td>
<td>$\frac{1}{2} \int_0^L P \Delta x$</td>
<td>$\int_0^L \sigma \Delta x$</td>
</tr>
<tr>
<td>Shear</td>
<td>\ldots</td>
<td>$\int_0^L V \gamma_{xy} \Delta x$</td>
</tr>
<tr>
<td>Flexure</td>
<td>$\frac{1}{2} \int_0^L M \Delta x$</td>
<td>$\int_0^L M \phi \Delta x$</td>
</tr>
<tr>
<td>Torsion</td>
<td>$\frac{1}{2} \int_0^L T \Delta x$</td>
<td>$\int_0^L T \theta \Delta x$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>Virtual Displacement δW</th>
<th>Virtual Force δW^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$\Sigma_i P_i \Delta_i$</td>
<td>$\Sigma_i \delta P_i \Delta_i$</td>
</tr>
<tr>
<td>M</td>
<td>$\Sigma_i M_i \theta_i$</td>
<td>$\Sigma_i \delta M_i \theta_i$</td>
</tr>
<tr>
<td>w</td>
<td>$\int_0^L w(x) v(x) \Delta x$</td>
<td>$\int_0^L w(x) \delta v(x) \Delta x$</td>
</tr>
</tbody>
</table>
Chapter 10

INTERPOLATION FUNCTIONS

10.1 Introduction

Application of the Principle of Virtual Displacement requires an assumed displacement field. This displacement field can be approximated by interpolation functions written in terms of:

1. Unknown polynomial coefficients, most appropriate for continuous systems, and the Rayleigh-Ritz method

\[y = a_1 + a_2 x + a_3 x^2 + a_4 x^3 \]

(10.1)

A major drawback of this approach, is that the coefficients have no physical meaning.

2. Unknown nodal deformations, most appropriate for discrete systems and Potential Energy based formulations

\[y = \Delta = N_1 \Delta_1 + N_2 \Delta_2 + \ldots + N_n \Delta_n \]

(10.2)

For simple problems both Eqn. 10.1 and Eqn. 10.2 can readily provide the exact solutions of the governing differential equation (such as \(\frac{d^4 y}{dx^4} \) for flexure), but for more complex ones, one must use an approximate one.

10.2 Shape Functions

For an element (finite or otherwise), we can write an expression for the generalized displacement (translation/rotation), \(\Delta \) at any point in terms of all its nodal ones, \(\overline{\Delta} \).

\[\Delta = \sum_{i=1}^{n} N_i(X) \overline{\Delta}_i = [\mathbf{N}(x)] [\overline{\Delta}] \]

(10.3)

where:

1. \(\Delta_i \) is the (generalized) nodal displacement corresponding to d.o.f \(i \)
2. N_i is an interpolation function, or *shape function* which has the following characteristics:
 (a) $N_i = 1$ at Δ_i
 (b) $N_i = 0$ at Δ_j where $i \neq j$.

3. N can be derived on the bases of:
 (a) Assumed deformation state defined in terms of polynomial series.
 (b) Interpolation function (Lagrangian or Hermitian).

We shall distinguish between two classes of problems, those involving displacements only, and those involving displacement and their derivatives.

31 The first class requires only continuity of displacement, and will be referred to as C^0 problems (truss, torsion), whereas the second one requires continuity of slopes and will be referred to as C^1 problems.

10.2.1 Axial/Torsional

32 With reference to Fig. 10.1 we start with:

$$\Delta = N_1 \Delta_1 + N_2 \Delta_2$$

(10.4)

$$\theta_x = N_1 \theta_{x1} + N_2 \theta_{x2}$$

(10.5)

33 Since we have 2 d.o.f’s, we will assume a linear deformation state

$$u = a_1 x + a_2$$

(10.6)

where u can be either Δ or θ, and the B.C.’s are given by: $u = u_1$ at $x = 0$, and $u = u_2$ at $x = L$. Thus we have:

$$u_1 = a_2$$

(10.7)
\begin{align*}
 u_2 &= a_1 L + a_2 \quad (10.8)
\end{align*}

Solving for a_1 and a_2 in terms of u_1 and u_2 we obtain:
\begin{align*}
 a_1 &= \frac{u_2 - u_1}{L} \quad (10.9) \\
 a_2 &= u_1 \quad (10.10)
\end{align*}

Substituting and rearranging those expressions into Eq. 10.6 we obtain
\begin{align*}
 u &= \left(\frac{u_2 - u_1}{L} \right) x + u_1 \\
 &= \left(1 - \frac{x}{L} \right) u_1 + \frac{x}{L} u_2 \quad (10.11)
\end{align*}

or:
\begin{align*}
 N_1 &= 1 - \frac{x}{L} \\
 N_2 &= \frac{x}{L} \quad (10.12)
\end{align*}

\subsection*{10.2.2 Generalization}

The previous derivation can be generalized by writing:
\begin{align*}
 u = a_1 x + a_2 &= \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \\
 &= \begin{bmatrix} p \end{bmatrix} \{a\} \quad (10.14)
\end{align*}

where $[p]$ corresponds to the polynomial approximation, and $\{a\}$ is the coefficient vector.

We next apply the boundary conditions:
\begin{align*}
 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ L & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \\
 &= [\mathcal{L}] \{a\} \quad (10.15)
\end{align*}

following inversion of $[\mathcal{L}]$, this leads to
\begin{align*}
 \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} &= \frac{1}{L} \begin{bmatrix} -1 & 1 \\ -L & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\
 &= [\mathcal{L}]^{-1} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad (10.16)
\end{align*}
Substituting this last equation into Eq. 10.14, we obtain:

\[
\mathbf{u} = \left[(1 - \frac{x}{L}) \frac{x}{L} \right] \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} p \\ \mathbf{L} \end{bmatrix}^{-1} \mathbf{N} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}
\] (10.17)

Hence, the shape functions \([\mathbf{N}]\) can be directly obtained from

\[
\mathbf{N} = [p][\mathbf{L}]^{-1}
\] (10.18)

10.2.3 Flexural

With reference to Fig. 10.2. We have 4 d.o.f.'s, \(\{\Delta\}_{4 \times 1}\): and hence will need 4 shape functions, \(N_1\) to \(N_4\), and those will be obtained through 4 boundary conditions. Therefore we need to assume a polynomial approximation for displacements of degree 3.

\[
v = a_1 x^3 + a_2 x^2 + a_3 x + a_4
\] (10.19)

\[
\theta = \frac{dv}{dx} = 3a_1 x^2 + 2a_2 x + a_3
\] (10.20)

Note that \(v\) can be rewritten as:

\[
v = \begin{bmatrix} x^3 \\ x^2 \\ x \\ 1 \end{bmatrix} [p] \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}
\] (10.21)

We now apply the boundary conditions:
10.2 Shape Functions

\[v = v_1 \quad \text{a} \quad t \quad x = 0 \]
\[v = v_2 \quad \text{at} \quad x = L \]
\[\theta = \theta_1 = \frac{dv}{dx} \quad \text{at} \quad x = 0 \]
\[\theta = \theta_2 = \frac{dv}{dx} \quad \text{at} \quad x = L \]

or:

\[
\begin{bmatrix}
 v_1 \\
 \theta_1 \\
 v_2 \\
 \theta_2
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 L^3 & L^2 & L & 1 \\
 3L^2 & 2L & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4
\end{bmatrix}
\]

(10.22)

which when inverted yields:

\[
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4
\end{bmatrix} = \frac{1}{L^2}
\begin{bmatrix}
 2 & L & -2 & L \\
 -3L & -2L^2 & 3L & -L^2 \\
 0 & L^3 & 0 & 0 \\
 L^3 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 \theta_1 \\
 v_2 \\
 \theta_2
\end{bmatrix}
\]

(10.23)

Combining Eq. 10.23 with Eq. 10.21, we obtain:

\[
\Delta = \left[x^3 \ x^2 \ x \ 1 \right] \frac{1}{L^3}
\begin{bmatrix}
 2 & L & -2 & L \\
 -3L & -2L^2 & 3L & -L^2 \\
 0 & L^3 & 0 & 0 \\
 L^3 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 \theta_1 \\
 v_2 \\
 \theta_2
\end{bmatrix}
\]

(10.24)

\[
\Delta = \left[\frac{1 + 2\xi^3 - 3\xi^2}{N_1} \right] \frac{x(1 - \xi)^2}{N_2} \left[\frac{3\xi^2 - 2\xi^3}{N_3} \right] \frac{x(\xi^2 - \xi)}{N_4}
\]

\begin{bmatrix}
 v_1 \\
 \theta_1 \\
 v_2 \\
 \theta_2
\end{bmatrix}

(10.25)

where \(\xi = \frac{x}{L} \).

Hence, the shape functions for the flexural element are given by:

\[
\begin{align*}
 N_1 &= (1 + 2\xi^3 - 3\xi^2) & (10.26) \\
 N_2 &= x(1 - \xi)^2 & (10.27) \\
 N_3 &= (3\xi^2 - 2\xi^3) & (10.28) \\
 N_4 &= x(\xi^2 - \xi) & (10.29)
\end{align*}
\]

and are shown in Fig 10.3.

Table 10.1 illustrates the characteristics of those shape functions.
Figure 10.3: Shape Functions for Flexure of Uniform Beam Element.

Table 10.1: Characteristics of Beam Element Shape Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>$\xi = 0$</th>
<th>$\xi = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_i</td>
<td>$N_{i,x}$</td>
</tr>
<tr>
<td>$N_1 = (1 + 2\xi^3 - 3\xi^2)$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$N_2 = x(1 - \xi)^2$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$N_3 = (3\xi^2 - 2\xi^3)$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$N_4 = x(\xi^2 - \xi)$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
10.2.4 Constant Strain Triangle Element

Next we consider a triangular element, Fig. 10.4 with bi-linear displacement field (in both x and y):

\[u = a_1 + a_2x + a_3y \]
\[v = a_4 + a_5x + a_6y \]
\[\Delta = \begin{bmatrix} 1 & x & y \\ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \]

As before, we first seek the shape functions, and hence we apply the boundary conditions at the nodes for the u displacements first:

\[\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & x_2 & 0 \\ 1 & x_3 & y_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \]
(10.33)

We then multiply the inverse of $[\mathcal{L}]$ in Eq. 10.33 by $[p]$ and obtain:

\[u = N_1u_1 + N_2u_2 + N_3u_3 \]
(10.34)

where

\[N_1 = \frac{1}{x_2y_3} (x_2y_3 - x_3y_3) \]

\[\text{Victor Saouma} \]
\[\text{Matrix Structural Analysis} \]
\[
N_2 = \frac{1}{x_2y_3}(xy_3 - x_3y) \quad (10.35)
\]
\[
N_3 = \frac{y}{y_3}
\]

We observe that each of the three shape functions is equal to 1 at the corresponding node, and equal to 0 at the other two.

50 The same shape functions can be derived for \(v \):

\[
v = N_1v_1 + N_2v_2 + N_3v_3 \quad (10.36)
\]

51 Hence, the displacement field will be given by:

\[
\begin{bmatrix}
u \\
v
\end{bmatrix}
= \begin{bmatrix}
N_1 & 0 & N_2 & 0 & N_3 & 0 \\
0 & N_1 & 0 & N_2 & 0 & N_3
\end{bmatrix}
\begin{bmatrix}
u_1 \\
v_1 \\
u_2 \\
v_2 \\
u_3 \\
v_3
\end{bmatrix}
\quad (10.37)
\]

52 The element is referred to as Constant Strain Triangle (CST) because it has a linear displacement field, and hence a constant strain.

10.3 Interpolation Functions

53 Based on the preceding examples, we now seek to derive a "general formula" for shape functions of polynomials of various orders.

10.3.1 \(C^0 \): Lagrangian Interpolation Functions

54 In our earlier approach, the shape functions were obtained by:

1. Assumption of a polynomial function: \(\Delta = \lfloor p \rfloor \{a\} \)
2. Application of the boundary conditions \(\{\Delta\} = [\mathcal{L}]\{a\} \)
3. Inversion of \([\mathcal{L}]\)
4. And finally \([N] = [p][\mathcal{L}]^{-1}\)

55 By following these operations, we have in effect defined the Lagrangian Interpolation Functions for problems with \(C^0 \) interelement continuity (i.e. continuity of displacement only).
The Lagrangian interpolation defines the coefficients \([N]\) in our case) of a polynomial series representation of a function in terms of values defined at discrete points (nodes in our case). For points along a line this would yield:

\[
N_i = \prod_{j \neq i}^{m+1} \frac{x-x_j}{x_i-x_j}
\]

If expanded, the preceding equation would yield:

\[
N_1 = \frac{(x-x_2)(x-x_3)\cdots(x-x_{m+1})}{(x_1-x_2)(x_1-x_3)\cdots(x_1-x_{m+1})}
\]
\[
N_2 = \frac{(x-x_1)(x-x_3)\cdots(x-x_{m+1})}{(x_2-x_1)(x_2-x_3)\cdots(x_2-x_{m+1})}
\]
\[
N_{m+1} = \frac{(x-x_1)(x-x_2)\cdots(x-x_m)}{(x_{m+1}-x_1)(x_{m+1}-x_2)\cdots(x_{m+1}-x_m)}
\]

For the axial member, \(m = 1\), \(x_1 = 0\), and \(x_2 = L\), the above equations will result in:

\[
\Delta = \frac{(x-L)}{-L} \Delta_1 + \frac{x}{L} \Delta_2 = (1 - \frac{x}{L}) \Delta_1 + \frac{x}{L} \Delta_2
\]

which is identical to Eq. 10.12.

10.3.1.1 Constant Strain Quadrilateral Element

Next we consider a quadrilateral element, Fig. 10.5 with bi-linear displacement field (in both \(x\) and \(y\)).

Using the Lagrangian interpolation function of Eq. 10.38, and starting with the \(u\) displacement, we perform two interpolations: the first one along the bottom edge (1-2) and along the top one (4-3).

From Eq. 10.38 with \(m = 1\) we obtain:

\[
u_{12} = \frac{x_2-x}{x_2-x_1} u_1 + \frac{x_1-x}{x_1-x_2} u_2 = \frac{a-x}{2a} u_1 + \frac{x+a}{2a} u_2
\]

Similarly

\[
u_{43} = \frac{x_2-x}{x_2-x_1} u_4 + \frac{x_1-x}{x_1-x_2} u_3 = \frac{a-x}{2a} u_4 + \frac{x+a}{2a} u_3
\]
Next, we interpolate in the y direction along 1-4 and 2-3 between u_{12} and u_{43}. Again, we use Eq. 10.38 however this time we replace x by y:

$$u = \frac{y_2 - y}{y_2 - y_1} u_{12} + \frac{y_1 - y}{y_1 - y_2} u_{43}$$

$$= \frac{b - y}{2b} a - x u_1 + \frac{b - y}{2a} a x + \frac{y + b a - x}{2a} u_2 + \frac{y + b x + a}{2b} u_4$$

$$= \frac{(a - x)(b - y)}{4ab} u_1 + \frac{(a + x)(b - y)}{4ab} u_2 + \frac{(a + x)(b + y)}{4ab} u_3 + \frac{(a - x)(b + y)}{4ab} u_4$$

One can easily check that at each node i the corresponding N_i is equal to 1, and all others to zero, and that at any point $N_1 + N_2 + N_3 + N_4 = 1$. Hence, the displacement field will be given by:

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \end{bmatrix}$$
10.3.1.2 Solid Rectangular Trilinear Element

By extension to the previous derivation, the shape functions of a solid rectangular trilinear solid element, Fig. 10.6 will be given by:

\[
\begin{bmatrix}
 u \\
 v \\
 w \\
\end{bmatrix} =
\begin{bmatrix}
 N_1 & 0 & 0 & N_2 & 0 & 0 & N_3 & 0 & 0 & N_4 & 0 & 0 \\
 0 & N_1 & 0 & 0 & N_2 & 0 & 0 & N_3 & 0 & 0 & N_4 & 0 \\
 0 & 0 & N_1 & 0 & 0 & N_2 & 0 & 0 & N_3 & 0 & 0 & N_4 \\
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 v_1 \\
 w_1 \\
 u_2 \\
 v_2 \\
 w_2 \\
 u_3 \\
 v_3 \\
 w_3 \\
 u_4 \\
 v_4 \\
 w_4 \\
\end{bmatrix}
\]

(10.45)

where

\[
N_i = \frac{(a \pm x)(b \pm y)(c \pm z)}{8abc}
\]

(10.46)

10.3.2 C^1: Hermitian Interpolation Functions

For problems involving the first derivative of the shape function, that is with C^1 interelement continuity (i.e. continuity of first derivative or slope) such as for flexure, Hermitian interpolation functions rather than Lagrangian ones should be used.
INTERPOLATION FUNCTIONS

<table>
<thead>
<tr>
<th>Element</th>
<th>Terms</th>
<th># of Nodes (terms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>a_1, a_2</td>
<td>2</td>
</tr>
<tr>
<td>Quadratic</td>
<td>a_1, a_2, a_4</td>
<td>3</td>
</tr>
<tr>
<td>Bi-Linear (triangle)</td>
<td>a_1, a_2, a_3</td>
<td>3</td>
</tr>
<tr>
<td>Bi-Linear (quadrilateral)</td>
<td>a_1, a_2, a_3, a_5</td>
<td>4</td>
</tr>
<tr>
<td>Bi-Quadratic (Serendipity)</td>
<td>$a_1, a_2, a_3, a_4, a_5, a_6, a_8, a_9$</td>
<td>8</td>
</tr>
<tr>
<td>Bi-Quadratic (Lagrangian)</td>
<td>$a_1, a_2, a_3, a_4, a_5, a_6, a_8, a_9, a_{13}$</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 10.2: Interpretation of Shape Functions in Terms of Polynomial Series (1D & 2D)

Table 10.3: Polynomial Terms in Various Element Formulations (1D & 2D)

Hermitian interpolation functions are piecewise cubic functions which satisfy the conditions of displacement and slope (C^0, C^1) continuities. They are extensively used in CAD as Bezier curves.

10.4 Interpretation of Shape Functions in Terms of Polynomial Series

A schematic interpretation of shape functions in terms of polynomial series terms is given in Table 10.2.

Polynomial terms present in various element formulations is shown in Table 10.3

10.5 Characteristics of Shape Functions

1. The basis of derivation of shape functions could be:
 (a) A polynomial relation
 i. Exact
 ii. Approximation
 (b) Or other
 i. Logarithmic
ii. Trigonometric

2. Shape functions should
 (a) be continuous, of the type required by the variational principle.
 (b) exhibit rigid body motion (i.e. $v = a_1 + \ldots$)
 (c) exhibit constant strain.

3. Shape functions should be complete, and meet the same requirements as the coefficients of the Rayleigh Ritz method.

4. Shape functions can often be written in non-dimensional coordinates (i.e. $\xi = \frac{x}{L}$). This will be exploited later by Isoparametric elements.
Chapter 11

FINITE ELEMENT FORMULATION

Having introduced the virtual displacement method in chapter 9, the shape functions in chapter 10, and finally having reviewed the basic equations of elasticity in chapter 8, we shall present a general energy based formulation of the element stiffness matrix in this chapter.

Whereas chapter 2 derived the stiffness matrices of one dimensional rod elements, the approach used could not be generalized to general finite element. Alternatively, the derivation of this chapter will be applicable to both one dimensional rod elements or continuum (2D or 3D) elements.

11.1 Strain Displacement Relations

The displacement Δ at any point inside an element can be written in terms of the shape functions $[N]$ and the nodal displacements $\{\Delta\}$

$$\Delta(x) = [N(x)]\{\Delta\} \quad (11.1)$$

The strain is then defined as:

$$\varepsilon(x) = [B(x)]\{\Delta\} \quad (11.2)$$

where $[B]$ is the matrix which relates joint displacements to strain field and is clearly expressed in terms of derivatives of N.

11.1.1 Axial Members

$$u(x) = \begin{bmatrix} \frac{(1 - x/L)}{N_1} & x/L \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad (11.3)$$
\[\varepsilon(x) = \varepsilon_x = \frac{du}{dx} = \begin{bmatrix} \frac{1}{L} & \frac{1}{L} \\ \frac{\partial N_1}{\partial x} & \frac{\partial N_2}{\partial x} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \]

11.1.2 Flexural Members

Using the shape functions for flexural elements previously derived in Eq. 10.29 we have:

\[\varepsilon = \frac{y}{\rho} = y \frac{d^2 v}{dx^2} \quad (11.5)\]

\[\frac{1}{\rho} = \frac{M}{EI} \quad (11.6)\]

\[= y \frac{d^2 v}{dx^2} \quad (11.7)\]

\[= y \begin{bmatrix} \frac{6}{L^2} (2\xi - 1) & \frac{2}{L} (3\xi - 2) & \frac{6}{L^2} (-2\xi + 1) & \frac{2}{L} (3\xi - 1) \\ \frac{\partial^2 N_1}{\partial x^2} & \frac{\partial^2 N_2}{\partial x^2} & \frac{\partial^2 N_3}{\partial x^2} & \frac{\partial^2 N_4}{\partial x^2} \end{bmatrix} \begin{bmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{bmatrix} \quad (11.8)\]

11.2 Virtual Displacement and Strains

In anticipation of the application of the principle of virtual displacement, we define the vectors of virtual displacements and strain in terms of nodal displacements and shape functions:

\[\delta \Delta(x) = [N(x)]\{\delta \Delta\} \quad (11.9)\]

\[\delta \varepsilon(x) = [B(x)]\{\delta \Delta\} \quad (11.10)\]

11.3 Element Stiffness Matrix Formulation

In one dimensional elements with initial strain (temperature effect, support settlement, or other) such that:

\[\varepsilon_x = \frac{\sigma_x}{E} + \varepsilon_x^0 \quad (11.11)\]

due to load \quad initial strain

thus:

\[\sigma_x = E\varepsilon_x - E\varepsilon_x^0 \quad (11.12)\]
Generalizing, and in matrix form:

\[
\{\sigma\} = [D]\{\epsilon\} - [D]\{\epsilon^0\}
\] \hspace{1cm} (11.13)

where \([D]\) is the constitutive matrix which relates stress and strain vectors.

Let us now apply the principle of virtual displacement and restate some known relations:

\[
\delta U = \delta W
\] \hspace{1cm} (11.14)

\[
\delta U = \int_{\Omega} [\delta \epsilon] \{\sigma\} d\Omega
\] \hspace{1cm} (11.15)

\[
\{\sigma\} = [D]\{\epsilon\} - [D]\{\epsilon^0\}
\] \hspace{1cm} (11.16)

\[
\{\epsilon\} = [B]\{\Delta\}
\] \hspace{1cm} (11.17)

\[
[\delta \epsilon] = [B][\delta \Delta]^T
\] \hspace{1cm} (11.18)

\[
[\delta \epsilon] = [\delta \Delta][B]^T
\] \hspace{1cm} (11.19)

Combining Eqns. 11.14, 11.15, 11.16, 11.19, and 11.17, the internal virtual strain energy is given by:

\[
\delta U = \int_{\Omega} [\delta \Delta][B]^T[D][B][\delta \Delta] d\Omega - \int_{\Omega} [\delta \Delta][B]^T[D][\epsilon^0] d\Omega
\] \hspace{1cm} (11.20)

the virtual external work in turn is given by:

\[
\delta W = \left[\begin{matrix} \delta \Delta \\ \end{matrix} \right] \{F\} + \int_l [\delta \Delta] q(x) dx
\] \hspace{1cm} (11.21)

combining this equation with:

\[
\{\delta \Delta\} = [N]\{\delta \Delta\}
\] \hspace{1cm} (11.22)

yields:

\[
\delta W = [\delta \Delta]\{F\} + [\delta \Delta] \int_0^l [N]^T q(x) dx
\] \hspace{1cm} (11.23)

Equating the internal strain energy Eqn. 11.20 with the external work Eqn. 11.23, we obtain:

\[
[\delta \Delta] \int_{\Omega} [B]^T[D][B] d\Omega \{\Delta\} - [\delta \Delta] \int_{\Omega} [B]^T[D]\{\epsilon^1\} d\Omega = [k] \{\delta \Delta\} - [F^0]
\] \hspace{1cm} (11.24)
\[
\delta\Delta \{ F \} + \delta\Delta \int_0^l [N]^T q(x) \, dx \quad \text{(11.24)}
\]

Cancelling out the \([\delta\Delta]\) term, this is the same equation of equilibrium as the one written earlier on. It relates the (unknown) nodal displacement \(\{ \Delta \}\), the structure stiffness matrix \([k]\), the external nodal force vector \(\{ F \}\), the distributed element force \(\{ F^e \}\), and the vector of initial displacement.

From this relation we define:

The element stiffness matrix:

\[
[k] = \int_\Omega [B]^T [D] [B] \, d\Omega \quad \text{(11.25)}
\]

Element initial force vector:

\[
\{ F^i \} = \int_\Omega [B]^T [D] \{ \epsilon^i \} \, d\Omega \quad \text{(11.26)}
\]

Element equivalent load vector:

\[
\{ F^e \} = \int_0^l [N] q(x) \, dx \quad \text{(11.27)}
\]

and the general equation of equilibrium can be written as:

\[
[k] \{ \Delta \} - \{ F^0 \} = \{ F \} + \{ F^e \} \quad \text{(11.28)}
\]

11.3.1 Stress Recovery

Whereas from the preceding section, we derived a general relationship in which the nodal displacements are the primary unknowns, we next seek to determine the internal (generalized) stresses which are most often needed for design.

Recalling that we have:

\[
\{ \sigma \} = [D] \{ \epsilon \} \quad \text{(11.29)}
\]

\[
\{ \epsilon \} = [B] \{ \Delta \} \quad \text{(11.30)}
\]

With the vector of nodal displacement \(\{ \Delta \}\) known, those two equations would yield:

\[
\{ \sigma \} = [D] \cdot [B] \{ \Delta \} \quad \text{(11.31)}
\]
Chapter 12

SOME FINITE ELEMENTS

12.1 Introduction

Having first introduced the method of virtual displacements in Chapter 9, than the shape functions \([N]\) (Chapter 10) which relate internal to external nodal displacements, than the basic equations of elasticity (Chapter 8) which defined the \([D]\) matrix, and finally having applied the virtual displacement method to finite element in chapter 11, we now revisit some one dimensional element whose stiffness matrix was earlier derived, and derive the stiffness matrices of additional two dimensional finite elements.

12.2 Truss Element

The shape functions of the truss element were derived in Eq. 10.13:

\[
N_1 = 1 - \frac{x}{L} \\
N_2 = \frac{x}{L}
\]

The corresponding strain displacement relation \([B]\) is given by:

\[
\varepsilon_x = \frac{d\mathbf{u}}{dx} = \begin{bmatrix} \frac{dN_1}{dx} \\ \frac{dN_2}{dx} \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} \\ \frac{1}{L} \end{bmatrix}_{\mathbf{B}}
\]

For the truss element, the constitutive matrix \([D]\) reduces to the scalar \(E\); Hence, substituting into Eq. 11.25 \([k] = \int_{\Omega} [B]^T[D][B]d\Omega\) and with \(d\Omega = Adx\) for element with constant cross
sectional area we obtain:

\[
[k] = A \int_0^L \left\{ \frac{-1}{L} \right\} \cdot E \cdot \left\{ \frac{-1}{L} \right\} \cdot dx
\]

\[
[k] = \frac{AE}{L^2} \int_0^L \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot dx
\] (12.2)

We observe that this stiffness matrix is identical to the one earlier derived in Eq. 2.45.

12.3 Flexural Element

For a beam element, for which we have previously derived the shape functions in Eq. 10.29 and the \([B] \) matrix in Eq. 11.8, substituting in Eq. 11.25:

\[
[k] = \int_0^l \int_A [B]^T [D] [B] y^2 dA dx
\] (12.3)

and noting that \(\int_A y^2 dA = I_z \) Eq. 11.25 reduces to

\[
[k] = \int_0^l [B]^T [D] [B] I_z dx
\] (12.4)

For this simple case, we have: \([D] = E \), thus:

\[
[k] = EI_z \int_0^l [B]^T [B] dx
\] (12.5)

Using the shape function for the beam element from Eq. 10.29, and noting the change of integration variable from \(dx \) to \(d\xi \), we obtain

\[
[k] = EI_2 \int_0^l \begin{bmatrix} \frac{6}{L^2} (2\xi - 1) \\ \frac{6}{L^2} (3\xi - 2) \\ \frac{6}{L^2} (3\xi - 1) \end{bmatrix} \cdot \begin{bmatrix} \frac{6}{L^2} (2\xi - 1) \\ \frac{6}{L^2} (3\xi - 2) \\ \frac{6}{L^2} (3\xi - 1) \end{bmatrix} \cdot \int_0^l \frac{L d\xi}{dx} \] (12.6)

or

\[
[k] = \begin{bmatrix}
V_1 & \frac{\theta_1}{12EI_z} & \frac{\theta_2}{6EI_z} & \frac{-12EI_z}{L} & \frac{\theta_1}{6EI_z} \\
\frac{\theta_1}{12EI_z} & \frac{6EI_z}{L^2} & \frac{-6EI_z}{L^2} & \frac{6EI_z}{L^2} & \frac{12EI_z}{L^2} \\
\frac{-12EI_z}{L^2} & \frac{-6EI_z}{L^2} & \frac{6EI_z}{L^2} & \frac{6EI_z}{L^2} & \frac{12EI_z}{L^2} \\
\frac{\theta_2}{6EI_z} & \frac{-6EI_z}{L^2} & \frac{6EI_z}{L^2} & \frac{6EI_z}{L^2} & \frac{12EI_z}{L^2} \\
\frac{-12EI_z}{L^2} & \frac{-6EI_z}{L^2} & \frac{6EI_z}{L^2} & \frac{6EI_z}{L^2} & \frac{12EI_z}{L^2}
\end{bmatrix} (12.7)
\]

Which is identical to the beam stiffness matrix derived in Eq. 2.45 from equilibrium relations.
12.4 Triangular Element

Having retrieved the stiffness matrices of simple one dimensional elements using the principle of virtual displacement, we next consider two dimensional continuum elements starting with the triangular element of constant thickness \(t \) made out of isotropic linear elastic material. The element will have two d.o.f’s at each node:

\[
\begin{bmatrix}
\Delta
\end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 & v_1 & v_2 & v_3 \end{bmatrix}^t \tag{12.8}
\]

12.4.1 Strain-Displacement Relations

The strain displacement relations is required to determine \([B]\)

For the 2D plane elasticity problem, the strain vector \(\{\epsilon\} \) is given by:

\[
\{\epsilon\} = \begin{bmatrix} \epsilon_x & \epsilon_y & \gamma_{xy} \end{bmatrix}^t \tag{12.9}
\]

hence we can rewrite the strains in terms of the derivatives of the shape functions through the matrix \([B]\):

\[
\begin{bmatrix}
\epsilon_x \\
\epsilon_y \\
\gamma_{xy}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_3}{\partial x} \\
0 & \frac{\partial N_2}{\partial y} & \frac{\partial N_3}{\partial y} \\
\frac{\partial N_1}{\partial y} & \frac{\partial N_2}{\partial x} & \frac{\partial N_3}{\partial x}
\end{bmatrix} \begin{bmatrix}
u \\
v
\end{bmatrix} \tag{12.10}
\]

We note that because we have 3 \(u \) and 3 \(v \) displacements, the size of \([B]\) and \(\Delta\) are \(3 \times 6\) and \(6 \times 1\) respectively.

Differentiating the shape functions from Eq. 10.35 we obtain:

\[
\begin{bmatrix}
\epsilon_x \\
\epsilon_y \\
\gamma_{xy}
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{x_2} & \frac{1}{x_2} & 0 \\
0 & 0 & 0 \\
\frac{x_3 - x_2}{\partial N_1/\partial y} & -\frac{x_3 - x_2}{\partial N_2/\partial y} & \frac{y_3}{\partial N_3/\partial y} \\
\frac{x_2 y_3}{\partial N_1/\partial x} & -\frac{x_2 y_3}{\partial N_2/\partial x} & \frac{y_3}{\partial N_3/\partial x}
\end{bmatrix} \begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
v_1 \\
v_2 \\
v_3
\end{bmatrix} \tag{12.11}
\]
12.4.2 Stiffness Matrix

With the constitutive matrix $[D]$ given by Eq. 12.11, the strain-displacement relation $[B]$ by Eq. 12.11, we can substitute those two quantities into the general equation for stiffness matrix, Eq. 11.25:

$$[k] = \int \Omega [B]^T [D] [B] d\Omega$$

$$= \int \Omega \left[\begin{array}{cccc}
\frac{-1}{\nu^2} & 0 & \frac{-\nu y_3}{x_2} & 0 \\
0 & \frac{-\nu y_3}{x_2} & 0 & \frac{-\nu y_3}{x_2} \\
0 & 0 & \frac{1}{x_2^2} & 0 \\
0 & 0 & 0 & \frac{1}{x_2^2} \\
\end{array} \right] E \left[\begin{array}{cccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1}{\nu^2} \\
\nu & 0 & \frac{1}{\nu^2} \\
\end{array} \right] [B] d\Omega$$

$$= \gamma \left[\begin{array}{cccc}
y_3^2 + \alpha x_{3-2} & -y_3^2 - \alpha x_{3-2} & \alpha x_2 x_{3-2} & -\beta y_3 x_{3-2} \\
y_3^2 + \alpha x_{3-2} & -y_3^2 - \alpha x_{3-2} & \alpha x_2 x_{3-2} & -\beta y_3 x_{3-2} \\
-\beta y_3 x_{3-2} & vy_3 x_{3-2} + \alpha x_3 y_3 & -ax_2 x_3 & -\beta x_3 y_3 \\
-vx_3 y_3 + \alpha y_3 x_{3-2} & -\beta y_3 x_{3-2} & -\beta x_3 y_3 & 0 \\
\end{array} \right]$$

where $\alpha = \frac{1-\nu}{\nu^2}$, $\beta = \frac{1+\nu}{\nu^2}$, $\gamma = \frac{E \gamma}{2(1-\nu^2)x_2 y_3}$, $x_{3-2} = x_3 - x_2$, and $y_{3-2} = y_3 - y_2$.

12.4.3 Internal Stresses

Recall from Eq. 11.31 that $\{\sigma\} = [D] \cdot [B] \{\Delta\}$ hence for this particular element we will have:

$$\left\{ \begin{array}{c}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{array} \right\} = \left[\begin{array}{cccc}
E & 1 & \nu & 0 \\
\nu & 1 & 0 & 0 \\
0 & 0 & 1 - \nu
\end{array} \right] \left[\begin{array}{cccc}
-\frac{1}{x_2} & \frac{1}{x_2} & 0 & 0 \\
\frac{1}{x_2} & \frac{1}{x_2} & 0 & 0 \\
0 & 0 & x_2 y_3 & -\frac{x_2 y_3}{x_2} \\
\frac{x_2 - x_3}{x_2 y_3} & \frac{-x_3}{x_2 y_3} & 1 - \frac{1}{x_2} & \frac{1}{x_2} \frac{y_3}{y_2}
\end{array} \right] \left\{ \begin{array}{c}
u_1 \\
u_2 \\
u_3 \\
v_3
\end{array} \right\}$$

Victor Saouma Matrix Structural Analysis
\begin{equation}
\kappa = \kappa \begin{bmatrix}
-y_3 & y_3 & 0 & \nu x_3 - 2 & -\nu x_3 & \nu x_2 \\
-\nu y_3 & \nu y_3 & 0 & x_3 - 2 & -x_3 & x_2 \\
\alpha x_3 - 2 & -\alpha x_3 & \alpha x_2 & -\alpha y_3 & \alpha y_3 & 0 \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
v_1 \\
v_2 \\
v_3 \\
\end{bmatrix}
\end{equation}

where \(\kappa = \frac{E}{(1-\nu^2)x_2y_3} \)

We should note that for this element the stress is independent of \(x \) and \(y \) because a linear displacement relation was assumed resulting in a constant strain and stress (for linear elastic material).

12.4.4 Observations

- Both \(\sigma \) and \(\varepsilon \) are constants
- Inter-element equilibrium conditions are not satisfied
- Inter-element continuity of displacement is satisfied

12.5 Quadrilateral Element
Chapter 13

GEOMETRIC NONLINEARITY

13.1 Strong Form

Column buckling theory originated with Leonhard Euler in 1744.

An initially straight member is concentrically loaded, and all fibers remain elastic until buckling occur.

For buckling to occur, it must be assumed that the column is slightly bent as shown in Fig. 13.1. Note, in reality no column is either perfectly straight, and in all cases a minor imperfection is present.

![Figure 13.1: Euler Column](image)

13.1.1 Lower Order Differential Equation

At any location x along the column, the imperfection in the column compounded by the concentric load P, gives rise to a moment

$$M_x = -Py$$ \hspace{1cm} (13.1)
Note that the value of y is irrelevant.

Recalling that

$$\frac{d^2y}{dx^2} = \frac{M_x}{EI}$$ \hspace{1cm} (13.2)

upon substitution, we obtain the following differential equation

$$\frac{d^2y}{dx^2} - \frac{P}{EI}y = 0$$ \hspace{1cm} (13.3)

Letting $k^2 = \frac{P}{EI}$, the solution to this second-order linear differential equation is

$$y = -A \sin kx - B \cos kx$$ \hspace{1cm} (13.4)

The two constants are determined by applying the boundary conditions

1. $y = 0$ at $x = 0$, thus $B = 0$
2. $y = 0$ at $x = L$, thus

$$A \sin kL = 0$$ \hspace{1cm} (13.5)

This last equation can be satisfied if: 1) $A = 0$, that is there is no deflection; 2) $kL = 0$, that is no applied load; or 3)

$$kL = n\pi$$ \hspace{1cm} (13.6)

Thus buckling will occur if $P = \left(\frac{2\pi}{L}\right)^2$ or

$$P = \frac{n^2\pi^2EI}{L^2}$$

The fundamental buckling mode, i.e. a single curvature deflection, will occur for $n = 1$; Thus Euler critical load for a pinned column is

$$P_{cr} = \frac{\pi^2EI}{L^2}$$ \hspace{1cm} (13.7)

The corresponding critical stress is

$$\sigma_{cr} = \frac{\pi^2E}{\left(\frac{L}{r}\right)^2}$$ \hspace{1cm} (13.8)

where $I = Ar^2$.

Note that buckling will take place with respect to the weakest of the two axis.
13.1.2 Higher Order Differential Equation

In the preceding approach, the buckling loads were obtained for a column with specified boundary conditions. A second order differential equation, valid specifically for the member being analyzed was used.

In the next approach, we derive a single fourth order equation which will be applicable to any column regardless of the boundary conditions.

Considering a beam-column subjected to axial and shear forces as well as a moment, Fig. 13.2, taking the moment about \(i \) for the beam segment and assuming the angle \(\frac{dv}{dx} \) between the axis of the beam and the horizontal axis is small, leads to

\[
M - \left(M + \frac{dM}{dx} \right) + w \frac{(dx)^2}{2} + \left(V + \frac{dV}{dx} \right) dx - P \left(\frac{dv}{dx} \right) dx = 0 \tag{13.9}
\]

Neglecting the terms in \(dx^2 \) which are small, and then differentiating each term with respect to \(x \), we obtain

\[
\frac{d^2M}{dx^2} - \frac{dV}{dx} - P \frac{d^2v}{dx^2} = 0 \tag{13.10}
\]

However, considering equilibrium in the \(y \) direction gives

\[
\frac{dV}{dx} = -w \tag{13.11}
\]

From beam theory, neglecting axial and shear deformations, we have

\[
M = -EI \frac{d^2v}{dx^2} \tag{13.12}
\]

Substituting Eq. 13.11 and 13.12 into 13.10, and assuming a beam of uniform cross section, we obtain

\[
EI \frac{d^4v}{dx^4} - P \frac{d^2v}{dx^2} = w \tag{13.13}
\]

Introducing \(k^2 = \frac{P}{EI} \), the general solution of this fourth order differential equation to any set of boundary conditions is

\[
v = C_1 \sin kx + C_2 \cos kx + C_3 x + C_4 \tag{13.14}
\]

If we consider again the stability of a hinged-hinged column, the boundary conditions are

\[
\begin{align*}
v &= 0, \quad v_{xx} = 0 \quad \text{at} \quad x = 0 \\
v &= 0, \quad v_{xx} = 0 \quad \text{at} \quad x = L
\end{align*} \tag{13.15}
\]
Figure 13.2: Simply Supported Beam Column; Differential Segment; Effect of Axial Force P
substitution of the two conditions at \(x = 0 \) leads to \(C_2 = C_4 = 0 \). From the remaining conditions, we obtain
\[
\begin{align*}
C_1 \sin kL + C_3 L &= 0 \\
-C_1 k^2 \sin kl &= 0
\end{align*}
\]
(13.16-a) (13.16-b)
these relations are satisfied either if \(C_1 = C_3 = 0 \) or if \(\sin kl = C_5 = 0 \). The first alternative leads to the trivial solution of equilibrium at all loads, and the second to \(kL = n\pi \) for \(n = 1, 2, 3 \cdots \). For \(n = 1 \), the critical load is
\[P_{cr} = \frac{\pi^2 EI}{L^2} \]
(13.17)
which was derived earlier using the lower order differential equation.

\(\star\) Next we consider a column with one end fixed (at \(x = 0 \)), and one end hinged (at \(x = L \)). The boundary conditions are
\[
\begin{align*}
v &= 0, \quad v_{xx} = 0 \quad \text{at} \quad x = 0 \\
v &= 0, \quad v_x = 0 \quad \text{at} \quad x = L
\end{align*}
\]
(13.18)
These boundary conditions will yield \(C_2 = C_4 = 0 \), and
\[\sin kL - kL \cos kL = 0 \]
(13.19)
But since \(\cos kL \) can not possibly be equal to zero, the preceding equation can be reduced to
\[\tan kL = kL \]
(13.20)
which is a transcendental algebraic equation and can only be solved numerically. We are essentially looking at the intersection of \(y = x \) and \(y = \tan x \), Fig. 13.3 and the smallest positive root is \(kL = 4.4934 \), since \(k^2 = \frac{P}{EI} \), the smallest critical load is
\[P_{cr} = \frac{(4.4934)^2 EI}{L^2} = \frac{\pi^2 EI}{(0.699L)^2} \]
(13.21)
Note that if we were to solve for \(x \) such that \(v_{xx} = 0 \) (i.e. an inflection point), then \(x = 0.699L \).

\(\star\) We observe that in using the higher order differential equation, we can account for both natural and essential boundary conditions.

13.1.3 Slenderness Ratio

\(\star\) For different boundary conditions, we define the slenderness ratio
\[\lambda = \frac{l_e}{r} \]
where \(l_e \) is the effective length and is equal to \(l_e = kl \) and \(r \) the radius of gyration \((r = \sqrt{\frac{I}{A}}) \).

\(\star\) \(l_e \) is the distance between two adjacent (fictitious or actual) inflection points, Fig. 13.4
13.2 Weak Form

13.2.1 Strain Energy

Considering a uniform section prismatic element, Fig. ??, subjected to axial and flexural deformation (no shear), the Lagrangian finite strain-displacement relation is given by ??

\[\varepsilon_{xx} = u_{,x} + \frac{1}{2}(u_{,x}^2 + v_{,x}^2 + w_{,x}^2) \]

(13.22)

thus, the total strain would be

\[\varepsilon_{xx} = \frac{du}{dx} - y \left(\frac{d^2 v}{dx^2} \right) + \frac{1}{2} \left(\frac{dv}{dx} \right)^2 \]

Axial Flexure Large Deformation

(13.23)

we note that the first and second terms are the familiar components of axial and flexural strains respectively, and the third one (which is nonlinear) is obtained from large-deflection strain-displacement.

The Strain energy of the element is given by

\[U^e = \frac{1}{2} \int_{\Omega} E \varepsilon_{xx}^2 d\Omega \]

(13.24)

Victor Saouma
Matrix Structural Analysis
Figure 13.4: Critical lengths of columns
Substituting Eq. 13.23 into U_e we obtain

$$U_e = \frac{1}{2} \int L \int_A \left[(\frac{d u}{d x})^2 + y^2 \left(\frac{d^2 v}{d x^2} \right)^2 + \frac{1}{4} (\frac{d v}{d x})^4 - 2y \left(\frac{d u}{d x} \right) \left(\frac{d^2 v}{d x^2} \right) - y \left(\frac{d^2 v}{d x^2} \right) \left(\frac{d v}{d x} \right)^2 \right] EdA dx$$ \hspace{1cm} (13.25-a)

Noting that

$$\int_A dA = A; \quad \int_A ydA = 0; \quad \int_A y^2 dA = I$$ \hspace{1cm} (13.26)

for y measured from the centroid, U_e reduces to

$$U_e = \frac{1}{2} \int L E \left[A \left(\frac{d u}{d x} \right)^2 + \frac{1}{4} \left(\frac{d v}{d x} \right)^4 + \frac{A}{4} \left(\frac{d u}{d x} \right) \left(\frac{d v}{d x} \right)^2 \right] dx$$ \hspace{1cm} (13.27)

We discard the highest order term $\frac{A}{4} \left(\frac{d u}{d x} \right)^4$ in order to transform the above equation into a linear instability formulation.

Under the assumption of an independent prebuckling analysis for axial loading, the axial load P_x is

$$P_x = EA \frac{du}{dx}$$ \hspace{1cm} (13.28)

Thus Eq. 13.27 reduces to

$$U_e = \frac{1}{2} \int L \left[EA \left(\frac{d u}{d x} \right)^2 + EI \left(\frac{d^2 v}{d x^2} \right)^2 + P_x \left(\frac{d v}{d x} \right)^2 \right] dx$$ \hspace{1cm} (13.29)

We can thus decouple the strain energy into two components, one associated with axial and the other with flexural deformations

$$U^e = U^e_a + U^e_f$$ \hspace{1cm} (13.30-a)

$$U^e_a = \frac{1}{2} \int L EA \left(\frac{d u}{d x} \right)^2 dx$$ \hspace{1cm} (13.30-b)

$$U^e_f = \frac{1}{2} \int L \left[EI \left(\frac{d^2 v}{d x^2} \right)^2 + P_x \left(\frac{d v}{d x} \right)^2 \right] dx$$ \hspace{1cm} (13.30-c)
13.2 Weak Form

13.2.2 Euler Equation

Recall, from Eq. 9.15 that a functional in terms of two field variables \((u, v)\) with higher order derivatives of the form

\[
\Pi = \int \int F(x, y, u, v, u_x, u_y, v_x, v_y, \ldots, v_{yy}) \, dx \, dy
\]

(13.31)

There would be as many Euler equations as dependent field variables, Eq. 9.16

\[
\begin{align*}
\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \frac{\partial F}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial F}{\partial u_y} + \frac{\partial^2 F}{\partial x^2} \frac{\partial F}{\partial u_{xx}} + \frac{\partial^2 F}{\partial x \partial y} \frac{\partial F}{\partial u_{xy}} + \frac{\partial^2 F}{\partial y^2} \frac{\partial F}{\partial u_{yy}} &= 0 \\
\frac{\partial F}{\partial v} - \frac{\partial}{\partial x} \frac{\partial F}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial F}{\partial v_y} + \frac{\partial^2 F}{\partial x^2} \frac{\partial F}{\partial v_{xx}} + \frac{\partial^2 F}{\partial x \partial y} \frac{\partial F}{\partial v_{xy}} + \frac{\partial^2 F}{\partial y^2} \frac{\partial F}{\partial v_{yy}} &= 0
\end{align*}
\]

(13.32)

For the problem at hand, those two equations reduce to

\[
U_f^e = \int_{L} \frac{1}{2} \left[EI v_{xx}^2 + P_x v_x^2 \right] \, dx
\]

(13.33)

and the corresponding Euler equation will be

\[
- \frac{\partial}{\partial x} \frac{\partial F}{\partial v_x} + \frac{\partial^2}{\partial x^2} \frac{\partial F}{\partial v_{xx}} = 0
\]

(13.34)

The terms of the Euler Equation are given by

\[
\begin{align*}
\frac{\partial F}{\partial v_x} &= P_x v_x \\
\frac{\partial F}{\partial v_{xx}} &= EI v_{xx}
\end{align*}
\]

(13.35-a, b)

Substituting into the Euler equation, and assuming constant \(P_x\), and \(EI\), we obtain

\[
EI \frac{d^4 v}{dx^4} - P_x \frac{d^2 v}{dx^2} = 0
\]

(13.36)

which is identical to Eq. 13.13

13.2.3 Discretization

Assuming a functional representation of the transverse displacements in terms of the four joint displacements

\[
\begin{align*}
v &= \mathbf{N} \mathbf{v} \\
\frac{dv}{dx} &= \mathbf{N}_x \mathbf{v} \\
\frac{d^2 v}{dx^2} &= \mathbf{N}_{xx} \mathbf{v}
\end{align*}
\]

(13.37-a, b, c)
Substituting this last equation into Eq. 13.30-c, the element potential energy is given by

\[\Pi^e = U^e + W^e \]

(13.38-a)

\[= \frac{1}{2} \{ \nabla_e \} \{ k_e \} \{ \nabla_e \} + \frac{1}{2} |\nabla_e| \{ k_g \} \{ \nabla_e \} - |\nabla| \{ P \} \]

(13.38-b)

where

\[\{ k_e \} = \int_L EI \{ N_{xx} \} [N_{xx}] dx \]

(13.39)

and

\[\{ k_g \} = P \int_L \{ N_x \} [N_x] dx \]

(13.40)

where \(\{ k_e \} \) is the conventional element flexural stiffness matrix.

\[\{ k_g \} \] introduces the considerations related to elastic instability. We note that its terms solely depend on geometric parameters (length), therefore this matrix is often referred to as the geometric stiffness matrix.

Using the shape functions for flexural elements, Eq. 10.29, and substituting into Eq. 13.39 and Eq. 13.40 we obtain

\[k_e = \begin{bmatrix}
\frac{E A}{L} & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
0 & \frac{12 E I}{L^3} & \frac{6 E I}{L} & 0 & -\frac{12 E I}{L^3} & \frac{6 E I}{L} \\
0 & \frac{6 E I}{L^2} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^2} & \frac{2 E I}{L} \\
-\frac{E A}{L} & 0 & 0 & \frac{E A}{L} & 0 & 0 \\
0 & -\frac{12 E I}{L^3} & -\frac{6 E I}{L} & 0 & \frac{12 E I}{L^3} & -\frac{6 E I}{L} \\
0 & \frac{6 E I}{L^2} & \frac{2 E I}{L} & 0 & -\frac{6 E I}{L^2} & \frac{4 E I}{L}
\end{bmatrix} \]

(13.41)

which is the same element stiffness matrix derived earlier in Eq. 12.7.

The geometric stiffness matrix is given by

\[k_g = \frac{P}{L} \begin{bmatrix}
\frac{E A}{L} & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
0 & \frac{12 E I}{L^3} & \frac{6 E I}{L} & 0 & -\frac{12 E I}{L^3} & \frac{6 E I}{L} \\
0 & \frac{6 E I}{L^2} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^2} & \frac{2 E I}{L} \\
-\frac{E A}{L} & 0 & 0 & \frac{E A}{L} & 0 & 0 \\
0 & -\frac{12 E I}{L^3} & -\frac{6 E I}{L} & 0 & \frac{12 E I}{L^3} & -\frac{6 E I}{L} \\
0 & \frac{6 E I}{L^2} & \frac{2 E I}{L} & 0 & -\frac{6 E I}{L^2} & \frac{4 E I}{L} \\
\end{bmatrix} \]

(13.42)

The equilibrium relation is thus

\[k \{ \nabla \} = \{ P \} \]

(13.43)
where the element stiffness matrix is expressed in terms of both the elastic and geometric components

\[k = k_e + k_g \]

(13.44)

66 In a global formulation, we would have

\[K = K_e + K_g \]

(13.45)

67 We assume that conservative loading is applied, that is the direction of the load does not “follow” the deflected direction of the member upon which it acts.

13.3 Elastic Instability

68 In elastic instability, the intensity of the axial load system to cause buckling is yet unknown, the incremental stiffness matrix must first be numerically evaluated using an arbitrary chosen load intensity (since K_g is itself a function of P).

69 For buckling to occur, the intensity of the axial load system must be λ times the initially arbitrarily chosen intensity of the force. Note that for a structure, the initial distribution of \mathbf{F}^* must be obtained from a linear elastic analysis. Hence, the buckling load, \mathbf{F} is given by

\[\mathbf{F} = \lambda \mathbf{F}^* \]

(13.46)

70 Since the geometric stiffness matrix is proportional to the internal forces at the start, it follows that

\[K_g = \lambda K_g^* \]

(13.47)

where K_g^* corresponds to the geometric stiffness matrix for unit values of the applied loading ($\lambda = 1$).

71 The elastic stiffness matrix K_e remains a constant, hence we can write

\[(K_e + \lambda K_g^*) \mathbf{v} - \lambda \mathbf{F}^* = 0 \]

72 The displacements are in turn given by

\[\mathbf{v} = (K_e + \lambda K_g^*)^{-1} \lambda \mathbf{F}^* \]

and for the displacements to tend toward infinity, then

\[|K_e + \lambda K_g^*| = 0 \]

(13.48)
which can also be expressed as

$$|K_g^{-1}K_e + \lambda I| = 0$$

(13.49)

Alternatively, it can simply be argued that there is no unique solution (bifurcation condition) to ∇.

The lowest value of λ, λ_{crit} will give the buckling load for the structure and the buckling loads will be given by

$$\bar{F}_{crit} = \lambda_{crit} \bar{F}^*$$

(13.50)

The corresponding deformed shape is directly obtained from the corresponding eigenvector.

Example 13-1: Column Stability

Determine the buckling load of the following column.

```
Solution:
```

Victor Saouma Matrix Structural Analysis
The following elastic stiffness matrices are obtained

\[
k_e^1 = \begin{bmatrix}
\frac{E A}{L} & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
0 & \frac{12 E I}{L^2} & 6 E I & 0 & -\frac{12 E I}{L^2} & 6 E I \\
0 & \frac{6 E I}{L^2} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^2} & 2 E I \\
-\frac{E A}{L} & 0 & 0 & \frac{E A}{L} & 0 & 0 \\
0 & -\frac{12 E I}{L^2} & -6 E I & 0 & \frac{12 E I}{L^2} & -6 E I \\
0 & \frac{6 E I}{L^2} & 2 E I & 0 & -\frac{6 E I}{L^2} & 4 E I \\
\end{bmatrix}
\]

(13.51-a)

\[
k_e^2 = \begin{bmatrix}
\frac{E A}{L} & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
0 & \frac{12 E I}{L^2} & 6 E I & 0 & -\frac{12 E I}{L^2} & 6 E I \\
0 & \frac{6 E I}{L^2} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^2} & 2 E I \\
-\frac{E A}{L} & 0 & 0 & \frac{E A}{L} & 0 & 0 \\
0 & -\frac{12 E I}{L^2} & -6 E I & 0 & \frac{12 E I}{L^2} & -6 E I \\
0 & \frac{6 E I}{L^2} & 2 E I & 0 & -\frac{6 E I}{L^2} & 4 E I \\
\end{bmatrix}
\]

(13.51-b)

Similarly, the geometric stiffness matrices are given by

\[
k_g^1 = -\frac{P}{L} \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{6}{5} & \frac{L}{10} & 0 & -\frac{6}{5} & \frac{L}{10} \\
0 & \frac{L}{10} & -\frac{L^2}{30} & 0 & -\frac{L}{10} & \frac{2L}{15} \\
0 & \frac{6}{5} & -\frac{L}{10} & 0 & \frac{6}{5} & -\frac{L}{10} \\
0 & \frac{L}{10} & -\frac{L^2}{30} & 0 & \frac{L}{10} & \frac{2L}{15} \\
\end{bmatrix}
\]

(13.52-a)

\[
k_g^2 = -\frac{P}{L} \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & \frac{6}{5} & \frac{2L}{15} & 0 & -\frac{6}{5} & \frac{L}{10} \\
0 & \frac{L}{10} & \frac{L^2}{30} & 0 & -\frac{L}{10} & \frac{2L}{15} \\
0 & \frac{6}{5} & -\frac{L}{10} & 0 & \frac{6}{5} & -\frac{L}{10} \\
0 & \frac{L}{10} & -\frac{L^2}{30} & 0 & \frac{L}{10} & \frac{2L}{15} \\
\end{bmatrix}
\]

(13.52-b)

The structure’s stiffness matrices \(K_e\) and \(K_g\) can now be assembled from the element stiffnesses. Eliminating rows and columns 2, 7, 8, 9 corresponding to zero displacements in the column, we obtain

\[
K_e = \frac{E I}{L^3} \begin{bmatrix}
1 & 4 & 3 & 5 & 6 \\
\frac{A L^2}{I} & -\frac{A L^2}{I} & 0 & 0 & 0 \\
-\frac{A L^2}{I} & 2 \frac{A L^2}{I} & 0 & 0 & 0 \\
0 & 0 & 4L^2 & -6L & 2L^2 \\
0 & 0 & -6L & 24 & 0 \\
0 & 0 & 2L^2 & 0 & 8L^2 \\
\end{bmatrix}
\]

(13.53)
and

\[K_g = \frac{-P}{L} \begin{bmatrix} 1 & 4 & 3 & 5 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 15L^2 & \frac{L}{10} & -\frac{L^2}{30} \\ 0 & 0 & \frac{L}{10} & \frac{1}{5} & 0 \\ 0 & 0 & -\frac{L^2}{30} & 0 & \frac{1}{15}L^2 \end{bmatrix} \]

(13.54)

noting that in this case \(K_g^* = K_g \) for \(P = 1 \), the determinant \(|K_e + \lambda K_g^*| = 0 \) leads to

\[
\begin{vmatrix}
1 & 4 & 3 & 5 & 6 \\
\frac{AL^2}{\lambda} & -\frac{AL^2}{\lambda} & 0 & 0 & 0 \\
4 & -2\frac{AL^2}{\lambda} & 0 & 0 & 0 \\
0 & 0 & 2L^2 - \frac{2}{15}\frac{\lambda L^4}{EI} & -6L + \frac{1}{10}\frac{\lambda^3 L^3}{EI} & 2L^2 + \frac{1}{30}\frac{\lambda^4 L^4}{EI} \\
0 & 0 & -6L + \frac{1}{10}\frac{\lambda^3 L^3}{EI} & 24 - \frac{12}{15}\frac{\lambda^4 L^4}{EI} & 0 \\
0 & 0 & 2L^2 + \frac{1}{30}\frac{\lambda^4 L^4}{EI} & 8L^2 - \frac{4}{15}\frac{\lambda^4 L^4}{EI} & 0
\end{vmatrix} = 0
\]

(13.55)

introducing \(\phi = \frac{AL^2}{\lambda} \) and \(\mu = \frac{L^2}{EI} \), the determinant becomes

\[
\begin{vmatrix}
1 & 4 & 3 & 5 & 6 \\
\phi & -\phi & 0 & 0 & 0 \\
4 & -2\phi & 0 & 0 & 0 \\
0 & 0 & 2(2 - \mu) & -6L + \frac{1}{10}\mu & 2 + \frac{1}{5}\mu \\
0 & 0 & -6L + \frac{1}{10}\mu & 12(2 - \mu) & 0 \\
0 & 0 & 2 + \frac{1}{5}\mu & 4(2 - \mu) & 0
\end{vmatrix} = 0
\]

(13.56)

Expanding the determinant, we obtain the cubic equation in \(\mu \)

\[3\mu^3 - 220\mu^2 + 3,840\mu - 14,400 = 0 \]

(13.57)

and the lowest root of this equation is \(\mu = 5.1772 \).

We note that from Eq. 13.21, the exact solution for a column of length \(L \) was

\[P_{cr} = \frac{(4.4934)^2}{l^2}EI = \frac{(4.4934)^2}{(2L)^2}EI = \frac{5.0477EI}{L^2} \]

(13.58)

and thus, the numerical value is about 2.6 percent higher than the exact one. The \textit{mathematica} code for this operation is:

(* Define elastic stiffness matrices *)

\[
\text{ke}[a_1,a_2,a_3,a_4,a_5,a_6]:=\{a_1,a_2,a_3,a_4,a_5,a_6\},
\]

\[
\{1,12 \text{ e i/1.3},6 \text{ e i/1.2},0,-12 \text{ e i/1.3},6 \text{ e i/1.2}\},
\]

\[
\{0,6 \text{ e i/1.2},4 \text{ e i/1},0,-6 \text{ e i/1.2},2 \text{ e i/1}\},
\]

\[
\{-a_1,0,0,0,0\},
\]

\[
\{0,-12 \text{ e i/1.3},-6 \text{ e i/1.2},0,12 \text{ e i/1.3},-6 \text{ e i/1.2}\},
\]

\[
\text{Victor Saouma} \quad \text{Matrix Structural Analysis}
\]
13.3 Elastic Instability

\[
\{ 0, 6e^{i/l^2}, 2e^{i/l}, 0, -6e^{i/l^2}, 4e^{i/l} \}
\]

ke1 = N[ke[e, a, l, i]]
ke2 = N[ke[e, a, l, i]]

(* Assemble structure elastic stiffness matrices *)
ke = {
{ke1[[3, 3]], ke1[[3, 5]], ke1[[3, 6]]},
{ke1[[5, 3]], ke1[[5, 5]] + ke2[[2, 2]], ke1[[5, 6]] + ke2[[2, 3]]},
{ke1[[6, 3]], ke1[[6, 5]] + ke2[[3, 2]], ke1[[6, 6]] + ke2[[3, 3]]}
}

WriteString["mat.out", MatrixForm[ke1]]
WriteString["mat.out", MatrixForm[ke2]]
WriteString["mat.out", MatrixForm[ke]]

(* Define geometric stiffness matrices *)
kg[p_, l_] := p/l {
{0, 0, 0, 0, 0, 0},
{0, 6/5, 1/10, 0, -6/5, 1/10},
{0, 1/10, 2, 1/2/15, 0, -1/10, -1/2/30},
{0, 0, 0, 0, 0, 0},
{0, -6/5, -1/10, 0, 6/5, -1/10},
{0, 1/10, -1/2/30, 0, -1/10, 2, 1/2/15}
}

kg1 = kg[p, l]
kg2 = kg[p, l]

(* Assemble structure geometric stiffness matrices *)
kg = {
{kg1[[3, 3]], kg1[[3, 5]], kg1[[3, 6]]},
{kg1[[5, 3]], kg1[[5, 5]] + kg2[[2, 2]], kg1[[5, 6]] + kg2[[2, 3]]},
{kg1[[6, 3]], kg1[[6, 5]] + kg2[[3, 2]], kg1[[6, 6]] + kg2[[3, 3]]}
}

(* Determine critical loads in terms of p (note p=1) *)
p = 1
keigen = l^-2 (Inverse[kg] . ke)/(e i)
pcrit = N[Eigenvalues[keigen]]

(* Alternatively*)
knew = ke - x kg
pcrit2 = NSolve[Det[knew] == 0, x]

Example 13-2: Frame Stability

Determine the buckling load for the following frame. Neglect axial deformation.

Victor Saouma Matrix Structural Analysis
Solution:
The element stiffness matrices are given by

\[k_1^e = \begin{bmatrix}
 u_1 & \theta_2 & 0 & 0 \\
 20 & 1,208 & \cdots & \cdots \\
 1,208 & 96,667 & \cdots & \cdots \\
 \cdots & \cdots & \cdots & \cdots \\
 \cdots & \cdots & \cdots & \cdots
\end{bmatrix} \quad (13.59-a) \]

\[k_1^g = -P \begin{bmatrix}
 u_1 & \theta_2 & 0 & 0 \\
 0.01 & 0.10 & \cdots & \cdots \\
 0.10 & 16.00 & \cdots & \cdots \\
 \cdots & \cdots & \cdots & \cdots \\
 \cdots & \cdots & \cdots & \cdots
\end{bmatrix} \quad (13.59-b) \]

\[k_2^e = \begin{bmatrix}
 \cdots & \cdots & \cdots & \cdots \\
 \cdots & 128,890 & \cdots & 64,440 \\
 \cdots & \cdots & \cdots & \cdots \\
 \cdots & 64,440 & \cdots & 128,890 \\
\end{bmatrix} \quad (13.59-c) \]

\[k_3^e = \begin{bmatrix}
 u_1 & \theta_3 & 0 & 0 \\
 47 & 1,678 & \cdots & \cdots \\
 1,678 & 80,556 & \cdots & \cdots \\
 \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix} \quad (13.59-d) \]
13.3 Elastic Instability 13–17

$$k_g^3 = -P \begin{bmatrix} u_1 & \theta_2 & \theta_3 & 0 & 0 \\ 0.01667 & 0.1 & \cdots & \cdots & \\ 0.1 & 9.6 & \cdots & \cdots & \\ \cdots & \cdots & \cdots & \cdots & \\ \cdots & \cdots & \cdots & \cdots & \end{bmatrix}$$ (13.59-e)

The global equilibrium relation can now be written as

$$(K_e - PK_g) \delta = 0$$ (13.60)

$$\begin{vmatrix} (66.75) - P(0.026666) & (1,208.33) - P(0.1) & (1,678.24) - P(0.1) \\ (1,208.33) - P(0.1) & (225,556.) - P(16.) & (64,444.4) - P(0) \\ (1,678.24) - P(0.1) & (64,444.) - P(0) & (209,444.) - P(9.6) \end{vmatrix} = 0$$ (13.61)

The smallest buckling load amplification factor λ is thus equal to 2,017 kips.

/* Initialize constants */
a1=0
a2=0
a3=0
i1=100
i2=200
i3=50
l1=10 12
l2=15 12
l3=6 12
e1=29000
e2=e1
e3=e1

/* Define elastic stiffness matrices */
ke[e_,a_,l_,i_]:=;
{e a/l , 0 , 0 , -e a/l , 0 , 0 },
{0 , 12 e i/l^3 , 6 e i/l^2 , 0 , -12 e i/l^3 , 6 e i/l^2 },
{0 , 6 e i/l^2 , 4 e i/l , 0 , -6 e i/l^2 , 2 e i/l },
{-e a/l , 0 , 0 , e a/l , 0 , 0 },
{0 , -12 e i/l^3 , -6 e i/l^2 , 0 , 12 e i/l^3 , -6 e i/l^2 },
{0 , 6 e i/l^2 , 2 e i/l , 0 , -6 e i/l^2 , 4 e i/l }
}
ke1=ke[e1,a1,l1,i1]
ke2=ke[e2,a2,l2,i2]
ke3=ke[e3,a3,l3,i3]

/* Define geometric stiffness matrices */
kg[l_,p_]:=p/l{
{0 , 0 , 0 , 0 , 0 , 0 },
{0 , 6/5 , 1/10 , 0 , -6/5 , 1/10 },
{0 , 1/10 , 2 1^-2/15 , 0 , 1/10 , 1^2/30 },
{0 , 0 , 0 , 0 , 0 , 0 },
{0 , -6/5 , -1/10 , 0 , 6/5 , -1/10 },
{0 , 1/10 , -1^2/30 , 0 , -1/10 , 2 1^2/15 }

Victor Saouma Matrix Structural Analysis
From Eq. 13.44 it is evident that since k_g depends on the magnitude of P_x, which itself may be an unknown in a framework, then we do have a geometrically non-linear problem.

Example 13-3: Effect of Axial Load on Flexural Deformation

Determine the midspan displacement and member end forces for the beam-column shown below in terms of P_x; The concentrated force is 50kN applied at midspan, $E=2 \times 10^9$ kN/m^2 and $I=2 \times 10^{-3}$ m^4.

![Beam-column diagram](https://via.placeholder.com/150)

Solution:

Using two elements for the beam column, the only degrees of freedom are the deflection and rotation at midspan (we neglect the axial deformation).
The element stiffness and geometric matrices are given by

\[
[K^1_e] = \begin{bmatrix}
0 & 0 & 0 & 0 & v_1 & \theta_2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 222, 222. & 666, 666. & 0 & -222, 222. & 666, 666. \\
0 & 666, 666. & 2, 666, 666. & 0 & -666, 666. & 1, 333, 333 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\tag{13.62}
\]

\[
[K^2_e] = \begin{bmatrix}
0 & v_1 & \theta_2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 222, 222. & 666, 666. & 0 & -222, 222. & 666, 666. \\
0 & 666, 666. & 2, 666, 666. & 0 & -666, 666. & 1, 333, 333 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\tag{13.63}
\]

\[
[K^1_g] = \begin{bmatrix}
0 & 0 & 0 & 0 & v_1 & \theta_2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -16, 000 & -8, 000 & 0 & 16, 000 & -8, 000 \\
0 & -8, 000 & -64, 000 & 0 & 8, 000 & 16, 000 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 16, 000 & 8, 000 & 0 & -16, 000 & 8, 000 \\
0 & -8, 000 & 16, 000 & 0 & 8, 000 & -64, 000
\end{bmatrix}
\tag{13.64}
\]

\[
[K^2_g] = \begin{bmatrix}
0 & v_1 & \theta_2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -16, 000 & -8, 000 & 0 & 16, 000 & -8, 000 \\
0 & -8, 000 & -64, 000 & 0 & 8, 000 & 16, 000 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 16, 000 & 8, 000 & 0 & -16, 000 & 8, 000 \\
0 & -8, 000 & 16, 000 & 0 & 8, 000 & -64, 000
\end{bmatrix}
\tag{13.65}
\]

Assembling the stiffness and geometric matrices we get

\[
[K] = \begin{bmatrix}
v_1 & \theta_2 \\
412, 444. & 0. \\
0 & 5, 205, 330
\end{bmatrix}
\tag{13.66}
\]

and the displacements would be

\[
\begin{bmatrix}
v_1 \\
\theta_2
\end{bmatrix} = \begin{bmatrix}
-0.00012123 \\
0
\end{bmatrix}
\tag{13.67}
\]
and the member end forces for element 1 are given by

\[
\begin{pmatrix}
P_{lft} \\
V_{lft} \\
M_{lft} \\
P_{rgt} \\
V_{rgt} \\
M_{rgt}
\end{pmatrix} = \begin{bmatrix}
[K_e^1] + [K_g^1]
\end{bmatrix}
\begin{pmatrix}
u_{lft} \\
v_{lft} \\
\theta_{lft} \\
u_{rgt} \\
v_{rgt} \\
\theta_{rgt}
\end{pmatrix}
\]

\[
= \begin{bmatrix}
0 & 0 & 0 & 0 & v_1 & \theta_2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 206,222. & 658,667. & 0 & -206,222. & 658,667. \\
0 & 658,667. & 260,2670 & 0 & -658,667. & 1,349,330 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -206,222 & -658,667. & 0 & 206,222. & -658,667. \\
0 & 658,667. & 1,349,330 & 0 & -658,667. & 2,602,670 \\
\end{bmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-0.00012123 \\
0
\end{pmatrix}
\]

\[
= \begin{bmatrix}
0 \\
25. \\
79.8491 \\
0. \\
-25. \\
79.8491
\end{bmatrix}
\] (13.68-a)

Note that had we not accounted for the axial forces, then

\[
\begin{pmatrix}
v_1 \\
\theta_2
\end{pmatrix} = \begin{pmatrix}
-0.0001125 \\
0
\end{pmatrix}
\] (13.69-a)

\[
\begin{pmatrix}
P_{lft} \\
V_{lft} \\
M_{lft} \\
P_{rgt} \\
V_{rgt} \\
M_{rgt}
\end{pmatrix} = \begin{pmatrix}
0 \\
25. \\
75. \\
0. \\
-25. \\
75.
\end{pmatrix}
\] (13.69-b)

Alternatively, if instead of having a compressive force, we had a tensile force, then

\[
\begin{pmatrix}
v_1 \\
\theta_2
\end{pmatrix} = \begin{pmatrix}
-0.000104944 \\
0
\end{pmatrix}
\] (13.70-a)

\[
\begin{pmatrix}
P_{lft} \\
V_{lft} \\
M_{lft} \\
P_{rgt} \\
V_{rgt} \\
M_{rgt}
\end{pmatrix} = \begin{pmatrix}
0 \\
25. \\
70.8022 \\
0. \\
-25. \\
70.8022
\end{pmatrix}
\] (13.70-b)
We observe that the compressive force increased the displacements and the end moments, whereas a tensile one stiffens the structure by reducing them. The `Mathematica` to solve this problem follows:

(* Initialize constants *)
OpenWrite["mat.out"]
a1=0
a2=0
e=2 10^9
i=2 10^(-3)
i1=i
i2=i1
l=6
l1=l
l2=6
p=-80000 (* negative compression *)
load={-50,0}
(* Define elastic stiffness matrices *)
ke[e_,a_,l_,i_]:={
{e a/l , 0 , 0 , -e a/l , 0 , 0 },
{0 , 12 e i/l^3 , 6 e i/l^2 , 0 , -12 e i/l^3 , 6 e i/l^2 },
{0 , 6 e i/l^2 , 4 e i/l , 0 , -6 e i/l^2 , 2 e i/l },
{-e a/l , 0 , 0 , e a/l , 0 , 0 },
{0 , -12 e i/l^3 , -6 e i/l^2 , 0 , 12 e i/l^3 , -6 e i/l^2 },
{0 , 6 e i/l^2 , 2 e i/l , 0 , -6 e i/l^2 , 4 e i/l }
}
ke1=N[ke[e,a1,l1,i1]]
ke2=N[ke[e,a2,l2,i2]]
(* Assemble structure elastic stiffness matrices *)
ke=N[{
{ ke1[[5,5]]+ke2[[2,2]] , ke1[[5,6]]+ke2[[2,3]]},
{ ke1[[6,5]]+ke2[[3,2]] , ke1[[6,6]]+ke2[[3,3]]}
}]
WriteString["mat.out",MatrixForm[ke1]]
WriteString["mat.out",MatrixForm[ke2]]
WriteString["mat.out",MatrixForm[ke]]
(* Define geometric stiffness matrices *)
kg[p_,l_]:=p/l {
{0 , 0 , 0 , 0 , 0 , 0 },
{0 , 6/5 , 1/10 , 0 , -6/5 , 1/10 },
{0 , 1/10 , 2 1^2/15 , 0 , -1/10 , -1^2/30 },
{0 , 0 , 0 , 0 , 0 , 0 },
{0 , -6/5 , -1/10 , 0 , 6/5 , -1/10 },
{0 , 1/10 , -1^2/30 , 0 , -1/10 , 2 1^2/15 }
}
kg1=N[kg[p,l1]]
kg2=N[kg[p,l2]]
(* Assemble structure geometric stiffness matrices *)
kg=N[{
{ kg1[[5,5]]+kg2[[2,2]] , kg1[[5,6]]+kg2[[2,3]]},
{ kg1[[6,5]]+kg2[[3,2]] , kg1[[6,6]]+kg2[[3,3]]}
}]

Victor Saouma
Matrix Structural Analysis
(* Determine critical loads and normalize wrt p *)
keigen = Inverse[kg] . ke
pcrit = N[Eigenvalues[keigen] p]
(* Note that this gives lowest pcrit = 1.11 10^6, exact value is 1.095 10^6 *)

(* Add elastic to geometric structure stiffness matrices *)
k = ke + kg
(* Invert stiffness matrix and solve for displacements *)
km1 = Inverse[k]
dis = N[km1 . load]
(* Displacements of element 1 *)
dis1 = {0, 0, 0, 0, dis[[1]], dis[[2]]}
k1 = ke1 + kg1
(* Member end forces for element 1 with axial forces *)
endfrc1 = N[k1 . dis1]

(* Member end forces for element 1 without axial forces *)
knopm1 = Inverse[ke]
disnop = N[knopm1 . load]
disnop1 = {0, 0, 0, 0, disnop[[1]], disnop[[2]]}
(* Displacements of element 1 *)
endfrcnop1 = N[k1 . disnop1]

Example 13-4: Bifurcation

Analyse the stability of the following structure. Compare the axial force caused by the coupled membrane/flexural effects with the case where there is no interaction.
Solution:

In the following solution, we will first determine the axial forces based on the elastic stiffness matrix only. Then, on the basis of those axial forces, we shall determine the geometric stiffness matrix, and solve for the displacements. Because of the non-linearity of the problem, we may have to iterate in order to reach convergence. Following each analysis, we shall recompute the geometric stiffness matrix on the basis of the axial loads determined from the previous iteration.

Note that convergence will be reached only for stable problems. If the method fails to converge, it implies possible bifurcation which could be caused by elastic displacements approaching \(L \sin \theta \), due to either \(\theta \) being too small, or \(E \) being too small (i.e not stiff enough).

NEEDS SOME CORRECTION

(* Initialize constants *)

\[
\begin{align*}
a_1 &= 1 \\
a_2 &= 1 \\
i_1 &= \frac{1}{12} \\
i_2 &= i_1 \\
l_1 &= 12 \\
l_2 &= 12 \\
e_1 &= 200000 \\
e_2 &= e_1 \\
e_3 &= e_1 \\
\theta_1 &= \frac{\pi}{8} \\
\theta_2 &= \pi - \theta_1 \\
load &= \{0, -1000, 0\} \\
normold &= 0 \\
epsilon &= 0.01 \\
puncpl &= load[[2]] / (\text{Sin}[\theta_1]^2)
\end{align*}
\]

(* Define elastic stiffness matrices *)

\[
\begin{align*}
ke[a_,i_,l_,i_] &= \{ \\
\{e a/l, 0, 0, -e a/l, 0, 0\}, \\
\{0, 12 e i/l^3, 6 e i/l^3, 6 e i/l^3, 0, 0\}, \\
\{0, 6 e i/l^2, 4 e i/l, -6 e i/l^2, 2 e i/l, 0\}, \\
\{-e a/l, 0, 0, e a/l, 0, 0\}, \\
\{0, -12 e i/l^3, -6 e i/l^2, 0, 12 e i/l^3, -6 e i/l^2\}, \\
\{0, 6 e i/l^2, 2 e i/l, 0, -6 e i/l^2, 4 e i/l\}
\}
\end{align*}
\]

(* Define geometric stiffness matrix *)

\[
\begin{align*}
kg[l_,p_] &= p/l \{ \\
\{0, 0, 0, 0, 0, 0\}, \\
\{0, 6/5, 1/10, 0, -6/5, 1/10\}, \\
\{0, 1/10, 2 1/2/15, 0, -1/10, -1/2/30\}, \\
\{0, 0, 0, 0, 0, 0\}, \\
\{0, -6/5, -1/10, 0, 6/5, -1/10\}, \\
\{0, 1/10, -1/2/30, 0, -1/10, 2 1/2/15\}
\}
\end{align*}
\]
Define Transformation matrix and its transpose

\[
\begin{align*}
\text{gam}[\theta] &= \{
\begin{bmatrix}
\cos(\theta) & \sin(\theta) & 0 & 0 & 0 & 0 \\
-\sin(\theta) & \cos(\theta) & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos(\theta) & \sin(\theta) & 0 \\
0 & 0 & 0 & -\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{gamt}[\theta] &= \{
\begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 & 0 & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos(\theta) & -\sin(\theta) & 0 \\
0 & 0 & 0 & \sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\end{align*}
\]

Define functions for local displacements and loads

\[
\begin{align*}
\text{u}[heta, v_1, v_2] &= \cos(\theta) v_1 + \sin(\theta) v_2 \\
\text{uk} &= \text{u}[\theta_1, \text{dise}[1], \text{dise}[2]]
\end{align*}
\]

Transformation and transpose matrices

\[
\begin{align*}
\text{gam}1 &= \text{gam}[heta_1] \\
\text{gam}2 &= \text{gam}[heta_2] \\
\text{gam}1t &= \text{gamt}[heta_1] \\
\text{gam}2t &= \text{gamt}[heta_2]
\end{align*}
\]

Element elastic stiffness matrices

\[
\begin{align*}
\text{ke}1 &= \text{ke}[\text{e1}, a1, i1, i1] \\
\text{ke}2 &= \text{ke}[\text{e2}, a2, i2, i2] \\
\text{Ke}1 &= \text{gam}1t \cdot \text{ke}1 \cdot \text{gam}1 \\
\text{Ke}2 &= \text{gam}2t \cdot \text{ke}2 \cdot \text{gam}2
\end{align*}
\]

Structure's global stiffness matrix

\[
\begin{align*}
\text{Ke} &= \{
\begin{bmatrix}
\text{Ke1}[4,4] + \text{Ke2}[1,1] & \text{Ke1}[4,5] + \text{Ke2}[1,2] & \text{Ke1}[4,6] + \text{Ke2}[1,3] \\
\text{Ke1}[5,4] + \text{Ke2}[2,1] & \text{Ke1}[5,5] + \text{Ke2}[2,2] & \text{Ke1}[5,6] + \text{Ke2}[2,3] \\
\text{Ke1}[6,4] + \text{Ke2}[3,1] & \text{Ke1}[6,5] + \text{Ke2}[3,2] & \text{Ke1}[6,6] + \text{Ke2}[3,3]
\end{bmatrix}
\end{align*}
\]

Uncoupled analysis

\[
\begin{align*}
\text{dise} &= \text{Inverse}[\text{Ke}].\text{load} \\
\text{u}[\theta, \text{diseg1}, \text{diseg2}] &= \cos(\theta) \text{diseg1} + \sin(\theta) \text{diseg2} \\
\text{uu1} &= \text{u}[\theta_1, \text{dise}[1], \text{dise}[2]]
\end{align*}
\]
uu2 = u[theta2, dise[[1]], dise[[2]]]
up1 = a1 e1 uu1/l1
up2 = a2 e2 uu2/l2
(*
 ========= Coupled Nonlinear Analysis ==========
 Start Iteration
 *)
diseg = N[dise]
For[iter = 1 , iter <= 100, ++iter,
 (* displacements in local coordinates *)
disloc={ 0,0,0,
 u[theta1, diseg[[1]], diseg[[2]]],
 u[theta2, diseg[[1]], diseg[[2]]],
 0};
(* local force *)
ploc = ke1 . disloc;
p1 = ploc[[4]];
p2 = p1;
kg1 = kg[l1 , p1];
kg2 = kg[l2 , p2];
Kg1 = gam1t . kg1 . gam1;
Kg2 = gam2t . kg2 . gam2;
Kg=
 { Kg1[[4,4]] + Kg2[[1,1]] , Kg1[[4,5]] + Kg2[[1,2]] , Kg1[[4,6]] + Kg2[[1,3]] },
 { Kg1[[5,4]] + Kg2[[2,1]] , Kg1[[5,5]] + Kg2[[2,2]] , Kg1[[5,6]] + Kg2[[2,3]] },
 { Kg1[[6,4]] + Kg2[[3,1]] , Kg1[[6,5]] + Kg2[[3,2]] , Kg1[[6,6]] + Kg2[[3,3]] } }
;
(*
 Solve
 *)
Ks = Ke + Kg;
diseg = Inverse[Ks] . load;
normnew = Sqrt[diseg . diseg];
ratio = (normnew-normold) / normnew;
Print["Iteration ",N[iter],"; u1 ",N[u1],"; p1 ",N[p1]," ratio ",N[ratio]];
normold = normnew;
If[Abs[ratio] < epsilon, Break[]]
]
Print[" p1 ",N[p1]," up1 ",N[up1]," p1/up1 ",N[p1/up1]," ratio ",N[ratio]]

13.5 Summary

Victor Saouma
Matrix Structural Analysis
GEOMETRIC NONLINEARITY

Figure 13.5: Summary of Stability Solutions
Appendix A

REFERENCES

Basic Structural Analysis:

Matrix Analysis:

Introduction to Finite Element and Programming:

Energy Methods:

Numerical Techniques:

Journals:

1. Journal of Structural Engineering, American Society of Civil Engineering
2. Computers and Structures
Appendix B

REVIEW of MATRIX ALGEBRA

Because of the discretization of the structure into a finite number of nodes, its solution will always lead to a matrix formulation. This matrix representation will be exploited by the computer ability to operate on vectors and matrices. Hence, it is essential that we do get a thorough understanding of basic concepts of matrix algebra.

B.1 Definitions

Matrix:

\[
\begin{bmatrix}
A_{11} & A_{12} & \ldots & A_{1j} & \ldots & A_{1n} \\
A_{21} & A_{22} & \ldots & A_{2j} & \ldots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i1} & A_{i2} & \ldots & A_{ij} & \ldots & A_{in} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
A_{m1} & A_{m2} & \ldots & A_{mj} & \ldots & A_{mn}
\end{bmatrix}
\]

(2.1)

We would indicate the size of the matrix as \([A]_{m \times n}\), and refer to an individual term of the matrix as \(A_{ij}\). Note that matrices, and vectors are usually boldfaced when typeset, or with a tilde when handwritten \(\tilde{A}\).

Vectors: are one column matrices:

\[
\{X\} = \begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_i \\
\vdots \\
B_m
\end{bmatrix}
\]

(2.2)

A row vector would be

\[
[C] = [B_1 \ B_2 \ \ldots \ B_i \ \ldots \ B_m]
\]

(2.3)
Note that scalars, vectors, and matrices are tensors of order 0, 1, and 2 respectively.

Square matrix: are matrices with equal number of rows and columns. \([A]_{m \times m}\)

Symmetry: \(A_{ij} = A_{ji}\)

Identity matrix: is a square matrix with all its entries equal to zero except the diagonal terms which are equal to one. It is often denoted as \([I]\), and
\[
I_{ij} = \begin{cases}
0, & \text{if } i \neq j \\
1, & \text{if } i = j
\end{cases} \quad (2.4)
\]

Diagonal matrix: is a square matrix with all its entries equal to zero except the diagonal terms which are different from zero. It is often denoted as \([D]\), and
\[
D_{ij} = \begin{cases}
0, & \text{if } i \neq j \\
\neq 0, & \text{if } i = j
\end{cases} \quad (2.5)
\]

Upper Triangular matrix: is a square matrix with all its entries equal to zero, except those along and above the diagonal. It is often denoted as \([U]\), and
\[
U_{ij} = \begin{cases}
0, & \text{if } i > j \\
\neq 0, & \text{if } i \leq j
\end{cases} \quad (2.6)
\]

Lower Triangular matrix: is a square matrix with all its entries equal to zero except those along and below the diagonal. It is often denoted as \([L]\), and
\[
L_{ij} = \begin{cases}
0, & \text{if } i < j \\
\neq 0, & \text{if } i \geq j
\end{cases} \quad (2.7)
\]

Orthogonal matrices: \([A]_{m \times n}\) and \([B]_{m \times n}\) are said to be orthogonal if \([A]^T [B] = [B]^T [A] = [I]\)

A square matrix \([C]_{m \times m}\) is orthogonal if \([C]^T [C] = [C] [C]^T = [I]\)

Trace of a matrix: \(tr(A) = \sum_{i=1}^{n} A_{ii}\)

Submatrices: are matrices within a matrix, for example

\[
[A] = \begin{bmatrix} 5 & 3 & 1 \\
4 & 6 & 2 \\
10 & 3 & 4 \end{bmatrix} = \begin{bmatrix} [A_{11}] & [A_{12}] \\
[A_{21}] & [A_{22}] \end{bmatrix} \quad (2.8)
\]

\[
[B] = \begin{bmatrix} 1 & 5 \\
2 & 4 \\
3 & 2 \end{bmatrix} = \begin{bmatrix} [B_1] \\
[B_2] \end{bmatrix} \quad (2.9)
\]

\[
[A] [B] = \begin{bmatrix} [A_{11}] [B_1] + [A_{12}] [B_2] \\
[A_{21}] [B_1] + [A_{22}] [B_2] \end{bmatrix} \quad (2.10)
\]

\[
[A_{11}] [B_1] = \begin{bmatrix} 5 & 3 \\
4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 5 \\
2 & 4 \end{bmatrix} = \begin{bmatrix} 11 & 37 \\
16 & 44 \end{bmatrix} \quad (2.11)
\]
\[
[A]_{22} [B]_2 = [4 \ 3 \ 2] = [12 \ 8]
\] (2.12)

\[
[A] [B] = \begin{bmatrix}
14 & 34 \\
22 & 48 \\
28 & 70 \\
\end{bmatrix}
\] (2.13)

Operate on submatrices just as if we were operating on individual matrix elements.

B.2 Elementary Matrix Operations

Transpose: of a matrix \([A]_{m \times n}\) is another matrix \([B] = [B]^T_{n \times m}\) such that \(B_{ij} = A_{ji}\) Note that

\[
([A] [B])^T = [B]^T [A]^T
\] (2.14)

Addition (subtraction):

\[
[A]_{m \times n} = [B]_{m \times n} + [C]_{m \times n}
\]

\[
A_{ij} = B_{ij} + C_{ij}
\] (2.15) (2.16)

Scalar Multiplication:

\[
[B] = k \cdot [A]
\]

\[
B_{ij} = kA_{ij}
\] (2.18)

Matrix Multiplication: of two matrices is possible if the number of columns of the first one is equal to the number of rows of the second.

\[
[A]_{m \times n} = [B]_{m \times p} \cdot [C]_{p \times n}
\]

\[
A_{ij} = \sum_{r=1}^{p} B_{ir} C_{rj}
\] (2.19) (2.20) (2.21)

Some important properties of matrix products include:

Associative: \([A]([B][C]) = ([A][B])[C]\)

Distributive: \([A][[B] + [C]] = [A][B] + [A][C]\)

Non-Commutativity: \([A][B] \neq [B][A]\)
B.3 Determinants

The Determinant of a matrix \([A]_{n \times n} \), denoted as \(\det A \) or \(|A| \), is recursively defined as

\[
\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}
\]

(2.22)

Where \(A_{1j} \) is the \((n-1)\times(n-1)\) matrix obtained by eliminating the ith row and the jth column of matrix \(A \). For a \(2 \times 2 \) matrix

\[
\begin{vmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}
\]

(2.23)

For a \(3 \times 3 \) matrix

\[
\begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix} = a_{11} \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix} - a_{12} \begin{vmatrix}
 a_{21} & a_{23} \\
 a_{31} & a_{33}
\end{vmatrix} + a_{13} \begin{vmatrix}
 a_{21} & a_{22} \\
 a_{31} & a_{32}
\end{vmatrix}
\]

(2.24)

\[
= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23})
+ a_{13}(a_{21}a_{32} - a_{31}a_{22})
\]

(2.25)

\[
= a_{11}a_{22}a_{33} - a_{11}a_{32}a_{23} - a_{12}a_{21}a_{33} + a_{12}a_{31}a_{23}
+ a_{13}a_{21}a_{32} - a_{13}a_{31}a_{22}
\]

(2.26)

Can you write a computer program to compute the determinant of an \(n \times n \) matrix?

We note that an \(n \times n \) matrix would have a determinant which contains \(n! \) terms each one involving \(n \) multiplications. Hence if \(n = 10 \) there would be \(10! = 3,628,800 \) terms, each one involving 9 multiplications hence over 30 million floating operations should be performed in order to evaluate the determinant.

This is why it is impractical to use Cramer’s rule to solve a system of linear equations.

Some important properties of determinants:

1. The determinant of the transpose of a matrix is equal to the determinant of the matrix

\[
| A^T | = | A |
\]

(2.29)

2. If at least one row or one column is a linear combination of the other rows or columns, then the determinant is zero. The inverse is also true, if the determinant is equal to zero, then at least one row or one column is a linear combination of of other rows or columns.

3. If there is linear dependancy between rows, then there is also one between columns and vice-versa.

4. The determinant of an upper or lower triangular matrix is equal to the product of the main diagonal terms.

5. The determinant of the product of two square matrices is equal to the product of the individual determinants

\[
|AB| = |A||B|
\]

(2.30)
B.4 Singularity and Rank

If the determinant of a matrix \(A_{n \times n} \) is zero, than the matrix is said to be singular. As we have seen earlier, this means that there is at least one row or one column which is a linear combination of the others. Should we remove this row and column, we can repeat the test for singularity until the size of the submatrix is \(r \times r \). Then we refer to \(r \) as the rank of the matrix or \(\text{rank}(A) = r \). We deduce that the rank of a nonsingular \(n \times n \) matrix is \(n \). If the rank of a matrix \(r \) is less than its size \(n \), we say that it has \(n - r \) rank deficiency.

If \(n \) is the size of the global stiffness matrix of a structure in which the boundary conditions have not been accounted for (\(n \) is equal to the total number of nodes times the total number of degrees of freedom per node) would have a rank \(r \) equal to \(n \) minus the number of possible rigid body motions (3 and 6 in two and three dimensional respectively).

B.5 Inversion

The inverse of a square (nonsingular) matrix \(A \) is denoted by \(A^{-1} \) and is such that

\[
[A] [A]^{-1} = [A]^{-1} [A] = [I]
\]

Some observations
1. The inverse of the transpose of a matrix is equal to the transpose of the inverse

\[
[A^T]^{-1} = [A^{-1}]^T
\]

2. The inverse of a matrix product is the reverse product of the inverses

\[
([A] [B])^{-1} = [B]^{-1} [A]^{-1}
\]

3. The inverse of a symmetric matrix is also symmetric
4. The inverse of a diagonal matrix is another diagonal one with entries equal to the inverse of the entries of the original matrix.
5. The inverse of a triangular matrix is a triangular matrix.
6. It is computationally more efficient to decompose a matrix \(([A] = [L][D][U]) \) using upper and lower decomposition or Gauss elimination than to invert a matrix.

B.6 Eigenvalues and Eigenvectors

A special form of the system of linear equation

\[
[A] = \begin{bmatrix}
A_{11} & A_{12} & \ldots & A_{1n} \\
A_{21} & A_{22} & \ldots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{i1} & A_{i2} & \ldots & A_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} = \begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{bmatrix}
\]

Victor Saouma Matrix Structural Analysis
is one in which the right hand side is a multiple of the solution:

\[
[A] \{x\} = \lambda \{x\}
\] \hspace{1cm} (2.35)

which can be rewritten as

\[
[A - \lambda I] \{x\} = 0
\] \hspace{1cm} (2.36)

A nontrivial solution to this system of equations is possible if and only if \([A - \lambda I]\) is singular or

\[
|A - \lambda I| = 0
\] \hspace{1cm} (2.37)

or

\[
[A] = \begin{vmatrix}
A_{11} - \lambda & A_{12} & \ldots & A_{1n} \\
A_{21} & A_{22} - \lambda & \ldots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1} & A_{n2} & \ldots & A_{nn} - \lambda
\end{vmatrix} = 0
\] \hspace{1cm} (2.38)

When the determinant is expanded, we obtain an \(n\)\(^{th}\) order polynomial in terms of \(\lambda\) which is known as the characteristic equation of \([A]\). The \(n\) solutions (which can be real or complex) are the eigenvalues of \([A]\), and each one of them \(\lambda_i\) satisfies

\[
[A] \{x_i\} = \lambda_i \{x_i\}
\] \hspace{1cm} (2.39)

where \(\{x_i\}\) is a corresponding eigenvector.

It can be shown that:

1. The \(n\) eigenvalues of real symmetric matrices of rank \(n\) are all real.
2. The eigenvectors are orthogonal and form an orthogonal basis in \(E_n\).

Eigenvalues and eigenvectors are used in stability (buckling) analysis, dynamic analysis, and to assess the performance of finite element formulations.
Appendix C

SOLUTIONS OF LINEAR EQUATIONS

Note this chapter is incomplete

C.1 Introduction

Given a system of linear equations $[A]_{n\times n}\{x\} = \{b\}$ (which may result from the direct stiffness method), we seek to solve for $\{x\}$. Symbolically this operation is represented by: $\{x\} = [A]^{-1}\{b\}$

There are two approaches for this operation:

Direct inversion using Cramer’s rule where $[A]^{-1} = \frac{\text{adj}[A]}{[A]}$. However, this approach is computationally very inefficient for $n \geq 3$ as it requires evaluation of n high order determinants.

Decomposition: where in the most general case we seek to decompose $[A]$ into $[A] = [L][D][U]$ and where:

$[L]$ lower triangle matrix
$[D]$ diagonal matrix
$[U]$ upper triangle matrix

There are two classes of solutions

Direct Method: characterized by known, finite number of operations required to achieve the decomposition yielding exact results.

Indirect methods: or iterative decomposition technique, with no a-priori knowledge of the number of operations required yielding an approximate solution with user defined level of accuracy.
C.2 Direct Methods

C.2.1 Gauss, and Gaus-Jordan Elimination

Given $[A]\{x\} = \{b\}$, we seek to transform this equation into

1. **Gauss Elimination**: $[U]\{x\} = \{y\}$ where $[U]$ is an upper triangle, and then backsubstitute from the bottom up to solve for the unknowns. Note that in this case we operate on both $[A]$ & $\{b\}$, yielding $\{x\}$.

2. **Gauss-Jordan Elimination**: is similar to the Gauss Elimination, however rather than transforming the $[A]$ matrix into an upper diagonal one, we transform $[A|I]$ into $[I|A^{-1}]$. Thus no backsubstitution is needed and the matrix inverse can be explicitly obtained.

■ **Example C-1: Gauss Elimination**

In this first example we simply seek to solve for the unknown vector $\{x\}$ given:

\[
\begin{align*}
+10x_1 & +x_2 & -5x_3 & = 1. \\
-20x_1 & +3x_2 & +20x_3 & = 2. \\
+5x_1 & +3x_2 & +5x_3 & = 6.
\end{align*}
\] (3.1)

Solution:

1. Add $\frac{20}{10}$ times the first equation to the second one will eliminate the x_1 coefficient from the second equation.

2. Subtract $\frac{5}{10}$ times the first equation from the third one will eliminate the x_1 coefficient from the third equation.

\[
\begin{align*}
10x_1 & +x_2 & -5x_3 & = 1. \\
+5x_2 & +10x_3 & = 4. \\
+2.5x_2 & +7.5x_3 & = 5.5
\end{align*}
\]

3. Subtract $\frac{2.5}{5}$ times the second equation from the third one will eliminate the x_2 coefficient from the last equation

\[
\begin{align*}
10x_1 & +x_2 & -5x_3 & = 1. \\
+5.25x_2 & +10x_3 & = 4. \\
+2.5x_3 & = 3.5
\end{align*}
\]
4. Now we can backsubstitute and solve from the bottom up:

\[x_3 = \frac{3.5}{2.5} = 1.4 \]
\[x_2 = \frac{4 - 10x_3}{5} = -2. \]
\[x_1 = \frac{1 - x_2 + 5x_3}{10} = 1. \]

\(\Rightarrow \)

Example C-2: Gauss-Jordan Elimination

In this second example we will determine both \(\{x\} \) and the matrix inverse \([A]^{-1} \).

Solution:

The operation is identical to the first, however we augment the matrix \([A] \) by \([I]\): \([A|I]\), and operate simultaneously on the two submatrices.

1. Initial matrix

\[
\begin{bmatrix}
10 & 1 & -5 & 1 & 0 & 0 \\
-20 & 3 & 20 & 0 & 1 & 0 \\
5 & 3 & 5 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}
\]

(3.5)

2. Elimination of the first column:

 (a) row 1=0.1(row 1)

 (b) row 2=(row2)+20(new row 1)

 (c) row 3=(row 3) -5(new row 1)

\[
\begin{bmatrix}
10 & 1 & -5 & 0.1 & 0.06 & -0.02 & 0 \\
-20 & 3 & 20 & 2 & 0.4 & 0.2 & 0 \\
5 & 3 & 5 & -0.5 & -1.5 & -0.5 & 1 \\
\end{bmatrix}
\begin{bmatrix} 0.1 \\ 4 \\ 5.5 \end{bmatrix}
\]

(3.6)

3. Elimination of second column

 (a) row 2=0.2(row 2)

 (b) row 1=(row 1)-0.1(new row 2)

 (c) row 3=(row 3) -2.5(new row 2)

\[
\begin{bmatrix}
1 & 0 & -0.7 & 0.06 & -0.02 & 0 \\
0 & 1 & 2 & 0.4 & 0.2 & 0 \\
0 & 0 & 2.5 & -1.5 & -0.5 & 1 \\
\end{bmatrix}
\begin{bmatrix} 0.02 \\ 0.8 \\ 3.5 \end{bmatrix}
\]

(3.7)
4. Elimination of the third column
 (a) row 3=0.4(row 3)
 (b) row 1=(row 1)+0.7(new row 3)
 (c) row 2=(row 2)-2(new row 3)

\[
\begin{bmatrix}
100 & 0 & -0.36 & -0.16 & 0.28 \\
0 & 1 & 0 & 1.6 & 0.6 & -0.8 \\
0 & 0 & 1 & -0.6 & -0.2 & 0.4 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
1.4 \\
\end{bmatrix}
\]

This last equation is \([I|A^{-1}]\)

C.2.1.1 Algorithm

Based on the preceding numerical examples, we define a two step algorithm for the Gaussian elimination.

Defining \(a_{ij}^k\) to be the coefficient of the \(i^{th}\) row & \(j^{th}\) column at the \(k^{th}\) reduction step with \(i \geq k \& j \geq k\):

Reduction:

\[
\begin{align*}
a_{ik}^{k+1} &= 0 \quad k < i \leq n \\
a_{ij}^{k+1} &= a_{ij}^k - \frac{a_{ik}^k a_{kj}^k}{a_{kk}^k} \quad k < i \leq n, \; k < j \leq n \\
b_{ij}^{k+1} &= b_{ij}^k - \frac{a_{ik}^k b_{kj}^k}{a_{kk}^k} \quad k < i \leq n, \; 1 < j \leq m
\end{align*}
\] (3.9)

Backsubstitution:

\[
x_{ij} = \frac{b_{ij}^k - \sum_{k=i+1}^n a_{ik}^k x_{kj}}{a_{ii}^k}
\] (3.10)

Note that Gauss-Jordan produces both the solution of the equations as well as the inverse of the original matrix. However, if the inverse is not desired it requires three times \((N^3)\) more operations than Gauss or LU decomposition \((\frac{2}{3} N^3)\).

C.2.2 LU Decomposition

In the previous decomposition method, the right hand side \(\{b\}\) must have been known before decomposition (unless we want to determine the inverse of the matrix which is computationally more expensive).

In some applications it may be desirable to decompose the matrix without having the RHS completed. For instance, in the direct stiffness method we may have multiple load cases yet we would like to invert only once the stiffness matrix.

Victor Saouma Matrix Structural Analysis
This will be achieved through the following decomposition:

\[\mathbf{A} = \mathbf{L}\mathbf{U} \]

(3.11)

It can be shown that:

1. Both decompositions are equivalent.
2. Count on number of operation show that the 2 methods yield the same number of operations. Number of operations in LU decomposition is equal to the one in Gauss elimination.

The solution consists in:

Decomposition: of the matrix independently of the right hand side vector

\[\mathbf{A} = \mathbf{L}\mathbf{U} \]

(3.12)

\[\mathbf{L}\mathbf{U}\{\mathbf{x}\} = \{\mathbf{b}\} \]

(3.13)

Backsubstitution: for each right hand side vector

1. Solve for \(\{\mathbf{y}\} \) from \(\mathbf{L}\{\mathbf{y}\} = \{\mathbf{b}\} \) starting from top
2. Solve for \(\{\mathbf{x}\} \) from \(\mathbf{U}\{\mathbf{x}\} = \{\mathbf{y}\} \) starting from bottom

The vector \(\{\mathbf{y}\} \) is the same as the one to which \(\{\mathbf{b}\} \) was reduced to in the Gauss Elimination.

C.2.2.1 Algorithm

1. Given:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix} = \begin{bmatrix}
 1 \\
 l_{21} \ 1 \\
 \vdots \\
 l_{n1} \ l_{n2} \ \cdots \ 1
\end{bmatrix} \begin{bmatrix}
 u_{11} & u_{12} & \cdots & u_{1n} \\
 u_{22} & \cdots & u_{2n} \\
 \vdots \\
 u_{nn}
\end{bmatrix}
\]

(3.14)

2. solve:

\[
a_{11} = u_{11} \quad a_{12} = u_{12} \cdots \quad a_{1n} = u_{1n} \\
a_{21} = l_{21}u_{11} \quad a_{22} = l_{21}u_{12} + u_{22} \quad a_{2n} = l_{21}u_{1n} + u_{2n} \\
\vdots \\
a_{n1} = l_{n1}u_{11} \quad a_{n2} = l_{n1}u_{12} + l_{n2}u_{22} \quad a_{nn} = \sum_{k=1}^{n-1} l_{nk}u_{kn} + u_{nn}
\]

(3.15)

3. let:

\[
\left[\mathbf{A} \right]^F = \begin{bmatrix}
 u_{11} & u_{12} & \cdots & u_{1n} \\
 l_{21} & u_{22} & \cdots & u_{2n} \\
 \vdots \\
 l_{n1} & l_{n2} & \cdots & u_{nn}
\end{bmatrix}
\]

(3.16)
4. Take row by row or column by column

\[
\begin{align*}
 l_{ij} &= a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} & i > j \\
 u_{ij} &= a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} & i \leq j \\
 l_{ii} &= 1 \\
\end{align*}
\]

(3.17)

Note:

1. Computed elements \(l_{ij} \) or \(u_{ij} \) may always overwrite corresponding element \(a_{ij} \)
2. If \([A] \) is symmetric \([L]^T \neq [U] \), symmetry is destroyed in \([A]^F \)

For symmetric matrices, LU decomposition reduces to:

\[
\begin{align*}
 u_{ij} &= a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} & i \leq j \\
 l_{ii} &= 1 \\
 l_{ij} &= \frac{u_{ji}}{u_{jj}} \\
\end{align*}
\]

(3.18)

Example C-3: Example

Given:

\[
A = \begin{bmatrix}
 7 & 9 & -1 & 2 \\
 4 & -5 & 2 & -7 \\
 1 & 6 & -3 & -4 \\
 3 & -2 & -1 & -5 \\
\end{bmatrix}
\]

(3.19)

Solution:

Following the above procedure, it can be decomposed into:

Row 1: \(u_{11} = a_{11} = 7; u_{12} = a_{12} = 9; u_{13} = a_{13} = -1; u_{14} = a_{14} = 2 \)

Row 2:

\[
\begin{align*}
 l_{21} &= \frac{a_{21}}{u_{11}} = 4 \\
 u_{22} &= a_{22} - l_{21} u_{12} = 4 - 5 = -10.1429 \\
 u_{23} &= a_{23} - l_{21} u_{13} = 2 + 4 = 2.5714 \\
 u_{24} &= a_{24} - l_{21} u_{14} = -7 - 4 = -10.1429 \\
\end{align*}
\]

Row 3:

\[
\begin{align*}
 l_{31} &= \frac{a_{31}}{u_{11}} = \frac{1}{4} \\
 l_{32} &= \frac{a_{32} - l_{31} u_{22}}{u_{22}} = \frac{6 - (0.1429)(9)}{10.1429} = -0.4647 \\
 u_{33} &= a_{33} - l_{31} u_{13} - l_{32} u_{23} = -3 - (0.1429)(-1) - (-0.4647)(2.5714) = -1.6622 \\
 u_{34} &= a_{34} - l_{31} u_{14} - l_{32} u_{24} = -4 - (0.1429)(2) - (-0.4647)(-8.1429) = -8.0698 \\
\end{align*}
\]
C.2 Direct Methods

Row 4:

\[
\begin{align*}
l_{41} &= \frac{a_{41}}{u_{11}} = \frac{3}{7} \\
l_{42} &= \frac{a_{42} - l_{41}u_{22}}{u_{22}} = -2 - (0.4286)(9) \\
l_{43} &= \frac{a_{43} - l_{41}u_{33} - l_{42}u_{23}}{u_{33}} = -10.1429 - (0.5775)(2.5714) \\
u_{44} &= a_{44} - l_{41}u_{14} - l_{42}u_{24} - l_{43}u_{34} = -5 - (0.4286)(2) - (0.5775)(-8.1429) - (1.2371)(-8.0698) = 8.8285
\end{align*}
\]

or

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
.5714 & 1 & 0 & 0 \\
.1429 & -.4647 & 1 & 0 \\
.4286 & .5775 & 1.2371 & 1
\end{bmatrix}
\begin{bmatrix}
l_1 \\
l_2 \\
l_3 \\
u_4
\end{bmatrix}
=
\begin{bmatrix}
7 & 9 & -1 & 2 \\
0 & -10.1429 & 2.571 & -8.143 \\
0 & 0 & -1.662 & -8.069 \\
0 & 0 & 0 & 8.8285
\end{bmatrix}
\]

\[\text{(3.20)}\]

C.2.3 Cholesky’s Decomposition

85 If \([A]\) is symmetric \([A]^T\) is not. For example:

\[
\begin{bmatrix}
16 & 4 & 8 \\
4 & 5 & -4 \\
8 & -4 & 22
\end{bmatrix}
=
\begin{bmatrix}
1 & .25 & 1 \\
.5 & -1.5 & 1
\end{bmatrix}
\begin{bmatrix}
16 & 4 & 8 \\
0 & 4 & -6 \\
0 & 0 & 9
\end{bmatrix}
\]

\[\text{(3.21)}\]

86 In the most general case, we will have:

\[\begin{align*}
[A] &= \begin{bmatrix} L^* \end{bmatrix} \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} U^* \end{bmatrix}^T
\end{align*}\]

\[\text{(3.22)}\]

87 For a symmetric \([A]\) matrix, \([U^*]\) should be the transpose of \([L^*]\) or

\[\begin{align*}
[A] &= \begin{bmatrix} L^* \end{bmatrix} \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} L^* \end{bmatrix}^T
\end{align*}\]

\[\text{(3.23)}\]

88 Furthermore, the diagonal matrix \([D]\) can be factored as as the product of two matrices:

\[\begin{align*}
[D] &= \begin{bmatrix} D^{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} D^{\frac{1}{2}} \end{bmatrix}^T
\end{align*}\]

\[\text{(3.24)}\]

89 This algorithm can be summarized as:

\[
\begin{align*}
l_{ii} &= \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2} \\
l_{ij} &= \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik}^2}{l_{jj}} (i > j)
\end{align*}\]

Victor Saouma Matrix Structural Analysis
Note:
1. Decomposition takes place by columns
2. \(l_{ij} \) will occupy same space as \(a_{ij} \)

Example C-4: Cholesky’s Decomposition

Given:

\[
A = \begin{bmatrix}
4 & 6 & 10 & 4 \\
6 & 13 & 13 & 6 \\
10 & 13 & 27 & 2 \\
4 & 6 & 2 & 72 \\
\end{bmatrix}
\tag{3.26}
\]

Solution:

Column 1:

\[
l_{11} = \sqrt{a_{11}} = \sqrt{4} = 2 \\
l_{21} = \frac{a_{21}}{l_{11}} = \frac{6}{2} = 3 \\
l_{31} = \frac{a_{31}}{l_{11}} = \frac{10}{2} = 5 \\
l_{41} = \frac{a_{41}}{l_{11}} = \frac{4}{2} = 2
\]

Column 2:

\[
l_{22} = \sqrt{a_{22} - l_{21}^2} = \sqrt{13 - 3^2} = 2 \\
l_{32} = \frac{a_{32} - l_{21}l_{21}}{l_{22}} = \frac{13 - (5)(3)}{2} = -1 \\
l_{42} = \frac{a_{42} - l_{41}l_{21}}{l_{22}} = \frac{6 - (2)(3)}{2} = 0
\]

Column 3:

\[
l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2} = \sqrt{27 - 5^2 - (-1)^2} = 1 \\
l_{43} = \frac{a_{43} - l_{41}l_{31} - l_{42}l_{32}}{l_{33}} = \frac{2 - (2)(5) - (0)(-1)}{1} = -8
\]

Column 4:

\[
l_{44} = \sqrt{a_{44} - l_{41}^2 - l_{42}^2 - l_{43}^2} = \sqrt{72 - (2)^2 - (0)^2 - (-8)^2} = 2
\]

or

\[
\begin{bmatrix}
2 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 \\
5 & -1 & 1 & 0 \\
2 & 0 & -8 & 2 \\
\end{bmatrix}
\begin{bmatrix}
2 & 3 & 5 & 2 \\
0 & 2 & -1 & 0 \\
0 & 0 & 1 & -8 \\
0 & 0 & 0 & 2 \\
\end{bmatrix}
\tag{3.27}
\]

\[
\begin{bmatrix}
L \\
\end{bmatrix}
\begin{bmatrix}
U \\
\end{bmatrix}
\begin{bmatrix}
A \\
\end{bmatrix}
\]

Victor Saouma

Matrix Structural Analysis
C.2.4 Pivoting

C.3 Indirect Methods

Iterative methods are most suited for

1. Very large systems of equation $n > 10$, or 100,000
2. systems with a known “guess” of the solution

The most popular method is the Gauss Seidel.

C.3.1 Gauss Seidel

\[
\begin{align*}
 c_{11}x_1 + c_{12}x_2 + c_{13}x_3 &= r_1 \\
c_{21}x_1 + c_{22}x_2 + c_{23}x_3 &= r_2 \\
c_{31}x_1 + c_{32}x_2 + c_{33}x_3 &= r_3 \\
\end{align*}
\] (3.28)

solve 1st equation for x_1 using initial “guess” for x_2, x_3.

\[
x_1 = \frac{r_1 - c_{12}x_2 - c_{13}x_3}{c_{11}}
\] (3.29)

solve 2nd equation for x_2 using the computed value of x_1 & initial guess of x_3.

\[
x_2 = \frac{r_2 - c_{21}x_1 - c_{23}x_3}{c_{22}}
\] (3.30)

so on & so forth \ldots

Note:

1. The iterative process can be considered to have converged if:

 \[
 \left| \frac{x^k - x^{k-1}}{x^k} \right| \leq \varepsilon
 \] (3.31)

2. The convergence can be accelerated by relaxation

 \[
x_i^k = \lambda x_i^k + (1 - \lambda)x_i^{k-1}
 \] (3.32)

where λ is a weight factor between 0. and 2. For values below 1 we have underrelaxation, and for values greater than 1 we have overrelaxation. The former is used for nonconvergent systems, whereas the later is used to accelerate convergence of converging ones. optimum λ for frame analysis is around 1.8.
C.4 Ill Conditioning

An ill condition system of linear equations is one in which a small perturbation of the coefficient a_{ij} results in large variation in the results x. Such a system arises in attempting to solve for the intersection of two lines which are nearly parallel, or the decomposition of a structure stiffness matrix in which very stiff elements are used next to very soft ones.

C.4.1 Condition Number

Ill conditioning can be detected by determining the \textit{condition number} κ of the matrix.

$$\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$$ \hspace{1cm} (3.33)

where λ_{max} and λ_{min} are the maximum and minimum eigenvalues of the coefficient matrix.

In the decomposition of a matrix, truncation errors may result in a loss of precision which has been quantified by:

$$s = p - \log \kappa$$ \hspace{1cm} (3.34)

where p is the number of decimal places to which the coefficient matrix is represented in the computer, and s is the number of correct decimal places in the solution.

Note that because the formula involves $\log \kappa$, the eigenvalues need only be approximately evaluated.

C.4.2 Pre Conditioning

If a matrix $[K]$ has an unacceptably high condition number, it can be \textit{preconditioned} through a congruent operation:

$$[K'] = [D_1][K][D_2]$$ \hspace{1cm} (3.35)

However there are no general rules for selecting $[D_1]$ and $[D_2]$.

C.4.3 Residual and Iterative Improvements
Appendix D

TENSOR NOTATION

Equations of elasticity are expressed in terms of tensors, where

- A tensor is a physical quantity, independent of any particular coordinate system yet specified most conveniently by referring to an appropriate system of coordinates.
- A tensor is classified by the rank or order
- A Tensor of order zero is specified in any coordinate system by one coordinate and is a scalar.
- A tensor of order one has three coordinate components in space, hence it is a vector.
- In general 3-D space the number of components of a tensor is 3^n where n is the order of the tensor.

For example, force and a stress are tensors of order 1 and 2 respectively.

To express tensors, there are three distinct notations which can be used: 1) Engineering; 2) indicial; or 3) Dyadic.

Whereas the Engineering notation may be the simplest and most intuitive one, it often leads to long and repetitive equations. Alternatively, the tensor and the dyadic form will lead to shorter and more compact forms.

D.1 Engineering Notation

In the engineering notation, we carry on the various subscript(s) associated with each coordinate axis, for example σ_{xx}, σ_{xy}.
D.2 Dyadic/Vector Notation

Uses bold face characters for tensors of order one and higher, \(\sigma, \epsilon \). This notation is independent of coordinate systems.

Since scalar operations are in general not applicable to vectors, we define

\[
\begin{align*}
A + B &= B + A \\
A \times B &= -B \times A \\
A \cdot B &= \|A\|\|B\| \cos(A, B) \\
&= A_x B_x + A_y B_y + A_z B_z \\
A \otimes B &= \begin{vmatrix} i & j & k \\
A_x & A_y & A_z \\
B_x & B_y & B_z \end{vmatrix} \\
\text{grad} A &= \nabla A = i \frac{\partial A}{\partial x} + j \frac{\partial A}{\partial y} + k \frac{\partial A}{\partial z} \\
\text{div} A &= \nabla \cdot A = \left(i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z} \right) \cdot (i A_x + j A_y + k A_z) \\
&= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \\
\text{Laplacian} \nabla^2 &= \nabla \cdot \nabla = \frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} + \frac{\partial^2 A}{\partial z^2}
\end{align*}
\]

D.3 Indicial/Tensorial Notation

This notation uses letter appended indices (sub or super scripts) to the letter representing the tensor quantity of interest. i.e. \(a^i; \tau_{ij}; \epsilon^{ij} \), where the number of indices is the rank of the tensor (see sect. B.4).

The following rules define tensorial notation:

1. If there is one letter index, that index goes from \(i \) to \(n \). For instance:

\[
a_i = a^i = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \quad i = 1, 3
\]

assuming that \(n = 3 \).
2. A repeated index will take on all the values of its range, and the resulting tensors summed. For instance:

\[a_{1i} x_i = a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \]

(4.3)

3. Tensor’s order:
 - First order tensor (such as force) has only one free index:
 \[a_i = a^i = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \]
 (4.4)
 - Second order tensor (such as stress or strain) will have two free indeces.
 \[D_{ij} = \begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{bmatrix} \]
 (4.5)
 - A fourth order tensor (such as Elastic constants) will have four free indeces.

4. Derivatives of tensor with respect to \(x_i \) is written as \(,i \). For example:

\[\frac{\partial \Phi}{\partial x_i} = \Phi_{,i} \frac{\partial v}{\partial x_i} = v_{,i} \frac{\partial v}{\partial x_j} = v_{i,j} \frac{\partial T_{i,j}}{\partial x_k} = T_{i,j,k} \]

(4.6)

Usefulness of the indicial notation is in presenting systems of equations in compact form. For instance:

\[x_i = c_{ij} z_j \]

(4.7)

this simple compacted equation (expressed as \(x = cz \) in dyadic notation), when expanded would yield:

\[x_1 = c_{11} z_1 + c_{12} z_2 + c_{13} z_3 \]
\[x_2 = c_{21} z_1 + c_{22} z_2 + c_{23} z_3 \]
\[x_3 = c_{31} z_1 + c_{32} z_2 + c_{33} z_3 \]

(4.8-a)

Similarly:

\[A_{ij} = B_{ip} C_{jq} D_{pq} \]

(4.9)

\[A_{11} = B_{11} C_{11} D_{11} + B_{11} C_{12} D_{12} + B_{12} C_{11} D_{21} + B_{12} C_{12} D_{22} \]
\[A_{12} = B_{11} C_{11} D_{11} + B_{11} C_{12} D_{12} + B_{12} C_{11} D_{21} + B_{12} C_{12} D_{22} \]
\[A_{21} = B_{21} C_{11} D_{11} + B_{21} C_{12} D_{12} + B_{22} C_{11} D_{21} + B_{22} C_{12} D_{22} \]
\[A_{22} = B_{21} C_{21} D_{11} + B_{21} C_{22} D_{12} + B_{22} C_{21} D_{21} + B_{22} C_{22} D_{22} \]

(4.10-a)
Appendix E

INTEGRAL THEOREMS

Some useful integral theorems are presented here without proofs. Schey’s textbook *div grad curl and all that* provides an excellent informal presentation of related material.

E.1 Integration by Parts

The integration by part formula is

\[\int_a^b u(x)v'(x)dx = u(x)v(x)|_a^b - \int_a^b v(x)u'(x)dx \]

(5.1)

or

\[\int_a^b udv = uv|_a^b - \int_a^b vdu \]

(5.2)

E.2 Green-Gradient Theorem

Green’s theorem is

\[\oint (Rdx + Sdy) = \int_\Gamma \left(\frac{\partial S}{\partial x} - \frac{\partial R}{\partial y} \right) dxdy \]

(5.3)

E.3 Gauss-Divergence Theorem

The general form of the Gauss’ integral theorem is

\[\int_\Gamma \mathbf{v} \cdot d\Gamma = \int_\Omega \text{div}\mathbf{v} d\Omega \]

(5.4)
or

\[\int_{\Gamma} v_i n_i d\Gamma = \int_{\Omega} v_i d\Omega \] \hspace{1cm} (5.5)

78 In 2D-3D Gauss' integral theorem is

\[\iiint_V \text{div} \mathbf{q} dV = \iint_S \mathbf{q}^T \mathbf{n} dS \] \hspace{1cm} (5.6)

or

\[\iiint_V v_i dV = \iint_S v_i n_i dS \] \hspace{1cm} (5.7)

79 Alternatively

\[\iiint_V \phi \text{div} \mathbf{q} dV = \iint_S \phi \mathbf{q}^T \mathbf{n} dS - \iiint_V (\nabla \phi)^T \mathbf{q} dV \] \hspace{1cm} (5.8)

80 For 2D-1D transformations, we have

\[\iint_A \text{div} \mathbf{q} dA = \oint_s \mathbf{q}^T \mathbf{n} ds \] \hspace{1cm} (5.9)

or

\[\iint_A \phi \text{div} \mathbf{q} dA = \oint_s \phi \mathbf{q}^T \mathbf{n} ds - \iint_A (\nabla \phi)^T \mathbf{q} dA \] \hspace{1cm} (5.10)
PREFACE

Whereas there are numerous excellent textbooks covering Structural Analysis, or Structural Design, I felt that there was a need for a single reference which

- Provides a succinct, yet rigorous, coverage of Structural Engineering.
- Combines, as much as possible, Analysis with Design.
- Presents numerous, carefully selected, example problems.

in a properly type set document.

As such, and given the reluctance of undergraduate students to go through extensive verbage in order to capture a key concept, I have opted for an unusual format, one in which each key idea is clearly distinguishable. In addition, such a format will hopefully foster group learning among students who can easily reference misunderstood points.

Finally, whereas all problems have been taken from a variety of references, I have been very careful in not only properly selecting them, but also in enhancing their solution through appropriate figures and \LaTeX{} typesetting macros.
Structural Engineering can be characterized as the art of molding materials we don’t really understand into shapes we cannot really analyze so as to withstand forces we cannot really assess in such a way that the public does not really suspect.

-Really Unknown Source
Contents

1 INTRODUCTION

1.1 Structural Engineering .. 1–1
1.2 Structures and their Surroundings 1–1
1.3 Architecture & Engineering 1–1
1.4 Architectural Design Process 1–2
1.5 Architectural Design 1–2
1.6 Structural Analysis .. 1–2
1.7 Structural Design ... 1–2
1.8 Load Transfer Elements 1–3
1.9 Structure Types ... 1–3
1.10 Structural Engineering Courses 1–10
1.11 References ... 1–12

2 EQUILIBRIUM & REACTIONS

2.1 Introduction .. 2–1
2.2 Equilibrium .. 2–2
2.3 Equations of Conditions 2–3
2.4 Static Determinacy .. 2–3
 E 2-1 Statically Indeterminate Cable Structure 2–3
2.5 Geometric Instability 2–5
2.6 Examples ... 2–5
 E 2-2 Simply Supported Beam 2–5
 E 2-3 Parabolic Load ... 2–6
 E 2-4 Three Span Beam 2–7
 E 2-5 Three Hinged Cable Frame 2–8
 E 2-6 Inclined Supports 2–10
2.7 Arches ... 2–11

3 TRUSSES

3.1 Introduction .. 3–1
 3.1.1 Assumptions 3–1
 3.1.2 Basic Relations 3–1
3.2 Trusses .. 3–3
 3.2.1 Determinacy and Stability 3–3
 3.2.2 Method of Joints 3–3
 E 3-1 Truss, Method of Joints 3–5
 3.2.2.1 Matrix Method 3–7
 E 3-2 Truss I, Matrix Method 3–10
 E 3-3 Truss II, Matrix Method 3–11
 3.2.3 Method of Sections 3–13
 E 3-4 Truss, Method of Sections 3–13
3.3 Case Study: Stadium .. 3–14
7 ENERGY METHODS; Part I
7.1 Introduction ... 7–1
7.2 Real Work ... 7–1
7.2.1 External Work ... 7–1
7.2.2 Internal Work .. 7–2
E 7-1 Deflection of a Cantilever Beam, (Chajes 1983) 7–3
7.3 Virtual Work .. 7–4
7.3.1 External Virtual Work \(\delta W^* \) 7–6
7.3.2 Internal Virtual Work \(\delta U^* \) 7–6
7.3.3 Examples ... 7–9
E 7-2 Beam Deflection (Chajes 1983) 7–9
E 7-3 Deflection of a Frame (Chajes 1983) 7–11
E 7-4 Rotation of a Frame (Chajes 1983) 7–12
E 7-5 Truss Deflection (Chajes 1983) 7–13
E 7-6 Torsional and Flexural Deformation, (Chajes 1983) 7–14
E 7-7 Flexural and Shear Deformations in a Beam (White, Gergely and Sexmith 1976) ... 7–15
E 7-8 Thermal Effects in a Beam (White et al. 1976) 7–16
E 7-9 Deflection of a Truss (White et al. 1976) 7–17
E 7-10 Thermal Deflection of a Truss; I (White et al. 1976) 7–18
E 7-11 Thermal Deflections in a Truss; II (White et al. 1976) 7–19
E 7-12 Truss with initial camber ... 7–20
E 7-13 Prestressed Concrete Beam with Continously Variable I (White et al. 1976) 7–21
7.4 *Maxwell Betti’s Reciprocal Theorem 7–24
7.5 Summary of Equations .. 7–24

8 ARCHES and CURVED STRUCTURES 8–1
8.1 Arches ... 8–1
8.1.1 Statically Determinate .. 8–4
E 8-1 Three Hinged Arch, Point Loads, (Gerstle 1974) 8–4
E 8-2 Semi-Circular Arch, (Gerstle 1974) 8–4
8.1.2 Statically Indeterminate .. 8–6
E 8-3 Statically Indeterminate Arch, (Kinney 1957) 8–6
8.2 Curved Space Structures ... 8–9
E 8-4 Semi-Circular Box Girder, (Gerstle 1974) 8–9
8.2.1 Theory .. 8–10
8.2.1.1 Geometry .. 8–11
8.2.1.2 Equilibrium ... 8–11
E 8-5 Internal Forces in an Helicoidal Cantilevered Girder, (Gerstle 1974) 8–12

9 APPROXIMATE FRAME ANALYSIS 9–1
9.1 Vertical Loads ... 9–1
9.2 Horizontal Loads .. 9–5
9.2.1 Portal Method .. 9–8
E 9-1 Approximate Analysis of a Frame subjected to Vertical and Horizontal Loads ... 9–10

10 STATIC INDETERMINANCY; FLEXIBILITY METHOD 10–1
10.1 Introduction ... 10–1
10.2 The Force/Flexibility Method 10–4
10.3 Short-Cut for Displacement Evaluation 10–5
10.4 Examples ... 10–5
E 10-1 Steel Building Frame Analysis, (White et al. 1976) 10–5
E 10-2 Analysis of Irregular Building Frame, (White et al. 1976) ... 10–9
E 10-3 Redundant Truss Analysis, (White et al. 1976) 10–11
E 10-4 Truss with Two Redundants, (White et al. 1976) 10–13
E 10-5 Analysis of Nonprismatic Members, (White et al. 1976) ... 10–16
E 10-6 Fixed End Moments for Nonprismatic Beams, (White et al. 1976) 10–17
E 10-7 Rectangular Frame; External Load, (White et al. 1976) 10–18
11 KINEMATIC INDETERMINANCY; STIFFNESS METHOD 11–1

11.1 Introduction .. 11–1
11.1.1 Stiffness vs Flexibility 11–1
11.1.2 Sign Convention 11–2
11.2 Degrees of Freedom 11–2
11.2.1 Methods of Analysis 11–3
11.3 Kinematic Relations 11–3
11.3.1 Force-Displacement Relations 11–3
11.3.2 Fixed End Actions 11–6
11.3.2.1 Uniformly Distributed Loads 11–7
11.3.2.2 Concentrated Loads 11–7
11.4 Slope Deflection; Direct Solution 11–8
11.4.1 Slope Deflection Equations 11–8
11.4.2 Algorithm .. 11–9
11.4.3 Examples .. 11–9
11.5 Moment Distribution; Indirect Solution 11–15
11.5.1 Background 11–15
11.5.1.1 Sign Convention 11–15
11.5.2 Procedure 11–15
11.5.3 Algorithm .. 11–17
11.5.4 Examples .. 11–17

E 11-2 Two-Span Beam, Slope Deflection, (Arbabi 1991) 11–10
E 11-3 Two-Span Beam, Slope Deflection, Initial Deflection, (Arbabi 1991) 11–12

12 DIRECT STIFFNESS METHOD 12–1

12.1 Introduction .. 12–1
12.1.1 Structural Idealization 12–1
12.1.2 Structural Discretization 12–2
12.1.3 Coordinate Systems 12–2
12.1.4 Sign Convention 12–3
12.1.5 Degrees of Freedom 12–3
12.2 Stiffness Matrices 12–5
12.2.1 Truss Element 12–5
12.2.2 Beam Element 12–7
12.2.3 2D Frame Element 12–8
12.2.4 Remarks on Element Stiffness Matrices 12–8
12.3 Direct Stiffness Method 12–8
12.3.1 Orthogonal Structures 12–8
12.3.2 Local and Global Element Stiffness Matrices ([K^e] [K^e]) 12–12

Victor Saouma Structural Analysis
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>0–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.2.1 2D Frame</td>
<td>12–12</td>
</tr>
<tr>
<td>12.3.3 Global Stiffness Matrix</td>
<td>12–13</td>
</tr>
<tr>
<td>12.3.3.1 Structural Stiffness Matrix</td>
<td>12–13</td>
</tr>
<tr>
<td>12.3.3.2 Augmented Stiffness Matrix</td>
<td>12–13</td>
</tr>
<tr>
<td>12.3.4 Internal Forces</td>
<td>12–14</td>
</tr>
<tr>
<td>12.3.5 Boundary Conditions, [ID] Matrix</td>
<td>12–15</td>
</tr>
<tr>
<td>12.3.6 LM Vector</td>
<td>12–16</td>
</tr>
<tr>
<td>12.3.7 Assembly of Global Stiffness Matrix</td>
<td>12–16</td>
</tr>
<tr>
<td>E 12-2 Assembly of the Global Stiffness Matrix</td>
<td>12–17</td>
</tr>
<tr>
<td>12.3.8 Algorithm</td>
<td>12–18</td>
</tr>
<tr>
<td>E 12-3 Direct Stiffness Analysis of a Truss</td>
<td>12–18</td>
</tr>
<tr>
<td>E 12-4 Analysis of a Frame with MATLAB</td>
<td>12–23</td>
</tr>
<tr>
<td>E 12-5 Analysis of a simple Beam with Initial Displacements</td>
<td>12–25</td>
</tr>
<tr>
<td>12.4 Computer Program Organization</td>
<td>12–29</td>
</tr>
<tr>
<td>12.5 Computer Implementation with MATLAB</td>
<td>12–31</td>
</tr>
<tr>
<td>12.5.1 Program Input</td>
<td>12–31</td>
</tr>
<tr>
<td>12.5.1.1 Input Variable Descriptions</td>
<td>12–31</td>
</tr>
<tr>
<td>12.5.1.2 Sample Input Data File</td>
<td>12–32</td>
</tr>
<tr>
<td>12.5.1.3 Program Implementation</td>
<td>12–33</td>
</tr>
<tr>
<td>12.5.2 Program Listing</td>
<td>12–34</td>
</tr>
<tr>
<td>12.5.2.1 Main Program</td>
<td>12–34</td>
</tr>
<tr>
<td>12.5.2.2 Assembly of ID Matrix</td>
<td>12–35</td>
</tr>
<tr>
<td>12.5.2.3 Element Nodal Coordinates</td>
<td>12–36</td>
</tr>
<tr>
<td>12.5.2.4 Element Lengths</td>
<td>12–37</td>
</tr>
<tr>
<td>12.5.2.5 Element Stiffness Matrices</td>
<td>12–37</td>
</tr>
<tr>
<td>12.5.2.6 Transformation Matrices</td>
<td>12–38</td>
</tr>
<tr>
<td>12.5.2.7 Assembly of the Augmented Stiffness Matrix</td>
<td>12–39</td>
</tr>
<tr>
<td>12.5.2.8 Print General Information</td>
<td>12–40</td>
</tr>
<tr>
<td>12.5.2.9 Print Load</td>
<td>12–40</td>
</tr>
<tr>
<td>12.5.2.10 Load Vector</td>
<td>12–41</td>
</tr>
<tr>
<td>12.5.2.11 Nodal Displacements</td>
<td>12–42</td>
</tr>
<tr>
<td>12.5.2.12 Reactions</td>
<td>12–43</td>
</tr>
<tr>
<td>12.5.2.13 Internal Forces</td>
<td>12–44</td>
</tr>
<tr>
<td>12.5.2.14 Plotting</td>
<td>12–45</td>
</tr>
<tr>
<td>12.5.2.15 Sample Output File</td>
<td>12–49</td>
</tr>
</tbody>
</table>

13 INFLUENCE LINES (unedited) | 13–1 |

14 COLUMN STABILITY | 14–1 |
14.1 Introduction; Discrete Rigid Bars	14–1
14.1.1 Single Bar System	14–1
14.1.2 Two Bars System	14–2
14.1.3 \(\ddagger \)Analogy with Free Vibration	14–4
14.2 Continuous Linear Elastic Systems	14–5
14.2.1 Lower Order Differential Equation	14–6
14.2.2 Higher Order Differential Equation	14–6
14.2.2.1 Derivation	14–6
14.2.2.2 Hinged-Hinged Column	14–8
14.2.2.3 Fixed-Fixed Column	14–9
14.2.2.4 Fixed-Hinged Column	14–10
14.2.3 Effective Length Factors \(\mathit{K} \)	14–10
14.3 Inelastic Columns	14–14

Victor Saouma Structural Analysis
List of Figures

1.1 Types of Forces in Structural Elements (1D) ... 1–3
1.2 Basic Aspects of Cable Systems .. 1–4
1.3 Basic Aspects of Arches .. 1–5
1.4 Types of Trusses .. 1–6
1.5 Variations in Post and Beams Configurations .. 1–7
1.6 Different Beam Types .. 1–8
1.7 Basic Forms of Frames .. 1–9
1.8 Examples of Air Supported Structures ... 1–10
1.9 Basic Forms of Shells .. 1–11
1.10 Sequence of Structural Engineering Courses 1–11

2.1 Types of Supports .. 2–1
2.2 Inclined Roller Support .. 2–3
2.3 Examples of Static Determinate and Indeterminate Structures 2–4
2.4 Geometric Instability Caused by Concurrent Reactions 2–5

3.1 Types of Trusses .. 3–2
3.2 Bridge Truss .. 3–2
3.3 A Statically Indeterminate Truss ... 3–4
3.4 X and Y Components of Truss Forces ... 3–4
3.5 Sign Convention for Truss Element Forces .. 3–5
3.6 Direction Cosines .. 3–8
3.7 Forces Acting on Truss Joint .. 3–8
3.8 Complex Statically Determinate Truss .. 3–9
3.9 Florence Stadium, Pier Luigi Nervi (?) .. 3–14
3.10 Florence Stadium, Pier Luigi Nervi (?) ... 3–15

4.1 Cable Structure Subjected to $q(x)$.. 4–3
4.2 Catenary versus Parabola Cable Structures .. 4–6
4.3 Leipniz’s Figure of a catenary, 1690 ... 4–7
4.4 Longitudinal and Plan Elevation of the George Washington Bridge 4–9
4.5 Truck Load .. 4–10
4.6 Dead and Live Loads .. 4–11
4.7 Location of Cable Reactions .. 4–11
4.8 Vertical Reactions in Columns Due to Central Span Load 4–12
4.9 Cable Reactions in Side Span .. 4–13
4.10 Cable Stresses .. 4–13
4.11 Deck Idealization, Shear and Moment Diagrams 4–14

5.1 Shear and Moment Sign Conventions for Design 5–2
5.2 Sign Conventions for 3D Frame Elements ... 5–2
5.3 Free Body Diagram of an Infinitesimal Beam Segment 5–3
5.4 Shear and Moment Forces at Different Sections of a Loaded Beam 5–4
5.5 Slope Relations Between Load Intensity and Shear, or Between Shear and Moment .. 5–5
5.6 Inclined Loads on Inclined Members ... 5–8

6.1 Curvature of a flexural element .. 6–2
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Moment Area Theorems</td>
<td>6–6</td>
</tr>
<tr>
<td>6.3</td>
<td>Sign Convention for the Moment Area Method</td>
<td>6–7</td>
</tr>
<tr>
<td>6.4</td>
<td>Areas and Centroid of Polynomial Curves</td>
<td>6–7</td>
</tr>
<tr>
<td>6.5</td>
<td>Maximum Deflection Using the Moment Area Method</td>
<td>6–10</td>
</tr>
<tr>
<td>6.6</td>
<td>Conjugate Beams</td>
<td>6–15</td>
</tr>
<tr>
<td>6.7</td>
<td>Torsion Rotation Relations</td>
<td>6–17</td>
</tr>
<tr>
<td>7.1</td>
<td>Load Deflection Curves</td>
<td>7–2</td>
</tr>
<tr>
<td>7.2</td>
<td>Strain Energy Definition</td>
<td>7–3</td>
</tr>
<tr>
<td>7.3</td>
<td>Deflection of Cantilever Beam</td>
<td>7–4</td>
</tr>
<tr>
<td>7.4</td>
<td>Real and Virtual Forces</td>
<td>7–5</td>
</tr>
<tr>
<td>7.5</td>
<td>Torsion Rotation Relations</td>
<td>7–7</td>
</tr>
<tr>
<td>7.6</td>
<td></td>
<td>7–10</td>
</tr>
<tr>
<td>7.7</td>
<td></td>
<td>7–10</td>
</tr>
<tr>
<td>7.8</td>
<td></td>
<td>7–11</td>
</tr>
<tr>
<td>7.9</td>
<td></td>
<td>7–12</td>
</tr>
<tr>
<td>7.10</td>
<td></td>
<td>7–13</td>
</tr>
<tr>
<td>7.11</td>
<td></td>
<td>7–14</td>
</tr>
<tr>
<td>7.12</td>
<td></td>
<td>7–15</td>
</tr>
<tr>
<td>7.13</td>
<td></td>
<td>7–17</td>
</tr>
<tr>
<td>7.14</td>
<td></td>
<td>7–18</td>
</tr>
<tr>
<td>7.15</td>
<td></td>
<td>7–19</td>
</tr>
<tr>
<td>7.16</td>
<td>*(correct 42.7 to 47.2)</td>
<td>7–22</td>
</tr>
<tr>
<td>8.1</td>
<td>Moment Resisting Forces in an Arch or Suspension System as Compared to a Beam, (Lin and Stotesbury 1981)</td>
<td>8–2</td>
</tr>
<tr>
<td>8.2</td>
<td>Statics of a Three-Hinged Arch, (Lin and Stotesbury 1981)</td>
<td>8–2</td>
</tr>
<tr>
<td>8.3</td>
<td>Two Hinged Arch, (Lin and Stotesbury 1981)</td>
<td>8–3</td>
</tr>
<tr>
<td>8.4</td>
<td>Arch Rib Stiffened with Girder or Truss, (Lin and Stotesbury 1981)</td>
<td>8–3</td>
</tr>
<tr>
<td>8.5</td>
<td></td>
<td>8–4</td>
</tr>
<tr>
<td>8.6</td>
<td>Semi-Circular three hinged arch</td>
<td>8–5</td>
</tr>
<tr>
<td>8.7</td>
<td>Semi-Circular three hinged arch; Free body diagram</td>
<td>8–6</td>
</tr>
<tr>
<td>8.8</td>
<td>Statically Indeterminate Arch</td>
<td>8–7</td>
</tr>
<tr>
<td>8.9</td>
<td>Statically Indeterminate Arch; ‘Horizontal Reaction Removed</td>
<td>8–8</td>
</tr>
<tr>
<td>8.10</td>
<td>Semi-Circular Box Girder</td>
<td>8–9</td>
</tr>
<tr>
<td>8.11</td>
<td>Geometry of Curved Structure in Space</td>
<td>8–11</td>
</tr>
<tr>
<td>8.12</td>
<td>Free Body Diagram of a Curved Structure in Space</td>
<td>8–12</td>
</tr>
<tr>
<td>8.13</td>
<td>Helicoidal Cantilevered Girder</td>
<td>8–13</td>
</tr>
<tr>
<td>9.1</td>
<td>Uniformly Loaded Beam and Frame with Free or Fixed Beam Restraint</td>
<td>9–2</td>
</tr>
<tr>
<td>9.2</td>
<td>Uniformly Loaded Frame, Approximate Location of Inflection Points</td>
<td>9–3</td>
</tr>
<tr>
<td>9.3</td>
<td>Approximate Analysis of Frames Subjected to Vertical Loads; Girder Moments</td>
<td>9–4</td>
</tr>
<tr>
<td>9.4</td>
<td>Approximate Analysis of Frames Subjected to Vertical Loads; Column Axial Forces</td>
<td>9–5</td>
</tr>
<tr>
<td>9.5</td>
<td>Approximate Analysis of Frames Subjected to Vertical Loads; Column Moments</td>
<td>9–6</td>
</tr>
<tr>
<td>9.6</td>
<td>Horizontal Force Acting on a Frame, Approximate Location of Inflection Points</td>
<td>9–7</td>
</tr>
<tr>
<td>9.7</td>
<td>Approximate Analysis of Frames Subjected to Lateral Loads; Column Shear</td>
<td>9–8</td>
</tr>
<tr>
<td>9.8</td>
<td>***Approximate Analysis of Frames Subjected to Lateral Loads; Girder Moment</td>
<td>9–9</td>
</tr>
<tr>
<td>9.9</td>
<td>Approximate Analysis of Frames Subjected to Lateral Loads; Column Axial Force</td>
<td>9–10</td>
</tr>
<tr>
<td>9.10</td>
<td>Example; Approximate Analysis of a Building</td>
<td>9–10</td>
</tr>
<tr>
<td>9.11</td>
<td>Free Body Diagram for the Approximate Analysis of a Frame Subjected to Vertical Loads</td>
<td>9–11</td>
</tr>
<tr>
<td>9.12</td>
<td>Approximate Analysis of a Building; Moments Due to Vertical Loads</td>
<td>9–13</td>
</tr>
<tr>
<td>9.13</td>
<td>Approximate Analysis of a Building; Shears Due to Vertical Loads</td>
<td>9–15</td>
</tr>
<tr>
<td>9.14</td>
<td>Approximate Analysis for Vertical Loads; Spread-Sheet Format</td>
<td>9–16</td>
</tr>
<tr>
<td>9.15</td>
<td>Approximate Analysis for Vertical Loads; Equations in Spread-Sheet</td>
<td>9–17</td>
</tr>
<tr>
<td>9.16</td>
<td>Free Body Diagram for the Approximate Analysis of a Frame Subjected to Lateral Loads</td>
<td>9–18</td>
</tr>
<tr>
<td>9.17</td>
<td>Approximate Analysis of a Building; Moments Due to Lateral Loads</td>
<td>9–20</td>
</tr>
<tr>
<td>9.18</td>
<td>Portal Method; Spread-Sheet Format</td>
<td>9–22</td>
</tr>
</tbody>
</table>
9.19 Portal Method; Equations in Spread-Sheet .. 9–23

10.1 Statically Indeterminate 3 Cable Structure ... 10–2
10.2 Propped Cantilever Beam ... 10–3
10.3 .. 10–6
10.4 .. 10–6
10.5 .. 10–7
10.6 .. 10–8
10.7 .. 10–9
10.8 .. 10–10
10.9 ... 10–12
10.10 .. 10–13
10.11 .. 10–14
10.12 .. 10–16
10.13 .. 10–16
10.14 .. 10–18
10.15 .. 10–19
10.16 Definition of Flexibility Terms for a Rigid Frame 10–19
10.17 .. 10–22
10.18 .. 10–25

11.1 Sign Convention, Design and Analysis .. 11–2
11.2 Independent Displacements .. 11–2
11.3 Total Degrees of Freedom for various Type of Elements 11–4
11.4 Flexural Problem Formulation .. 11–5
11.5 Illustrative Example for the Slope Deflection Method 11–9
11.6 Slope Deflection; Propped Cantilever Beam ... 11–10
11.7 Two-Span Beam, Slope Deflection .. 11–11
11.8 Two Span Beam, Slope Deflection, Moment Diagram 11–12
11.9 Frame Analysis by the Slope Deflection Method 11–13

12.1 Global Coordinate System .. 12–3
12.2 Local Coordinate Systems .. 12–4
12.3 Sign Convention, Design and Analysis .. 12–4
12.4 Total Degrees of Freedom for various Type of Elements 12–4
12.5 Dependent Displacements .. 12–5
12.6 Examples of Active Global Degrees of Freedom 12–6
12.7 Problem with 2 Global d.o.f. θ_1 and θ_2 12–9
12.8 2D Frame Element Rotation .. 12–13
12.9 *Frame Example (correct K_{32} and K_{33}) ... 12–14
12.10 Example for [ID] Matrix Determination .. 12–16
12.11 Simple Frame Analyzed with the MATLAB Code 12–17
12.12 .. 12–19
12.13 Simple Frame Analyzed with the MATLAB Code 12–23
12.14 ID Values for Simple Beam .. 12–26
12.15 Structure Plotted with CASAP .. 12–49

14.1 Stability of a Rigid Bar .. 14–1
14.2 Stability of a Rigid Bar with Initial Imperfection 14–2
14.3 Stability of a Two Rigid Bars System ... 14–3
14.4 Two DOF Dynamic System .. 14–4
14.5 Euler Column ... 14–5
14.6 Simply Supported Beam Column; Differential Segment; Effect of Axial Force P .. 14–7
14.7 Solution of the Transcendental Equation for the Buckling Load of a Fixed-Hinged Column .. 14–10
14.8 Column Effective Lengths ... 14–11
14.9 Frame Effective Lengths ... 14–12
14.10 Column Effective Length in a Frame ... 14–12
14.11 Standard Alignment Chart (AISC) ... 14–13
14.12 Inelastic Buckling ... 14–14
14.13 Euler Buckling, and SSRC Column Curve 14–15
List of Tables

2.1 Equations of Equilibrium 2–2
3.1 Static Determinacy and Stability of Trusses 3–3
6.1 Conjugate Beam Boundary Conditions 6–15
7.1 Possible Combinations of Real and Hypothetical Formulations 7–5
7.2 k Factors for Torsion .. 7–9
7.3 Summary of Expressions for the Internal Strain Energy and External Work 7–25
9.1 Columns Combined Approximate Vertical and Horizontal Loads 9–21
9.2 Girders Combined Approximate Vertical and Horizontal Loads 9–24
10.1 Table of $\int_{0}^{L} g_1(x)g_2(x)dx$ 10–5
10.2 .. 10–15
10.3 Displacement Computations for a Rectangular Frame 10–20
11.1 Stiffness vs Flexibility Methods 11–1
11.2 Degrees of Freedom of Different Structure Types Systems 11–3
12.1 Example of Nodal Definition 12–2
12.2 Example of Element Definition 12–2
12.3 Example of Group Number 12–2
12.4 Degrees of Freedom of Different Structure Types Systems 12–7
14.1 Essential and Natural Boundary Conditions for Columns 14–8
Chapter 1

INTRODUCTION

1.1 Structural Engineering

Structural engineers are responsible for the detailed analysis and design of:

Architectural structures: Buildings, houses, factories. They must work in close cooperation with an architect who will ultimately be responsible for the design.

Civil Infrastructures: Bridges, dams, pipelines, offshore structures. They work with transportation, hydraulic, nuclear and other engineers. For those structures they play the leading role.

Aerospace, Mechanical, Naval structures: aeroplanes, spacecrafts, cars, ships, submarines to ensure the structural safety of those important structures.

1.2 Structures and their Surroundings

Structural design is affected by various environmental constraints:

1. Major movements: For example, elevator shafts are usually shear walls good at resisting lateral load (wind, earthquake).

2. Sound and structure interact:
 - A dome roof will concentrate the sound
 - A dish roof will diffuse the sound

3. Natural light:
 - A flat roof in a building may not provide adequate light.
 - A Folded plate will provide adequate lighting (analysis more complex).
 - A bearing and shear wall building may not have enough openings for daylight.
 - A Frame design will allow more light in (analysis more complex).

4. Conduits for cables (electric, telephone, computer), HVAC ducts, may dictate type of floor system.

5. Net clearance between columns (unobstructed surface) will dictate type of framing.

1.3 Architecture & Engineering

Architecture must be the product of a creative collaboration of architects and engineers.

Architect stress the overall, rather than elemental approach to design. In the design process, they conceptualize a space-form scheme as a total system. They are generalists.
The engineer, partly due to his/her education think in reverse, starting with details and without sufficient regards for the overall picture. (S)he is a **pragmatist** who “knows everything about nothing”.

Thus there is a conceptual **gap** between architects and engineers at all levels of design.

Engineer’s education is more specialized and in depth than the architect’s. However, engineer must be kept aware of overall architectural objective.

In the last resort, it is the architect who is the leader of the construction team, and the engineers are his/her servant.

A possible compromise might be an **Architectural Engineer**.

1.4 Architectural Design Process

Architectural design is hierarchical:

- **Schematic**: conceptual overall space-form feasibility of basic schematic options. Collaboration is mostly between the owner and the architect.
- **Preliminary**: Establish basic physical properties of major subsystems and key components to prove design feasibility. Some collaboration with engineers is necessary.
- **Final design**: final in-depth design refinements of all subsystems and components and preparation of working documents (“blue-prints”). Engineers play a leading role.

1.5 Architectural Design

Architectural design must respect various constraints:

- **Functionality**: Influence of the adopted structure on the purposes for which the structure was erected.
- **Aesthetics**: The architect often imposes his aesthetic concerns on the engineer. This in turn can place severe limitations on the structural system.
- **Economy**: It should be kept in mind that the two largest components of a structure are labors and materials. Design cost is comparatively negligible.

1.6 Structural Analysis

Given an **existing** structure subjected to a certain load determine internal forces (axial, shear, flexural, torsional; or stresses), deflections, and verify that no unstable failure can occur.

Thus the basic structural requirements are:

- **Strength**: stresses should not exceed critical values: \(\sigma < \sigma_f \)
- **Stiffness**: deflections should be controlled: \(\Delta < \Delta_{max} \)
- **Stability**: buckling or cracking should also be prevented

1.7 Structural Design

Given a set of forces, **dimension** the structural element.

Steel/wood Structures Select appropriate section.

Reinforced Concrete: Determine dimensions of the element and internal reinforcement (number and sizes of reinforcing bars).
For new structures, iterative process between analysis and design. A preliminary design is made using rules of thumbs (best known to Engineers with design experience) and analyzed. Following design, we check for

Serviceability: deflections, crack widths under the applied load. Compare with acceptable values specified in the design code.

Failure: and compare the failure load with the applied load times the appropriate factors of safety.

If the design is found not to be acceptable, then it must be modified and reanalyzed.

For existing structures rehabilitation, or verification of an old infrastructure, analysis is the most important component.

In summary, analysis is always required.

1.8 Load Transfer Elements

From Strength of Materials, Fig. 1.1

![Types of Forces in Structural Elements (1D)](image)

Axial: cables, truss elements, arches, membrane, shells

Flexural: Beams, frames, grids, plates

Torsional: Grids, 3D frames

Shear: Frames, grids, shear walls.

1.9 Structure Types

Structures can be classified as follows:
Tension & Compression Structures: only, no shear, flexure, or torsion

Cable (tension only): The high strength of steel cables, combined with the efficiency of simple tension, makes cables ideal structural elements to span large distances such as bridges, and dish roofs, Fig. 1.2

Arches (mostly compression) is a “reversed cable structure”. In an arch, we seek to minimize flexure and transfer the load through axial forces only. Arches are used for large span roofs and bridges, Fig. 1.3

Trusses have pin connected elements which can transmit axial forces only (tension and compression). Elements are connected by either slotted, screwed, or gusset plate connectors. However, due to construction details, there may be secondary stresses caused by relatively rigid connections. Trusses are used for joists, roofs, bridges, electric tower, Fig. 1.4

Post and Beams: Essentially a support column on which a “beam” rests, Fig. 1.5, and 1.6.
1.9 Structure Types

Figure 1.3: Basic Aspects of Arches
Figure 1.4: Types of Trusses
Figure 1.5: Variations in Post and Beams Configurations
Draft

1–8 INTRODUCTION

Figure 1.6: Different Beam Types

Victor Saouma

Structural Analysis
1.9 Structure Types

Beams: Shear, flexure and sometimes axial forces. Recall that \(\sigma = \frac{Mc}{I} \) is applicable only for **shallow beams**, i.e. span/depth at least equal to five.

Whereas r/c beams are mostly rectangular or T shaped, steel beams are usually I shaped (if the top flanges are not properly stiffened, they may buckle, thus we must have **stiffeners**).

Frames: Load is co-planar with the structure. Axial, shear, flexure (with respect to one axis in 2D structures and with respect to two axis in 3D structures), torsion (only in 3D). The frame is composed of at least one horizontal member (beam) rigidly connected to vertical ones\(^1\). The vertical members can have different boundary conditions (which are usually governed by soil conditions). Frames are extensively used for houses and buildings, Fig. 1.7.

![Basic Forms of Frames](image)

Grids and Plates: Load is orthogonal to the plane of the structure. Flexure, shear, torsion.

In a grid, beams are at right angles resulting in a two-way dispersal of loads. Because of the rigid connections between the beams, additional stiffness is introduced by the torsional resistance of members.

Grids can also be **skewed** to achieve greater efficiency if the aspect ratio is not close to one.

Plates are flat, rigid, two dimensional structures which transmit vertical load to their supports. Used mostly for **floor slabs**.

Folded plates is a combination of transverse and longitudinal beam action. Used for long span roofs. Note that the plate may be folded circularly rather than longitudinally. Folded plates are used mostly as long span roofs. However, they can also be used as vertical walls to support both vertical and horizontal loads.

\(^1\)The precursor of the frame structures were the **Post and Lintel** where the post is vertical member on which the lintel is simply posed.
Membranes: 3D structures composed of a flexible 2D surface resisting tension only. They are usually cable-supported and are used for tents and long span roofs Fig. 1.8.

- Single surface - tension maintained by pressure difference between interior of building and outside
- Double surface - tension and stiffening produced by inflation of the structure
- Double surface - bottom draped in tension from the supports, top held up by internal inflation
- Cable restrained - internal pressure pushes membrane against the network of restraining cables

Figure 1.8: Examples of Air Supported Structures

Shells: 3D structures composed of a curved 2D surface, they are usually shaped to transmit compressive axial stresses only, Fig. 1.9.

Shells are classified in terms of their curvature.

1.10 Structural Engineering Courses

20 Structural engineering education can be approached from either one of two points of views:

Architectural: Start from overall design, and move toward detailed analysis.

Education: Elemental rather than global approach. Emphasis is on the individual structural elements and not always on the total system.

CVEN3525 will seek a balance between those two approaches.

21 This is only the third of a long series of courses which can be taken in Structural Engineering, Fig. 1.10
1.10 Structural Engineering Courses

Figure 1.9: Basic Forms of Shells

Figure 1.10: Sequence of Structural Engineering Courses
1.11 References

Following are some useful references for structural engineering, those marked by † were consulted, and “borrowed from” in preparing the Lecture Notes:

Structural Art

Structural Engineering

Structural Engineering, Architectural Analysis and Design

Structural Analysis

Structural Design

Codes

1. ACI-318-89, *Building Code Requirements for Reinforced Concrete*, American Concrete Institute
3. *Uniform Building Code*, International Conference of Building Officials, 5360 South Workman Road; Whittier, CA 90601
Chapter 2

EQUILIBRIUM & REACTIONS

To every action there is an equal and opposite reaction.

Newton’s third law of motion

2.1 Introduction

1 In the analysis of structures (hand calculations), it is often easier (but not always necessary) to start by determining the reactions.

2 Once the reactions are determined, internal forces are determined next; finally, deformations (deflections and rotations) are determined last

3 Reactions are necessary to determine foundation load.

4 Depending on the type of structures, there can be different types of support conditions, Fig. 2.1.

\[\text{Symbols} \quad \text{Unknown Forces} \]

Figure 2.1: Types of Supports

\[^1 \text{This is the sequence of operations in the flexibility method which lends itself to hand calculation. In the stiffness method, we determine displacements firsts, then internal forces and reactions. This method is most suitable to computer implementation.} \]
Roller: provides a restraint in only one direction in a 2D structure, in 3D structures a roller may provide restraint in one or two directions. A roller will allow rotation.

Hinge: allows rotation but no displacements.

Fixed Support: will prevent rotation and displacements in all directions.

2.2 Equilibrium

Reactions are determined from the appropriate equations of static equilibrium.

Summation of forces and moments, in a static system must be equal to zero.

In a 3D cartesian coordinate system there are a total of 6 independent equations of equilibrium:

\[
\begin{align*}
\Sigma F_x &= \Sigma F_y &= \Sigma F_z &= 0 \\
\Sigma M_x &= \Sigma M_y &= \Sigma M_z &= 0
\end{align*}
\] (2.1)

In a 2D cartesian coordinate system there are a total of 3 independent equations of equilibrium:

\[
\Sigma F_x = \Sigma F_y = \Sigma M_z = 0
\] (2.2)

For reaction calculations, the externally applied load may be reduced to an equivalent force.

Summation of the moments can be taken with respect to any arbitrary point.

Whereas forces are represented by a vector, moments are also vectorial quantities and are represented by a curved arrow or a double arrow vector.

Not all equations are applicable to all structures, Table 2.1

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam, no axial forces</td>
<td>(\Sigma F_y) (\Sigma M_z)</td>
</tr>
<tr>
<td>2D Truss, Frame, Beam</td>
<td>(\Sigma F_x) (\Sigma F_y) (\Sigma M_z)</td>
</tr>
<tr>
<td>Grid</td>
<td>(\Sigma F_x) (\Sigma F_y) (\Sigma M_x) (\Sigma M_y)</td>
</tr>
<tr>
<td>3D Truss, Frame</td>
<td>(\Sigma F_x) (\Sigma F_y) (\Sigma F_z) (\Sigma M_x) (\Sigma M_y) (\Sigma M_z)</td>
</tr>
<tr>
<td>Alternate Set</td>
<td>(\Sigma M_A^A) (\Sigma M_B^B)</td>
</tr>
<tr>
<td>Beams, no axial force</td>
<td>(\Sigma M_A^A) (\Sigma M_B^B) (\Sigma M_C^C)</td>
</tr>
<tr>
<td>2D Truss, Frame, Beam</td>
<td>(\Sigma M_A^A) (\Sigma M_B^B) (\Sigma M_C^C)</td>
</tr>
</tbody>
</table>

Table 2.1: Equations of Equilibrium

The three conventional equations of equilibrium in 2D: \(\Sigma F_x, \Sigma F_y \) and \(\Sigma M_z \) can be replaced by the independent moment equations \(\Sigma M_A^A, \Sigma M_B^B, \Sigma M_C^C \) provided that A, B, and C are not collinear.

It is always preferable to check calculations by another equation of equilibrium.

Before you write an equation of equilibrium,

1. Arbitrarily decide which is the +ve direction
2. Assume a direction for the unknown quantities
3. The right hand side of the equation should be zero

\(^2\)In a dynamic system \(\Sigma F = ma \) where \(m \) is the mass and \(a \) is the acceleration.

\(^3\)However for internal forces (shear and moment) we must use the actual load distribution.
If your reaction is negative, then it will be in a direction opposite from the one assumed.

16 Summation of all external forces (including reactions) is not necessarily zero (except at hinges and at points outside the structure).

17 Summation of external forces is equal and opposite to the internal ones. Thus the net force/moment is equal to zero.

18 The external forces give rise to the (non-zero) shear and moment diagram.

2.3 Equations of Conditions

19 If a structure has an internal hinge (which may connect two or more substructures), then this will provide an additional equation ($\Sigma M = 0$ at the hinge) which can be exploited to determine the reactions.

20 Those equations are often exploited in trusses (where each connection is a hinge) to determine reactions.

21 In an inclined roller support with S_x and S_y horizontal and vertical projection, then the reaction R would have, Fig. 2.2.

\[
\frac{R_x}{R_y} = \frac{S_y}{S_x}
\]

Figure 2.2: Inclined Roller Support

2.4 Static Determinacy

22 In statically determinate structures, reactions depend only on the geometry, boundary conditions and loads.

23 If the reactions can not be determined simply from the equations of static equilibrium (and equations of conditions if present), then the reactions of the structure are said to be statically indeterminate.

24 The degree of static indeterminacy is equal to the difference between the number of reactions and the number of equations of equilibrium, Fig. 2.3.

25 Failure of one support in a statically determinate system results in the collapse of the structures. Thus a statically indeterminate structure is safer than a statically determinate one.

26 For statically indeterminate structures\(^4\), reactions depend also on the material properties (e.g. Young’s and/or shear modulus) and element cross sections (e.g. length, area, moment of inertia).

\[^4\text{Which will be studied in CVEN3535.}\]
Example 2-1: Statically Indeterminate Cable Structure

A rigid plate is supported by three aluminum cables and a steel one. Determine the force in each cable. If the rigid plate supports a load P, determine the stress in each of the three cables. Solution:

1. We have three unknowns and only two independent equations of equilibrium. Hence the problem is statically indeterminate to the first degree.

\[\Sigma M_z = 0; \quad \Rightarrow \quad P_{Al}^{left} = P_{Al}^{right} \]

\[\Sigma F_y = 0; \quad \Rightarrow \quad 2P_{Al} + P_{St} = P \]

Thus we effectively have two unknowns and one equation.

2. We need to have a third equation to solve for the three unknowns. This will be derived from the compatibility of the displacements in all three cables, i.e. all three displacements must be equal:

\[\sigma = \frac{P}{A} \]

\[\varepsilon = \frac{\Delta L}{L} \]

\[\Rightarrow \Delta L = \frac{PL}{AE} \]

This example problem will be the only statically indeterminate problem analyzed in CVEN3525.
2.5 Geometric Instability

\[
\frac{P_{Al}L}{E_{Al}A_{Al}} = \frac{P_{St}L}{E_{St}A_{St}} \Rightarrow \frac{P_{Al}}{P_{St}} = \left(\frac{EA}_{Al} \right) \frac{P_{St}}{P_{St}} = \left(\frac{EA}_{St} \right)
\]

or \(-(EA)_{St}P_{Al} + (EA)_{Al}P_{St} = 0\)

3. Solution of this system of two equations with two unknowns yield:

\[
\begin{bmatrix}
2 & (EA)_{St} \\
-(EA)_{St} & (EA)_{Al}
\end{bmatrix}
\begin{bmatrix}
P_{Al} \\
P_{St}
\end{bmatrix}
= \begin{bmatrix}
P \\
0
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
P_{Al} \\
P_{St}
\end{bmatrix}
= \frac{1}{2(2EA)_{Al} + (EA)_{St}}
\begin{bmatrix}
2 & (EA)_{St} \\
-(EA)_{St} & (EA)_{Al}
\end{bmatrix}^{-1}
\begin{bmatrix}
P \\
0
\end{bmatrix}
= \begin{bmatrix}
P_{Al} \\
P_{St}
\end{bmatrix}
= \begin{bmatrix}
P \\
0
\end{bmatrix}
\]

2.5 Geometric Instability

27 The stability of a structure is determined not only by the number of reactions but also by their arrangement.

28 Geometric instability will occur if:

1. All reactions are parallel and a non-parallel load is applied to the structure.

2. All reactions are concurrent, Fig. ??.

![Figure 2.4: Geometric Instability Caused by Concurrent Reactions](image)

3. The number of reactions is smaller than the number of equations of equilibrium, that is a mechanism is present in the structure.

29 Mathematically, this can be shown if the determinant of the equations of equilibrium is equal to zero (or the equations are inter-dependent).

2.6 Examples

30 Examples of reaction calculation will be shown next. Each example has been carefully selected as it brings a different “twist” from the preceding one. Some of those same problems will be revisited later for the determination of the internal forces and/or deflections. Many of those problems are taken from Prof. Gerstle textbook Basic Structural Analysis.

| Example 2-2: Simply Supported Beam

Victor Saouma Structural Analysis |
Determine the reactions of the simply supported beam shown below.

\[\begin{array}{c}
\begin{array}{c}
\text{a} \\
\downarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
60^k \\
36^k
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
4^k/ft
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
d
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{b} \\
\text{c} \\
\text{d}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
6'
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
6'
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
6'
\end{array}
\end{array}
\end{array} \]

Solution:
The beam has 3 reactions, we have 3 equations of static equilibrium, hence it is statically determinate.

\[(+ \downarrow) \Sigma F_x = 0; \Rightarrow R_{ax} - 36^k = 0 \]
\[(+ \uparrow) \Sigma F_y = 0; \Rightarrow R_{ay} + R_{dy} - 60^k - (4) k/ft(12) \text{ ft} = 0 \]
\[(+ \uparrow) \Sigma M_z = 0; \Rightarrow 12R_{ay} - 6R_{dy} - (60)(6) = 0 \]

or

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 12 & -6
\end{bmatrix}
\begin{bmatrix}
R_{ax} \\
R_{ay} \\
R_{dy}
\end{bmatrix}
=
\begin{bmatrix}
36 \\
108 \\
360
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
R_{ax} \\
R_{ay} \\
R_{dy}
\end{bmatrix}
=
\begin{bmatrix}
36^k \\
56^k \\
52^k
\end{bmatrix}
\]

Alternatively we could have used another set of equations:

\[(+ \downarrow) \Sigma M_x = 0; \Rightarrow (60)(6) + (48)(12) - (R_{dy})(18) = 0 \Rightarrow R_{dy} = 52^k \uparrow \]
\[(+ \uparrow) \Sigma M_y = 0; \Rightarrow (R_{ay})(18) - (60)(12) - (48)(6) = 0 \Rightarrow R_{ay} = 56^k \downarrow \]

Check:

\[(+ \uparrow) \Sigma F_y = 0; \Rightarrow 56 - 52 - 60 - 48 = 0 \sqrt{\text{ft}} \]

Example 2-3: Parabolic Load

Determine the reactions of a simply supported beam of length \(L \) subjected to a parabolic load \(w = w_0 \left(\frac{x}{L} \right)^2 \).
2.6 Examples

Solution:
Since there are no axial forces, there are two unknowns and two equations of equilibrium. Considering an infinitesimal element of length dx, weight dW, and moment dM:

\[(+\omega)\sum M_a = 0; \quad \int_{x=0}^{x=L} \frac{w_0 x}{L} dx - (R_b) = 0 \]

\[(+w)\sum dW = 0; \quad \int_{x=0}^{x=L} w_0 \frac{x}{L} dx \]

\[\Rightarrow R_b = \frac{M}{L} = \frac{w_0}{4} \quad \text{or} \quad \frac{1}{4}w_0L \]

\[(+1)\sum F_y = 0; \quad R_a + \frac{1}{4}w_0L - \int_{x=0}^{x=L} w_0 \frac{x}{L} dx = 0 \]

\[\Rightarrow R_a = \frac{w_0}{L^2} \cdot \frac{L^2}{3} - \frac{1}{4}w_0L = \frac{1}{12}w_0L \]

Example 2-4: Three Span Beam

Determine the reactions of the following three spans beam

\[\begin{align*}
&\text{Solution:} \\
&\text{We have 4 unknowns } (R_{ax}, R_{ay}, R_{cy}, \text{ and } R_{dy}), \text{ three equations of equilibrium and one equation of condition } (\Sigma M_b = 0), \text{ thus the structure is statically determinate.}
\end{align*} \]
1. Isolating ab:

\[\sum M_{ab} = 0; \ (9)(R_{ay}) - (40)(5) = 0 \quad \Rightarrow R_{ay} = 22.2 \text{ k} \]
\[(+) \sum M_a = 0; \ (40)(4) - (S)(9) = 0 \quad \Rightarrow S = 17.7 \text{ k} \]
\[\sum F_x = 0; \quad \Rightarrow R_{ax} = 30 \text{ k} \]

2. Isolating bd:

\[(+) \sum M_d = 0; \ - (17.7)(18) - (40)(15) - (4)(8)(8) - (30)(2) + R_{cy}(12) = 0 \]
\[\Rightarrow R_{cy} = \frac{1236}{12} = 103 \text{ k} \]
\[(+) \sum M_c = 0; \ - (17.7)(6) - (40)(3) + (4)(8)(4) + (30)(10) - R_{dy}(12) = 0 \]
\[\Rightarrow R_{dy} = \frac{201.3}{12} = 16.7 \text{ k} \]

3. Check

\[\sum F_y = 0; \ \Rightarrow 22.2 - 40 - 40 + 103 - 32 - 30 + 16.7 = 0 \]

Example 2-5: Three Hinged Gable Frame

The three-hinged gable frames spaced at 30 ft. on center. Determine the reactions components on the frame due to: 1) Roof dead load, of 20 psf of roof area; 2) Snow load, of 30 psf of horizontal projection; 3) Wind load of 15 psf of vertical projection. Determine the critical design values for the vertical and horizontal reactions.
Solution:

1. Due to symmetry, we will consider only the dead load on one side of the frame.
2. Due to symmetry, there is no vertical force transmitted by the hinge for snow and dead load.
3. Roof dead load per frame is
 \[DL = (20) \text{ psf}(30) \text{ ft} \left(\sqrt{30^2 + 15^2} \right) \text{ ft} \frac{1}{1,000} \text{ lbs/k} = 20.2 \text{ k} \]
4. Snow load per frame is
 \[SL = (30) \text{ psf}(30) \text{ ft}(30) \text{ ft} \frac{1}{1,000} \text{ lbs/k} = 27. \text{ k} \]
5. Wind load per frame (ignoring the suction) is
 \[WL = (15) \text{ psf}(30) \text{ ft}(35) \text{ ft} \frac{1}{1,000} \text{ lbs/k} = 15.75 \text{ k} \]
6. There are 4 reactions, 3 equations of equilibrium and one equation of condition ⇒ statically determinate.
7. The horizontal reaction \(H \) due to a vertical load \(V \) at midspan of the roof, is obtained by taking moment with respect to the hinge
 \[(+ \bullet) \Sigma M_C = 0; \quad 15(V) - 30(V) + 35(H) = 0 \quad \Rightarrow \quad H = \frac{15V}{35} = .429V \]
 Substituting for roof dead and snow load we obtain
 \[V_A^{DL} = V_B^{DL} = 20.2 \text{ k} \]
 \[H_A^{DL} = H_B^{DL} = (.429)(20.2) = 8.66 \text{ k} \]
 \[V_A^S = V_B^S = \quad \text{27. k} \]
 \[H_A^S = H_B^S = (429)(27.) = 11.58 \text{ k} \]
8. The reactions due to wind load are
 \[(+ \bullet) \Sigma M_A = 0; \quad (15.75)(\frac{20+15}{2}) - V_B^{WL}(60) = 0 \quad \Rightarrow \quad V_B^{WL} = 4.60 \text{ k} \]
 \[(+ \bullet) \Sigma M_C = 0; \quad H_B^{WL}(35) - (4.6)(30) = 0 \quad \Rightarrow \quad H_B^{WL} = 3.95 \text{ k} \]
 \[(+ \bullet) \Sigma F_x = 0; \quad 15.75 - 3.95 - H_A^{WL} = 0 \quad \Rightarrow \quad H_A^{WL} = 11.80 \text{ k} \]
 \[(+ \bullet) \Sigma F_y = 0; \quad V_W^B - V_W^A = 0 \quad \Rightarrow \quad V_W^A = -4.60 \text{ k} \]
9. Thus supports should be designed for

\[
\begin{align*}
H &= 8.66 \text{k} + 11.58 \text{k} + 3.95 \text{k} = 24.19 \text{k} \\
V &= 20.7 \text{k} + 27.0 \text{k} + 4.60 \text{k} = 52.3 \text{k}
\end{align*}
\]

Example 2-6: Inclined Supports

Determine the reactions of the following two spans beam resting on inclined supports.

\[
\begin{align*}
\text{Solution:} & \quad \text{Apriori we would identify 5 reactions, however we do have 2 equations of conditions (one at each inclined support), thus with three equations of equilibrium, we have a statically determinate system.} \\
& \quad (\sum M_b = 0) \Rightarrow 20R_{ay} - (40)(12) - (30)(6) + (44.72)(6) - (R_{cy})(12) = 0 \\
& \quad (\sum F_x = 0) \Rightarrow \frac{3}{4}R_{ax} - 22.36 - \frac{4}{3}R_{cy} = 0
\end{align*}
\]

Solving for those two equations:

\[
\begin{bmatrix}
20 & -12 \\
0.5625 & -1
\end{bmatrix}
\begin{bmatrix}
R_{ax} \\
R_{cy}
\end{bmatrix}
=
\begin{bmatrix}
391.68 \\
16.77
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
R_{ax} \\
R_{cy}
\end{bmatrix}
=
\begin{bmatrix}
14.37 \text{k} \\
-8.69 \text{k}
\end{bmatrix}
\]

The horizontal components of the reactions at a and c are

\[
\begin{align*}
R_{ax} &= \frac{3}{4}14.37 = 10.78 \text{k} \\
R_{cy} &= \frac{4}{3}8.69 = -11.59 \text{k}
\end{align*}
\]

Finally we solve for \(R_{by} \)

\[
(\sum M_a = 0) \Rightarrow (40)(8) + (30)(14) - (R_{by})(20) + (44.72)(26) + (8.69)(32) = 0
\]

\[
\Rightarrow R_{by} = 109.04 \text{k}
\]

We check our results

\[
\begin{align*}
(\sum F_y = 0) & \quad 14.37 - 40 - 30 + 109.04 - 44.72 - 8.69 = 0 \\
(\sum F_x = 0) & \quad 10.78 - 22.36 + 11.59 = 0
\end{align*}
\]
2.7 Arches

31 See Section ??.
Chapter 3

TRUSSES

3.1 Introduction

3.1.1 Assumptions

1. Cables and trusses are 2D or 3D structures composed of an assemblage of simple one dimensional components which transfer only axial forces along their axis.

2. Cables can carry only tensile forces, trusses can carry tensile and compressive forces.

3. Cables tend to be flexible, and hence, they tend to oscillate and therefore must be stiffened.

4. Trusses are extensively used for bridges, long span roofs, electric tower, space structures.

5. For trusses, it is assumed that
 1. Bars are pin-connected
 2. Joints are frictionless hinges
 3. Loads are applied at the joints only.

6. A truss would typically be composed of triangular elements with the bars on the upper chord under compression and those along the lower chord under tension. Depending on the orientation of the diagonals, they can be under either tension or compression.

7. Fig. 3.1 illustrates some of the most common types of trusses.

8. It can be easily determined that in a Pratt truss, the diagonal members are under tension, while in a Howe truss, they are in compression. Thus, the Pratt design is an excellent choice for steel whose members are slender and long diagonal member being in tension are not prone to buckling. The vertical members are less likely to buckle because they are shorter. On the other hand the Howe truss is often preferred for for heavy timber trusses.

9. In a truss analysis or design, we seek to determine the internal force along each member, Fig. 3.2

3.1.2 Basic Relations

Sign Convention: Tension positive, compression negative. On a truss the axial forces are indicated as forces acting on the joints.

Stress-Force: \(\sigma = \frac{P}{A} \)

Stress-Strain: \(\sigma = E\varepsilon \)

\(^1\)In practice the bars are riveted, bolted, or welded directly to each other or to gusset plates, thus the bars are not free to rotate and so-called secondary bending moments are developed at the bars. Another source of secondary moments is the dead weight of the element.
Figure 3.1: Types of Trusses

Figure 3.2: Bridge Truss
3.2 Trusses

3.2.1 Determinacy and Stability

Trusses are **statically determinate** when all the bar forces can be determined from the equations of **statics** alone. Otherwise the truss is **statically indeterminate**.

A truss may be statically/externally determinate or indeterminate with respect to the reactions (more than 3 or 6 reactions in 2D or 3D problems respectively).

A truss may be internally determinate or indeterminate, Table 3.1.

If we refer to \(j \) as the number of joints, \(R \) the number of reactions and \(m \) the number of members, then we would have a total of \(m + R \) unknowns and \(2j \) (or \(3j \)) equations of statics (2D or 3D at each joint). If we do not have enough equations of statics then the problem is indeterminate, if we have too many equations then the truss is unstable, Table 3.1.

<table>
<thead>
<tr>
<th></th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Indeterminacy</td>
<td>(R > 3)</td>
<td>(R > 6)</td>
</tr>
<tr>
<td>External</td>
<td>(m + R > 2j)</td>
<td>(m + R > 3j)</td>
</tr>
<tr>
<td>Internal</td>
<td>(m + R < 2j)</td>
<td>(m + R < 3j)</td>
</tr>
</tbody>
</table>

Table 3.1: Static Determinacy and Stability of Trusses

If \(m < 2j - 3 \) (in 2D) the truss is not internally stable, and it will not remain a rigid body when it is detached from its supports. However, when attached to the supports, the truss will be rigid.

Since each joint is pin-connected, we can apply \(\Sigma M = 0 \) at each one of them. Furthermore, summation of forces applied on a joint must be equal to zero.

For 2D trusses the external equations of equilibrium which can be used to determine the reactions are \(\Sigma F_X = 0 \), \(\Sigma F_Y = 0 \) and \(\Sigma M_Z = 0 \). For 3D trusses the available equations are \(\Sigma F_X = 0 \), \(\Sigma F_Y = 0 \), \(\Sigma F_Z = 0 \) and \(\Sigma M_X = 0 \), \(\Sigma M_Y = 0 \), \(\Sigma M_Z = 0 \).

For a 2D truss we have 2 equations of equilibrium \(\Sigma F_X = 0 \) and \(\Sigma F_Y = 0 \) which can be applied at each joint. For 3D trusses we would have three equations: \(\Sigma F_X = 0 \), \(\Sigma F_Y = 0 \) and \(\Sigma F_Z = 0 \).

Fig. 3.3 shows a truss with 4 reactions, thus it is externally indeterminate. This truss has 6 joints \((j = 6)\), 4 reactions \((R = 4)\) and 9 members \((m = 9)\). Thus we have a total of \(m + R = 9 + 4 = 13 \) unknowns and \(2 \times j = 2 \times 6 = 12 \) equations of equilibrium, thus the truss is statically indeterminate.

There are two methods of analysis for statically determinate trusses

1. The Method of joints
2. The Method of sections

3.2.2 Method of Joints

The method of joints can be summarized as follows

1. Determine if the structure is statically determinate
2. Compute all reactions
3. Sketch a free body diagram showing all joint loads (including reactions).

4. For each joint, and starting with the loaded ones, apply the appropriate equations of equilibrium (ΣF_x and ΣF_y in 2D; ΣF_x, ΣF_y and ΣF_z in 3D).

5. Because truss elements can only carry axial forces, the resultant force ($\vec{F} = \vec{F}_x + \vec{F}_y$) must be along the member, Fig. 3.4.

\[
\frac{F}{L} = \frac{F_x}{L_x} = \frac{F_y}{L_y}
\] (3.1)

Always keep track of the x and y components of a member force (F_x, F_y), as those might be needed later on when considering the force equilibrium at another joint to which the member is connected.

21 In truss analysis, there is no sign convention. A member is assumed to be under tension (or compression). If after analysis, the force is found to be negative, then this would imply that the wrong assumption was made, and that the member should have been under compression (or tension).

22 On a free body diagram, the internal forces are represented by arrow acting on the joints and not as end forces on the element itself. That is for tension, the arrow is pointing away from the joint, and for compression toward the joint, Fig. 3.5.
Example 3-1: Truss, Method of Joints

Using the method of joints, analyze the following truss

Solution:

1. $R = 3$, $m = 13$, $2j = 16$, and $m + R = 2j\sqrt{ }$

2. We compute the reactions

$(+ \gamma) \Sigma M_E = 0; \Rightarrow (20 + 12)(3)(24) + (40 + 8)(2)(24) + (40)(24) - R_{Ay}(4)(24) = 0$

$\Rightarrow R_{Ay} = \boxed{58 \text{ k}}$

$(+ \gamma) \Sigma F_y = 0; \Rightarrow 20 + 12 + 40 + 8 + 40 - 58 - R_{Ey} = 0$

$\Rightarrow R_{Ey} = \boxed{62 \text{ k}}$
3. Consider each joint separately:

Node A: Clearly AH is under compression, and AB under tension.

\[
\begin{align*}
(+ \uparrow) \Sigma F_y &= 0; \quad \Rightarrow -F_{AH_y} + 58 = 0 \\
F_{AH_y} &= \frac{l_y}{L_y}(F_{AH_y}) \\
l_y &= 32 \\
\Rightarrow F_{AH} &= \frac{40}{32}(58) = 72.5 \text{ k Compression} \\
(+ \downarrow) \Sigma F_x &= 0; \quad \Rightarrow -F_{AH_x} + F_{AB} = 0 \\
F_{AB} &= \frac{l_x}{L_y}(F_{AH_y}) = \frac{24}{32}(58) = 43.5 \text{ k Tension}
\end{align*}
\]

Node B:

\[
\begin{align*}
(+ \leftarrow) \Sigma F_x &= 0; \quad \Rightarrow F_{BC} = 43.5 \text{ k Tension} \\
(+ \uparrow) \Sigma F_y &= 0; \quad \Rightarrow F_{BH} = 20 \text{ k Tension}
\end{align*}
\]

Node H:

\[
\begin{align*}
(+ \leftarrow) \Sigma F_x &= 0; \quad \Rightarrow F_{AH_x} - F_{HC_x} - F_{HG_x} = 0 \\
&= \frac{43.5 - \sqrt{\frac{24}{32} + \frac{32}{10}}}{\sqrt{\frac{24}{32} + \frac{32}{10}}}(F_{HG}) = 0 \\
(+ \downarrow) \Sigma F_y &= 0; \quad \Rightarrow F_{AH_y} + F_{HC_y} - 12 - F_{HG_y} - 20 = 0 \\
&= \frac{58 + \frac{32}{\sqrt{\frac{24}{32} + \frac{32}{10}}}}{\sqrt{\frac{24}{32} + \frac{32}{10}}}(F_{HG}) - 20 = 0
\end{align*}
\]

This can be most conveniently written as

\[
\begin{bmatrix}
0.6 & 0.921 \\
-0.8 & 0.385
\end{bmatrix}
\begin{bmatrix}
F_{HC} \\
F_{HG}
\end{bmatrix}
= \begin{bmatrix}
-7.5 \\
52
\end{bmatrix}
\]

Solving we obtain

\[
\begin{align*}
F_{HC} &= -7.5 \text{ k Tension} \\
F_{HG} &= 52 \text{ k Compression}
\end{align*}
\]
3.2 Trusses

Node E:

\[\Sigma F_y = 0; \Rightarrow F_{EF_y} = 62 \Rightarrow F_{EF} = \frac{\sqrt{24^2 + 32^2}}{62} = 77.5 \text{ k} \]

\[\Sigma F_x = 0; \Rightarrow F_{ED} = F_{EF_x} \Rightarrow F_{ED} = \frac{24}{32} (F_{EF_y}) = \frac{3}{4} (62) = 46.5 \text{ k} \]

The results of this analysis are summarized below

4. We could check our calculations by verifying equilibrium of forces at a node not previously used, such as D

\[\text{3.2.2.1 Matrix Method} \]

This is essentially the method of joints cast in matrix form\(^2\).

We seek to determine the Statics Matrix \([B]\) such that

\[\begin{bmatrix} B_{FF} & B_{FR} \\ B_{RF} & B_{RR} \end{bmatrix} \begin{bmatrix} F \\ \frac{R}{P} \end{bmatrix} = \begin{bmatrix} P \\ 0 \end{bmatrix} \tag{3.3} \]

This method can be summarized as follows

1. Select a coordinate system

2. Number the joints and the elements separately

\(^2\)Writing a computer program for this method, would be an acceptable project.
3. Assume
(a) All member forces to be positive (i.e. tension)
(b) All reactions to be positive

4. Compute the direction cosines at each node \(j \) and for each element \(e \), Fig. 3.6

\[
\begin{align*}
\alpha^e_j &= \frac{L_x}{L} \\
\beta^e_j &= \frac{L_y}{L}
\end{align*}
\]

5. Write the two equations of equilibrium at each joint \(j \) in terms of the unknowns (member forces and reactions), Fig. 3.7

\[
\begin{align*}
(+ \Rightarrow) \sum F_x &= 0; \quad \Rightarrow \sum_{e=1}^{\# of elements} \alpha^e_j F_e + R_{x_j} + P_{x_j} = 0 \\
(+ \Rightarrow) \sum F_y &= 0; \quad \Rightarrow \sum_{e=1}^{\# of elements} \beta^e_j F_e + R_{y_j} + P_{y_j} = 0
\end{align*}
\]

6. Invert the matrix to compute \(\{F\} \) and \(\{R\} \)

The advantage of this method, is that once the \([B] \) matrix has been inverted, we can readily reanalyze the same structure for different load cases. With the new design codes in which dead loads and live loads are separately factored (Chapter ??), this method can save substantial reanalysis effort. Furthermore, when deflections are determined by the virtual force method (Chapter 7), two analysis with two different loads are required.

This method may be the only one appropriate to analyze statically determinate trusses which solution’s defy the previous two methods, Fig. 3.8.

Element \(e \) connecting joint \(i \) to \(j \) will have \(\alpha^e_i = -\alpha^e_j \), and \(\beta^e_i = -\beta^e_j \)

The matrix \([B]\) will have \(2j \) rows and \(m + r \) columns. It can only be inverted if \(ti \) is symmetric (i.e. \(2j = m + r \), statically determinate).

An algorithm to implement this method in simple computer programs:
3.2 Trusses

Figure 3.8: Complex Statically Determinate Truss

1. Prepare input data:

(a) Nodal information:

<table>
<thead>
<tr>
<th>Node</th>
<th>x(1)</th>
<th>x(2)</th>
<th>P(1)</th>
<th>P(2)</th>
<th>R(1)</th>
<th>R(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5.</td>
<td>5.</td>
<td>0.</td>
<td>-10.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

where x(1), x(2), P(1), and P(2) are the x and y coordinates; the x and y component of applied nodal load. R(1), R(2) correspond to the x and y boundary conditions, they will be set to 1 if there is a corresponding reaction, and 0 otherwise.

(b) Element Connectivity

<table>
<thead>
<tr>
<th>Element</th>
<th>Node(1)</th>
<th>Node(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Determine the size of the matrix (2 times the number of joints) and initialize a square matrix of this size to zero.

3. Assemble the first submatrix of the Statics matrix

(a) Loop over each element (e), determine L_i^x, L_i^y (as measured from the first node), $L = \frac{L_i^x}{L}$, $\beta_i^e = \frac{L_i^y}{L}$, $\alpha_i^e = -\alpha_i^x$, $\beta_j^e = -\beta_j^x$, where i and j are the end nodes of element e.

(b) Store α_i^e in row $2i - 1$ column e, β_i^e in row $2i - 1$ column e, α_j^e in row $2j - 1$ column e, β_j^e in row $2j$ column e.

4. Loop over each node:

(a) Store R_x^i (reaction boundary condition for node i along x) in row $2i - 1$ column $e + 2i - 1$. Similarly, store R_y^i (reaction boundary condition for node i along y) in row $2i$ column $e + 2i$.

(b) Store P_x^i (Load at node i along x) in vector P row $2i - 1$, similarly, store P_y^i in row $2i$.

5. Invert the matrix B, multiply it with the load vector P and solve for the unknown member forces and reactions.

```matlab
% Initialize the statics matrix
% b(1:2*npoin,1:2*npoin)=0.;
```
% Determine direction cosines and insert them in b
%
for ielem=1:nelem
 nod1=lnods(ielem,1);
 nod2=lnods(ielem,2);
 lx=coord(nod2,1)-coord(nod1,1);
 ly=coord(nod2,2)-coord(nod1,2);
 l_elem(ielem)=
 alpha_i=...
 beta_i=...
 b(...,...)=...;
 b(...,...)=...;
 alpha_j=...
 beta_j=...
 b(...,...)=...
 b(...,...)=...
end
%
% Boundary conditions
%
for inode=1:npoin
 for ibc=1:2
 if id(inode,ibc)==1
 nbc=nbc+1;
 b(...,...)=1.;
 end
 end
end

Example 3-2: Truss I, Matrix Method

Determine all member forces for the following truss

Solution:

1. We first determine the directions cosines
2. Next we write the equations of equilibrium

\[
\begin{align*}
\text{Node 1:} & \quad \Sigma F_x = 0 \quad \Sigma F_y = 0 \\
\text{Node 2:} & \quad \Sigma F_x = 0 \quad \Sigma F_y = 0 \\
\text{Node 3:} & \quad \Sigma F_x = 0 \quad \Sigma F_y = 0
\end{align*}
\]

Inverting \([B]\) we obtain from \(F = [B]^{-1}P\)

\[
\begin{pmatrix}
F_1 \\
F_2 \\
F_3 \\
R_{1x} \\
R_{1y} \\
R_{2x}
\end{pmatrix}
= \begin{pmatrix}
5 \\
-7.07 \\
-7.07 \\
0 \\
5 \\
5
\end{pmatrix}
\]

Example 3-3: Truss II, Matrix Method

Set up the statics matrix for the truss of Example 3-1 using the matrix method.

Solution:

First we number the joints and the elements as shown below.
Then we determine the direction cosines

$$\begin{vmatrix} 24 \\ \sqrt{24^2 + 10^2} \\ \sqrt{24^2 + 10^2} \\ \sqrt{24^2 + 10^2} \end{vmatrix} = \frac{3}{6} = 0.6$$

$$\begin{vmatrix} 10 \\ \sqrt{24^2 + 10^2} \\ \sqrt{24^2 + 10^2} \end{vmatrix} = \frac{1}{5} = 0.8$$

$$\begin{vmatrix} 24 \\ \sqrt{24^2 + 10^2} \end{vmatrix} = \frac{3}{6} = 0.38$$

$$\begin{vmatrix} 24 \end{vmatrix} = \frac{3}{6} = 0.92$$

Using Mathematica we would have

\[b = \begin{Bmatrix}
1, 0, 0, 0, 0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, -1, 0, 0, 0, 0, 0, 0, 0, -0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0
\end{Bmatrix}
\]

\[p = \begin{Bmatrix}
0, 0, 0, -20, 0, -40, 0, -40, 0, 0, 0, 0, 0, 0, -8, 0, -12
\end{Bmatrix}
\]

\[m = \text{Inverse}[b].p
\]

And the result will be
which correspond to the unknown element internal forces and external reactions.

3.2.3 Method of Sections

When only forces in selected members (away from loaded joints) is to be determined, this method should be used.

This method can be summarized as follows:

1. “Cut” the truss into two substructures by an imaginary line (not necessarily straight) such that it will at least intersect the member for which force is to be determined.
2. Consider either one of the two substructures as the free body.
3. Each substructure must remain in equilibrium. Apply the equations of equilibrium:
 (a) Summation of moments about a particular point (usually the intersection of 2 cut members) would permit the determination of other member forces
 (b) Summation of forces is usually used to determine forces in inclined members

Example 3-4: Truss, Method of Sections

Determine F_{BC} and F_{HG} in the previous example.

Solution:
Cutting through members HG, HC and BC, we first take the summation of forces with respect to H:
\((+\bullet) \Sigma M_H = 0 \Rightarrow R_{Ab}(24) - F_{BC}(32) = 0\)

\[
F_{BC} = \frac{24}{32} (58) = 43.5 \text{ k Tension}
\]

\((+\bullet) \Sigma M_C = 0; \Rightarrow (58)(24)(2) - (20 + 12)(24) - F_{HGx}(32) - F_{HGay}(24) = 0\)

\[
2770 - 768 - (32)(F_{HG})\frac{24}{\sqrt{24^2 + 10^2}} - (24)(F_{HG})\frac{10}{\sqrt{24^2 + 10^2}} = 0
\]

\[
2,000 - (29.5)F_{HG} - (9.2)F_{HG} = 0
\]

\[
\Rightarrow F_{HG} = 52 \text{ k Compression}
\]

3.3 Case Study: Stadium

![Figure 3.9: Florence Stadium, Pier Luigi Nervi (?)](image)

Victor Saouma Structural Analysis
3.3 Case Study: Stadium

Figure 3.10: Florence Stadium, Pier Luigi Nervi (?)
Chapter 4

CABLES

4.1 Funicular Polygons

1 A cable is a slender flexible member with zero or negligible flexural stiffness, thus it can only transmit tensile forces\(^1\).

2 The tensile force at any point acts in the direction of the tangent to the cable (as any other component will cause bending).

3 Its strength stems from its ability to undergo extensive changes in slope at the point of load application.

4 Cables resist vertical forces by undergoing sag \((h)\) and thus developing tensile forces. The horizontal component of this force \((H)\) is called thrust.

5 The distance between the cable supports is called the chord.

6 The sag to span ratio is denoted by

\[
r = \frac{h}{T} \quad (4.1)
\]

7 When a set of concentrated loads is applied to a cable of negligible weight, then the cable deflects into a series of linear segments and the resulting shape is called the funicular polygon.

8 If a cable supports vertical forces only, then the horizontal component \(H\) of the cable tension \(T\) remains constant.

\(^1\)Due to the zero flexural rigidity it will buckle under axial compressive forces.

Example 4-1: Funicular Cable Structure

Determine the reactions and the tensions for the cable structure shown below.
Solution:
We have 4 external reactions, however the horizontal ones are equal and we can use any one of a number of equations of conditions in addition to the three equations of equilibrium. First, we solve for A_y, D_y and $H = A_x = D_x$. For this problem we could use the following 3 equations of static equilibrium $\Sigma F_x = \Sigma F_y = \Sigma M = 0$, however since we do not have any force in the x direction, the second equation is of no avail. Instead we will consider the following set $\Sigma F_y = \Sigma M_A = \Sigma M_D = 0$

1. First we solve for D_y

$$(+) \Sigma M_A = 0; \Rightarrow 12(30) + 6(70) - D_y(100) = 0 \Rightarrow D_y = 7.8 \text{ k} \tag{4.2}$$

2. Then we solve for A_y

$$(+) \Sigma F_y = 0; \Rightarrow A_y - 12 - 6 + 7.8 = 0 \Rightarrow A_y = 10.2 \text{ k} \tag{4.3}$$

3. Solve for the horizontal force

$$(+) \Sigma M_B = 0; \Rightarrow A_y(30) - H(6) = 0 \Rightarrow H = 51 \text{ k} \tag{4.4}$$

4. Now we can solve for the sag at point C

$$(+) \Sigma M_C = 0 \Rightarrow -D_y(30) + H(h_c) = 0 \Rightarrow h_c = \frac{30D_y}{H} = \frac{30(7.8)}{51} = 4.6 \text{ ft} \tag{4.5}$$

5. We now solve for the cable internal forces or tractions in this case

For T_{AB}:

$$\tan \theta_A = \frac{6}{30} = 0.200 \Rightarrow \theta_A = 11.31 \text{ deg} \tag{4.6-a}$$

$$= \frac{H}{\cos \theta_A} = \frac{51}{0.981} = 51.98 \text{ k} \tag{4.6-b}$$

For T_{BC}:

$$\tan \theta_B = \frac{6 - 4.6}{40} = 0.035 \Rightarrow \theta_B = 2 \text{ deg} \tag{4.6-c}$$

$$= \frac{H}{\cos \theta_B} = \frac{51}{0.999} = 51.03 \text{ k} \tag{4.6-d}$$

For T_{CD}:

$$\tan \theta_C = \frac{4.6}{30} = 0.153 \Rightarrow \theta_C = 8.7 \text{ deg} \tag{4.6-e}$$

$$= \frac{H}{\cos \theta_C} = \frac{51}{0.988} = 51.62 \text{ k} \tag{4.6-f}$$
4.2 Uniform Load

4.2.1 qdx; Parabola

Whereas the forces in a cable can be determined from statics alone, its configuration must be derived from its deformation. Let us consider a cable with distributed load $p(x)$ per unit horizontal projection of the cable length2. An infinitesimal portion of that cable can be assumed to be a straight line, Fig. 4.1 and in the absence of any horizontal load we have $H =$constant. Summation of the vertical forces yields

$$ (+\downarrow) \sum F_y = 0 \Rightarrow -V + qdx + (V + dV) = 0 \quad (4.7-a)$$

$$ dV + qdx = 0 \quad (4.7-b) $$

where V is the vertical component of the cable tension at x3. Because the cable must be tangent to T, we have

$$ \tan \theta = \frac{V}{H} \quad (4.8) $$

Substituting into Eq. 4.7-b yields

$$ d(H \tan \theta) + qdx = 0 \quad (4.9) $$

or

$$ -\frac{d}{dx} (H \tan \theta) = q \quad (4.10) $$

Since H is constant (no horizontal load is applied), this last equation can be rewritten as

$$ -H \frac{d}{dx} (\tan \theta) = q \quad (4.11) $$

Written in terms of the vertical displacement y, $\tan \theta = \frac{dy}{dx}$ which when substituted in Eq. 4.11 yields the governing equation for cables

$$ \frac{d^2 y}{dx^2} = -\frac{q}{H} \quad (4.12) $$

2Thus neglecting the weight of the cable

3Note that if the cable was subjected to its own weight then we would have qds instead of pdx.

Figure 4.1: Cable Structure Subjected to $q(x)$
For a cable subjected to a uniform load \(p \), we can determine its shape by double integration of Eq. 4.12

\[
-Hy' = qx + C_1 \quad (4.13-a)
\]

\[
-Hy = qx^2/2 + C_1 x + C_2 \quad (4.13-b)
\]

To solve for \(C_1 \) and \(C_2 \) this last equation must satisfy the boundary conditions: \(y = 0 \) at \(x = 0 \) and at \(x = L \Rightarrow C_2 = 0 \) and \(C_1 = -\frac{qL^2}{2} \). Thus

\[
y = \frac{q}{2} x (L - x) \quad (4.14)
\]

This equation gives the shape \(y(x) \) in terms of the horizontal force \(H \), it can be rewritten in terms of the maximum sag \(h \) which occurs at midspan, hence at \(x = \frac{L}{2} \) we would have

\[
Hh = \frac{qL^2}{8} \quad (4.15)
\]

This relation clearly shows that the horizontal force is inversely proportional to the sag \(h \), as \(h \downarrow \; \Rightarrow \; H \uparrow \). Furthermore, this equation can be rewritten as

\[
\frac{qL}{H} = \frac{8h}{L} \quad (4.16)
\]

and combining this equation with Eq. 4.1 we obtain

\[
\frac{qL}{H} = 8r \quad (4.17)
\]

Combining Eq. 4.14 and 4.15 we obtain

\[
y = \frac{4hx}{L^2} (L - x) \quad (4.18)
\]

If we shift the origin to midspan, and reverse \(y \), then

\[
y = \frac{4h}{L^2} x^2 \quad (4.19)
\]

Thus the cable assumes a parabolic shape (as the moment diagram of the applied load).

The maximum tension occurs at the support where the vertical component is equal to \(V = \frac{qL}{2} \) and the horizontal one to \(H \), thus

\[
T_{\text{max}} = \sqrt{V^2 + H^2} = \sqrt{\left(\frac{qL}{2}\right)^2 + H^2} = H \sqrt{1 + \left(\frac{qL/2}{H}\right)^2} \quad (4.20)
\]

Combining this with Eq. 4.17 we obtain

\[
T_{\text{max}} = H \sqrt{1 + 16r^2} \approx H(1 + 8r^2) \quad (4.21)
\]
4.2 Uniform Load

4.2.2 \(qds; \text{Catenary}

Let us consider now the case where the cable is subjected to its own weight (plus ice and wind if any). We would have to replace \(qdx\) by \(qds\) in Eq. 4.7-b

\[
dV + qds = 0
\]

The differential equation for this new case will be derived exactly as before, but we substitute \(qdx\) by \(qds\), thus Eq. 4.12 becomes

\[
\frac{d^2y}{dx^2} = -\frac{q}{H} ds
\]

But \(ds^2 = dx^2 + dy^2\), hence:

\[
\frac{d^2y}{dx^2} = -\frac{q}{H} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}
\]

solution of this differential equation is considerably more complicated than for a parabola.

We let \(\frac{dy}{dx} = p\), then

\[
\frac{dp}{dx} = -\frac{q}{H} \sqrt{1 + p^2}
\]

rearranging

\[
\int \frac{dp}{\sqrt{1 + p^2}} = -\int \frac{q}{H} dx
\]

From Mathematica (or handbooks), the left hand side is equal to

\[
\int \frac{dp}{\sqrt{1 + p^2}} = \log_e (p + \sqrt{1 + p^2})
\]

Substituting, we obtain

\[
\log_e (p + \sqrt{1 + p^2}) = -\frac{q}{H} + C_1
\]

\[
p + \sqrt{1 + p^2} = e^A
\]

\[
\sqrt{1 + p^2} = -p + e^A
\]

\[
1 + p^2 = p^2 - 2pe^A + e^{2A}
\]

\[
p = \frac{e^{2A} - 1}{2e^A} = \frac{e^A - e^{-A}}{2} = \sinh A
\]

\[
\frac{dy}{dx} = \sinh \left(-\frac{q}{H} + C_1\right)
\]

\[
y = \int \sinh \left(-\frac{q}{H} + C_1\right) dx = -\frac{H}{q} \cosh \left(-\frac{q}{H} + C_1\right) + C_2
\]

To determine the two constants, we set

\[
\frac{dy}{dx} = 0 \text{ at } x = \frac{L}{2}
\]

\[
\frac{dy}{dx} = -\frac{q}{H} \frac{H}{q} \sinh \left(-\frac{q}{H} + C_1\right)
\]

\[
\Rightarrow 0 = \sinh \left(-\frac{q}{H} + C_1\right) \Rightarrow C_1 = \frac{q}{H} \frac{L}{2}
\]

\[
\Rightarrow y = -\frac{H}{q} \cosh \left[\frac{q}{H} \left(\frac{L}{2} - x\right)\right] + C_2
\]
At midspan, the sag is equal to \(h \)

\[
\begin{align*}
 h &= -\frac{H}{q} \cosh \left(\frac{q}{H} \left(\frac{L}{2} - \frac{L}{2} \right) \right) + C_2 \\
 C_2 &= h + \frac{H}{q}
\end{align*}
\]

If we move the origin at the lowest point along the cable at \(x' = x - L/2 \) and \(y' = h - y \), we obtain

\[
\frac{q}{H} y = \cosh \left(\frac{q}{H} x \right) - 1
\]

This equation is to be contrasted with 4.19, we can rewrite those two equations as:

\[
\begin{align*}
 \frac{q}{H} y &= \frac{1}{2} \left(\frac{q}{H} x \right)^2 & \text{Parabola} \\
 \frac{q}{H} y &= \cosh \left(\frac{q}{H} x \right) - 1 & \text{Catenary}
\end{align*}
\]

The hyperbolic cosine of the catenary can be expanded into a Taylor power series as

\[
\frac{q}{H} y = \frac{1}{2} \left(\frac{q}{H} x \right)^2 + \frac{1}{24} \left(\frac{q}{H} x \right)^4 + \frac{1}{720} \left(\frac{q}{H} x \right)^6 + \ldots
\]

The first term of this development is identical as the formula for the parabola, and the other terms constitute the difference between the two. The difference becomes significant only for large \(qx/H \), that is for large sags in comparison with the span, Fig. 4.3.

![Figure 4.2: Catenary versus Parabola Cable Structures](image)

4.2.2.1 Historical Note

It should be mentioned that solution of this problem constituted one of the major mathematical/Mechanics challenges of the early 18th century. Around 1684, differential and integral calculus took their first effective forms, and those powerful new techniques allowed scientists to tackle complex problems for the first time, (Penvenuto 1991). One of these problems was the solution to the catenary problem as presented by Jakob Bernouilli. Immediately thereafter, Leibniz presented a solution based on infinitesimal calculus, another one was presented by Huygens. Finally, the brother of the challenger, Johann Bernoulli did also present a solution.
Huygens solution was complex and relied on geometrical arguments. The one of Leibniz was elegant and correct \(y/a = (b^2/a + b^2/a) / 2 \) (we recognize Eq. 4.31 albeit written in slightly different form, Fig. 4.3. Finally, Bernoulli presented two correct solution, and in his solution he did for the first time express equations of equilibrium in differential form.

Example 4-2: Design of Suspension Bridge

Design the following 4 lanes suspension bridge by selecting the cable diameters assuming an allowable cable strength \(\sigma_{all} \) of 190 ksi. The bases of the tower are hinged in order to avoid large bending moments.

The total dead load is estimated at 200 psf. Assume a sag to span ratio of 1/5.

Solution:

1. The dead load carried by each cable will be one half the total dead load or \(p_1 = \frac{1}{2} (200) \text{ psf}(50) \text{ ft} \frac{1}{1,000} = 5.0 \text{ k/ft} \)
2. Using the HS 20 truck, the uniform additional load per cable is
\[p_2 = (2) \text{lanes/cable} \times (64) \text{k/ft/lane} = 1.28 \text{ k/ft/cable}. \]
Thus, the total design load is \(p_1 + p_2 = 5 + 1.28 = 6.28 \text{ k/ft} \).

3. The thrust \(H \) is determined from Eq. 4.15

\[
H = \frac{pl^2}{8h} = \frac{(6.28) \text{k/ft} \times (300)^2 \text{ ft}^2}{8} = \frac{(8) \times (300) \text{ ft}}{1.177 \text{ k}}.
\]

4. From Eq. 4.21 the maximum tension is

\[
T_{max} = H \sqrt{1 + 16r^2} = (1,177) \text{k} \sqrt{1 + (16) \left(\frac{1}{5}\right)^2} = 1,507 \text{k}.
\]

5. Note that if we used the approximate formula in Eq. 4.21 we would have obtained

\[
T_{max} = H(1 + 8r^2) = 1,177 \left(1 + 8 \left(\frac{1}{5}\right)^2\right) = 1,554 \text{k},
\]

or 3% difference!

6. The required cross sectional area of the cable along the main span should be equal to

\[
A = \frac{T_{max}}{\sigma_{all}} = \frac{1,507 \text{k}}{190 \text{ ksi}} = 7.93 \text{ in}^2.
\]

which corresponds to a diameter

\[
d = \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{(4)(7.93)}{\pi}} = 3.18 \text{ in}.
\]

7. We seek next to determine the cable force in AB. Since the pylon can not take any horizontal force, we should have the horizontal component of \(T_{max} \) \(H \) equal and opposite to the horizontal component of \(T_{AB} \) or \(T_{H} = \frac{\sqrt{(100)^2 + (120)^2}}{100} \)

the cable area should be

\[
A = \frac{1,838 \text{k}}{190 \text{ ksi}} = 9.68 \text{ in}^2.
\]

which corresponds to a diameter

\[
d = \sqrt{\frac{(4)(9.68)}{\pi}} = 3.51 \text{ in}.
\]

8. To determine the vertical load acting on the pylon, we must add the vertical components of \(T_{max} \) and of \(T_{AB} \) (\(V_{BC} \) and \(V_{AB} \) respectively). We can determine \(V_{BC} \) from \(H \) and \(T_{max} \), thus

\[
P = \frac{120}{100} (1,177) + \sqrt{(1,507)^2 - (1,177)^2} = 1,412 + 941 = 2,353 \text{k}.
\]

Using A36 steel with an allowable stress of 21 ksi, the cross sectional area of the tower should be

\[
A = \frac{3,353}{21} = 112 \text{ in}^2.
\]

Note that buckling of such a high tower might govern the final dimensions.
4.3 Case Study: George Washington Bridge

Adapted from (Billington and Mark 1983)

The George Washington bridge, is a suspension bridge spanning the Hudson river from New York City to New Jersey. It was completed in 1931 with a central span of 3,500 ft (at the time the world’s longest span). The bridge was designed by O.H. Amman, who had emigrated from Switzerland. In 1962 the deck was stiffened with the addition of a lower deck.

4.3.1 Geometry

A longitudinal and plan elevation of the bridge is shown in Fig. 4.4. For simplicity we will assume in our analysis that the two approaching spans are equal to 650 ft.

There are two cables of three feet diameter on each side of the bridge. The centers of each pair are 9 ft apart, and the pairs themselves are 106 ft apart. We will assume a span width of 100 ft.

The cables are idealized as supported by rollers at the top of the towers, hence the horizontal components of the forces in each side of the cable must be equal (their vertical components will add up).

The cables support the road deck which is hung by suspenders attached at the cables. The cables are made of 26,474 steel wires, each 0.196 inch in diameter. They are continuous over the tower supports and are firmly anchored in both banks by huge blocks of concrete, the anchors.

Because the cables are much longer than they are thick (small $\frac{L}{d}$), they can be idealized as perfectly flexible members with no shear/bending resistance but with high axial strength.

9. If the cables were to be anchored to a concrete block, the volume of the block should be at least equal to

$$V = \frac{(1,412 \text{ k}(1,000))}{150 \text{ lbs/ft}^3} = 9,413 \text{ ft}^3$$

or a cube of approximately 21 ft

![Figure 4.4: Longitudinal and Plan Elevation of the George Washington Bridge](image-url)
The towers are 578 ft tall and rest on concrete caissons in the river. Because of our assumption regarding the roller support for the cables, the towers will be subjected only to axial forces.

4.3.2 Loads

The dead load is composed of the weight of the deck and the cables and is estimated at 390 and 400 psf respectively for the central and side spans respectively. Assuming an average width of 100 ft, this would be equivalent to

\[
DL = (390) \text{ psf} \times \frac{(100) \text{ ft}}{(1,000) \text{ lbs}} = 39 \text{ k/ft}
\]

for the main span and 40 k/ft for the side ones.

For highway bridges, design loads are given by the AASHTO (Association of American State Highway Transportation Officials). The HS-20 truck is often used for the design of bridges on main highways, Fig. 4.5. Either the design truck with specified axle loads and spacing must be used or the equivalent uniform load and concentrated load. This loading must be placed such that maximum stresses are produced.

With two decks, we estimate that there is a total of 12 lanes or

\[
LL = (12) \text{lanes} \times (0.64) \text{ k/ft/lane} = 7.68 \text{ k/ft} \approx 8 \text{ k/ft}
\]

We do not consider earthquake, or wind loads in this analysis.

Final DL and LL are, Fig. 4.6: \(TL = 39 + 8 = 47 \text{ k/ft} \)

4.3.3 Cable Forces

The thrust \(H \) (which is the horizontal component of the cable force) is determined from Eq. 4.15

\[
H = \frac{w L^2 c_s}{8 h}
\]

\[
= \frac{(47) \text{ k/ft}(3,500)^2 \text{ ft}^2}{(8)(327) \text{ ft}}
\]

\[
= 220,000 \text{ k}
\]
4.3 Case Study: George Washington Bridge

DEAD LOADS

\[L_w = 8 \text{k/ft} \]

\[D, S_w = 39 \text{k/ft} \]

\[\omega = 40 \text{k/ft} \]

Figure 4.6: Dead and Live Loads

From Eq. 4.21 the maximum tension is

\[
T_{\text{max}} = H \sqrt{1 + 16r^2}
\]

\[
= (220,000) \sqrt{1 + (16)(0.0934)^2}
\]

\[
= (220,000)(1.0675) = 235,000 \text{k}
\]

4.3.4 Reactions

Cable reactions are shown in Fig. 4.7.

Figure 4.7: Location of Cable Reactions

The vertical force in the columns due to the central span (cs) is simply the support reaction, 4.8

\[
V_{\text{cs}} = \frac{1}{2} wL_{\text{cs}} = \frac{1}{2} (47) \text{k/ft}(3,500) \text{ ft} = 82,250 \text{k}
\]

Victor Saouma Structural Analysis
40 Along the side spans (ss), the total load is $TL = 40 + 8 = 48$ k/ft. We determine the vertical reaction by taking the summation of moments with respect to the anchor:

$$
\Sigma M_D = 0; \sum h_{ss}H + (w_{ss}L_{ss})\frac{L_{ss}}{2} - V_{ss}L_{ss} = 0 \quad (4.45-a)
$$

$$
= (377) k(220,000) k + (48) k/ft(650) ft \left(\frac{650}{2}\right) - 650V_{ss} = 0 \quad (4.45-b)
$$

$$
V_{ss} = 143,200 \text{ k} \quad (4.45-c)
$$

Note: That we have used equilibrium to determine the vertical component of the cable force. It would have been wrong to determine V_{ss} from $V_{ss} = \frac{220}{48} \times \frac{650}{650}$ as we did in the previous example, because the cable is now loaded. We would have to determine the shape of the cable and the tangent at the support. Beginning with Eq. 4.13-b:

$$
-Hy = \frac{1}{2}w x^2 + C_1 x + C_2 \quad (4.46-a)
$$

$$
-y = \frac{w x^2}{H} + \frac{C_1}{H} x + \frac{C_2}{H} \quad (4.46-b)
$$

At $x = 0, y = 0$, thus $C_2 = 0$; and at $x = 650, y = -377$; with $H = 220,000 \text{ k}$ and $w = 48$

$$
y = -\frac{(48) k}{\text{ft}(220,000) \text{ k}} x^2 - \frac{C_1}{(220,000) \text{ k}} x \quad (4.47-a)
$$

$$
y\big|_{x=650} = -377 - \frac{1.091 \times 10^{-4}}{650} \times (650)^2 - 4.545 \times 10^{-6} C_1 (650) \quad (4.47-c)
$$

$$
C_1 = 112,000 \quad (4.47-d)
$$

$$
y = -1.091 \times 10^{-4} x^2 - 0.501 x \quad (4.47-e)
$$

$$
\frac{dy}{dx} = -2.182 \times 10^{-4} x - 0.501 \quad (4.47-f)
$$

$$
\frac{dy}{dx}\big|_{x=650} = -0.1418 - 0.501 = -0.6428 = \frac{V}{H} \quad (4.47-g)
$$

$$
V = (220,000)(0.6428) = 141,423 \text{ k} \quad (4.47-h)
$$

which is only 1% different.

42 Hence the total axial force applied on the column is

$$
V = V_{cs} + V_{ss} = (82,250) \text{ k} + (143,200) \text{ k} = 225,450 \text{ k} \quad (4.48)
$$
4.3 Case Study: George Washington Bridge

The vertical reaction at the anchor is given by summation of the forces in the \(y \) direction, Fig. 4.9:

\[
(+ \uparrow) \Sigma F_y = 0; (w_{ss}L_{ss}) + V_{ss} + R_{\text{anchor}} = 0 \\
-(48) \text{k/ft}(650) \text{ ft} + (143,200) \text{ k} + R_{\text{anchor}} = 0
\]

\[
R_{\text{anchor}} = 112,000 \text{ k} \uparrow
\]

Figure 4.9: Cable Reactions in Side Span

The axial force in the side cable is determined the vector sum of the horizontal and vertical reactions.

\[
T_{\text{anchor}} = \sqrt{R_{\text{anchor}}^2 + H^2} = \sqrt{(112,000)^2 + (220,000)^2} = 247,000 \text{ k}
\]

\[
T_{\text{tower}} = \sqrt{V_{ss}^2 + H^2} = \sqrt{(143,200)^2 + (220,000)^2} = 262,500 \text{ k}
\]

The cable stresses are determined last, Fig. 4.10:

\[
A_{\text{wire}} = \frac{\pi D^2}{4} = \frac{(3.14)(0.196)^2}{4} = 0.03017 \text{ in}^2
\]

\[
A_{\text{total}} = (4) \text{ cables}(26,474) \text{ wires/cable}(0.03017) \text{ in}^2/\text{wire} = 3,200 \text{ in}^2
\]

Central Span \(\sigma = \frac{H}{A} = \frac{(220,000) \text{ k}}{(3,200) \text{ in}^2} = 68.75 \text{ ksi} \)

Side Span Tower \(\sigma_{\text{tower}} = \frac{T_{\text{tower}}}{A} = \frac{(262,500) \text{ in}^2}{(3,200) \text{ in}^2} = 82 \text{ ksi} \)

Side Span Anchor \(\sigma_{\text{anchor}} = \frac{T_{\text{anchor}}}{A} = \frac{(247,000) \text{ in}^2}{(3,200) \text{ in}^2} = 77.2 \text{ ksi} \)

Figure 4.10: Cable Stresses
If the cables were to be anchored to a concrete block, the volume of the block should be at least equal to

\[V = \frac{(112,000)}{150 \text{ lbs/ft}^3} = 747,000 \text{ ft}^3 \]

or a cube of approximately 91 ft

The deck, for all practical purposes can be treated as a continuous beam supported by elastic springs with stiffness \(K = AL/E \) (where \(L \) is the length of the supporting cable). This is often idealized as a beam on elastic foundations, and the resulting shear and moment diagrams for this idealization are shown in Fig. 4.11.

![Figure 4.11: Deck Idealization, Shear and Moment Diagrams](image-url)
Chapter 5

INTERNAL FORCES IN STRUCTURES

1 This chapter will start as a review of shear and moment diagrams which you have studied in both Statics and Strength of Materials, and will proceed with the analysis of statically determinate frames, arches and grids.

2 By the end of this lecture, you should be able to draw the shear, moment and torsion (when applicable) diagrams for each member of a structure.

3 Those diagrams will subsequently be used for member design. For instance, for flexural design, we will consider the section subjected to the highest moment, and make sure that the internal moment is equal and opposite to the external one. For the ASD method, the basic beam equation (derived in Strength of Materials) \(\sigma = \frac{MC}{I} \), (where \(M \) would be the design moment obtained from the moment diagram) would have to be satisfied.

4 Some of the examples first analyzed in chapter 2 (Reactions), will be revisited here. Later on, we will determine the deflections of those same problems.

5.1 Design Sign Conventions

5 Before we (re)derive the Shear-Moment relations, let us arbitrarily define a sign convention.

6 The sign convention adopted here, is the one commonly used for design purposes\(^1\).

7 With reference to Fig. 5.1

2D:

- **Load** Positive along the beam’s local y axis (assuming a right hand side convention), that is positive upward.
- **Axial**: tension positive.
- **Flexure** A positive moment is one which causes tension in the lower fibers, and compression in the upper ones. Alternatively, moments are drawn on the compression side (useful to keep in mind for frames).
- **Shear** A positive shear force is one which is “up” on a negative face, or “down” on a positive one. Alternatively, a pair of positive shear forces will cause clockwise rotation.
- **Torsion** Counterclockwise positive

3D: Use double arrow vectors (and NOT curved arrows). Forces and moments (including torsions) are defined with respect to a right hand side coordinate system, Fig. ??.

\(^1\)Later on, in more advanced analysis courses we will use a different one.
Figure 5.1: Shear and Moment Sign Conventions for Design

Figure 5.2: Sign Conventions for 3D Frame Elements
Let us (re)derive the basic relations between load, shear and moment. Considering an infinitesimal length dx of a beam subjected to a positive load $w(x)$, Fig. 5.3. The infinitesimal section must also be in equilibrium.

There are no axial forces, thus we only have two equations of equilibrium to satisfy $\Sigma F_y = 0$ and $\Sigma M_x = 0$.

Since dx is infinitesimally small, the small variation in load along it can be neglected, therefore we assume $w(x)$ to be constant along dx.

To denote that a small change in shear and moment occurs over the length dx of the element, we add the differential quantities dV_x and dM_x to V_x and M_x on the right face.

Next considering the first equation of equilibrium

$$(+ \uparrow) \Sigma F_y = 0 \Rightarrow V_x + w_x dx - (V_x + dV_x) = 0$$

or

$$\frac{dV}{dx} = w(x) \quad (5.1)$$

The slope of the shear curve at any point along the axis of a member is given by the load curve at that point.

Similarly

$$(+ \uparrow) \Sigma M_O = 0 \Rightarrow M_x + V_x dx - w_x dx \frac{dx}{2} - (M_x + dM_x) = 0$$

Neglecting the dx^2 term, this simplifies to

$$\frac{dM}{dx} = V(x) \quad (5.2)$$

The slope of the moment curve at any point along the axis of a member is given by the shear at that point.

Alternative forms of the preceding equations

$$V = \int w(x) dx \quad (5.3)$$

$$\Delta V_{21} = V_{x_2} - V_{x_1} = \int_{x_1}^{x_2} w(x) dx \quad (5.4)$$

In this derivation, as in all other ones we should assume all quantities to be positive.
The change in shear between 1 and 2, \(\Delta V_{1-2} \), is equal to the area under the load between \(x_1 \) and \(x_2 \).

and

\[
M = \int V(x)dx \quad (5.5)
\]

\[
\Delta M_{21} = M_2 - M_1 = \int_{x_1}^{x_2} V(x)dx \quad (5.6)
\]

The change in moment between 1 and 2, \(\Delta M_{21} \), is equal to the area under the shear curve between \(x_1 \) and \(x_2 \).

Note that we still need to have \(V_1 \) and \(M_1 \) in order to obtain \(V_2 \) and \(M_2 \).

Similar relations will be determined later (Chapter 6) between curvature \(\frac{M}{EI} \) and rotation \(\theta \) (Eq. 6.30).

Fig. 5.4 and 5.5 further illustrates the variation in internal shear and moment under uniform and concentrated forces/moment.

Figure 5.4: Shear and Moment Forces at Different Sections of a Loaded Beam

5.3 Moment Envelope

For design, we often must consider different load combinations.

For each load combination, we should draw the shear, moment diagrams, and then we should use the Moment envelope for design purposes.

5.4 Examples

5.4.1 Beams

Example 5-1: Simple Shear and Moment Diagram
Figure 5.5: Slope Relations Between Load Intensity and Shear, or Between Shear and Moment

Draw the shear and moment diagram for the beam shown below

Solution:
The free body diagram is drawn below
Reactions are determined from the equilibrium equations

\[(+ \sum F_x = 0) \Rightarrow -R_A + 6 = 0 \Rightarrow R_A = 6 \text{ k} \]
\[(+ \sum M_A = 0) \Rightarrow (11)(4) + (8)(10) + (4)(2)(14 + 2) - R_{Fy}(18) = 0 \Rightarrow R_{Fy} = 14 \text{ k} \]
\[(+ \sum F_y = 0) \Rightarrow R_{Ay} - 11 - 8 - (4)(2) + 14 = 0 \Rightarrow R_{Ay} = 13 \text{ k} \]

Shear are determined next:

1. At \(A \) the shear is equal to the reaction and is positive.
2. At \(B \) the shear drops (negative load) by 11 k to 2 k.
3. At \(C \) it drops again by 8 k to −6 k.
4. It stays constant up to \(D \) and then it decreases (constant negative slope since the load is uniform and negative) by 2 k per linear foot up to −14 k.
5. As a check, −14 k is also the reaction previously determined at \(F \).

Moment is determined last:

1. The moment at \(A \) is zero (hinge support).
2. The change in moment between \(A \) and \(B \) is equal to the area under the corresponding shear diagram, or \(\Delta M_{B-A} = (13)(4) = 52 \).
3. etc...

Example 5-2: Sketches of Shear and Moment Diagrams
For each of the following examples, sketch the shear and moment diagrams.

5.4.2 Frames

Inclined loads on inclined members are often mishandled. With reference to Fig. 5.6 we would have the following relations.
\[w = \frac{w_1 l_y}{l} + \frac{w_2 l_x}{l} + \frac{w_3 l_y}{l} + \frac{w_4 l_x}{l} \]
(5.7)

\[W = \frac{w_1 L}{l} + \frac{w_2 l_x}{l} L + \frac{w_3 l_y}{l} Y + \frac{w_4 l_x}{l} L_X \]
(5.8)

\[\frac{L_x}{l} = \cos \theta \]
(5.9)

\[\frac{L_y}{l} = \sin \theta \]
(5.10)

Example 5-3: Frame Shear and Moment Diagram

Draw the shear and moment diagram of the following frame.

Solution:
Reactions are determined first

\[(+ \sum F_x = 0; \quad \Rightarrow \quad R_A = -\frac{4}{5}(3)(15) = 0) \]

\[\Rightarrow \quad R_A = 36 \text{ k} \]

\[(+ \sum M_A = 0; \quad \Rightarrow \quad (3)(30) + \frac{3}{5}(3)(15)\left(30 + \frac{9}{2}\right) - \frac{4}{5}(3)(15)\frac{12}{2} - 39R_D = 0) \]

\[\Rightarrow \quad R_D = 52.96 \text{ k} \]

\[(+ \sum F_y = 0; \quad \Rightarrow \quad R_A - (3)(30) - \frac{3}{5}(3)(15) + 52.96 = 0) \]

\[\Rightarrow \quad R_A = 64.06 \text{ k} \]
Shear:

1. For $A - B$, the shear is constant, equal to the horizontal reaction at A and negative according to our previously defined sign convention, $V_A = -36$ k

2. For member $B - C$ at B, the shear must be equal to the vertical force which was transmitted along $A - B$, and which is equal to the vertical reaction at A, $V_B = 64.06$.

3. Since $B - C$ is subjected to a uniform negative load, the shear along $B - C$ will have a slope equal to -3 and in terms of x (measured from B to C) is equal to

$$V_{B-C}(x) = 64.06 - 3x$$

4. The shear along $C - D$ is obtained by decomposing the vertical reaction at D into axial and shear components. Thus at D the shear is equal to $\frac{92}{5} = 18.4$ k and is negative. Based on our sign convention for the load, the slope of the shear must be equal to -3 along $C - D$. Thus the shear at point C is such that $V_c - \frac{5}{3} = -31.78$ or $V_c = 13.22$. The equation for the shear is given by (for x going from C to D)

$$V = 13.22 - 3x$$

5. We check our calculations by verifying equilibrium of node C

$$\begin{align*}
\sum F_x &= 0 \\
\sum F_y &= 0
\end{align*}$$

$$\begin{align*}
(+1) \Sigma F_x &= 0 \\
\frac{1}{2}(42.37) + \frac{4}{3}(13.22) &= 25.42 + 10.58 = 36 \sqrt{2} \\
(+1) \Sigma F_y &= 0 \\
\frac{1}{2}(42.37) - \frac{4}{3}(13.22) &= 33.90 - 7.93 = 25.97 \sqrt{2}
\end{align*}$$

Moment:

1. Along $A - B$, the moment is zero at A (since we have a hinge), and its slope is equal to the shear, thus at B the moment is equal to $(-36)(12) = -432$ k.ft

2. Along $B - C$, the moment is equal to

$$M_{B-C} = M_B + \int_0^x V_{B-C}(x)dx = -432 + \int_0^x (64.06 - 3x)dx$$

$$= -432 + 64.06x - \frac{3x^2}{2}$$

which is a parabola. Substituting for $x = 30$, we obtain at node C: $M_C = -432 + 64.06(30) - \frac{3 \times 30^2}{2} = 139.8$ k.ft

3. If we need to determine the maximum moment along $B - C$, we know that $\frac{dM_{B-C}}{dx} = 0$ at the point where $V_{B-C} = 0$, that is $V_{B-C}(x) = 64.06 - 3x = 0 \Rightarrow x = \frac{64.06}{3} = 21.35$ ft. In other words, maximum moment occurs where the shear is zero.

Thus $M_{B-C}^{max} = -432 + 64.06(21.35) - \frac{3 \times 21.35^2}{2} = -432 + 1,378.1 - 937.5 = 232$ k.ft

4. Finally along $C - D$, the moment varies quadratically (since we had a linear shear), the moment first increases (positive shear), and then decreases (negative shear). The moment along $C - D$ is given by

$$M_{C-D} = M_C + \int_0^x V_{C-D}(x)dx = 139.8 + \int_0^x (13.22 - 3x)dx$$

$$= 139.8 + 13.22x - \frac{3x^2}{2}$$

which is a parabola.

Substituting for $x = 15$, we obtain at node C $M_C = 139.8 + 13.22(15) - \frac{3 \times 15^2}{2} = 139.8 + 198.3 - 337.5 = 0 \sqrt{2}$
The frame shown below is the structural support of a flume. Assuming that the frames are spaced 2 ft apart along the length of the flume,

1. Determine all internal member end actions
2. Draw the shear and moment diagrams
3. Locate and compute maximum internal bending moments
4. If this is a reinforced concrete frame, show the location of the reinforcement.

Solution:

The hydrostatic pressure causes lateral forces on the vertical members which can be treated as cantilevers fixed at the lower end.

The pressure is linear and is given by \(p = \gamma h \). Since each frame supports a 2 ft wide slice of the flume, the equation for \(w \) (pounds/foot) is

\[
w = (2)(62.4)(h) = 124.8h \text{ lbs/ft}
\]

At the base \(w = (124.8)(6) = 749 \text{ lbs/ft} = .749 \text{ k/ft} \) Note that this is both the lateral pressure on the end walls as well as the uniform load on the horizontal members.
End Actions

1. Base force at B is $F_{Bx} = (0.749)\frac{3}{2} = 2.246$ k
2. Base moment at B is $M_B = (2.246)\frac{3}{2} = 4.493$ k.ft
3. End force at B for member $B - E$ are equal and opposite.
4. Reaction at C is $R_{Cy} = (0.749)\frac{5}{2} = 5.99$ k

Shear forces

1. Base at B the shear force was determined earlier and was equal to 2.246 k. Based on the orientation of the $x - y$ axis, this is a negative shear.
2. The vertical shear at B is zero (neglecting the weight of $A - B$)
3. The shear to the left of C is $V = 0 + (-0.749)(3) = -2.246$ k.
4. The shear to the right of C is $V = -2.246 + 5.99 = 3.744$ k

Moment diagrams

1. At the base: $B \ M = 4.493$ k.ft as determined above.
2. At the support C, $M_c = -4.493 + (0.749)(3)\frac{3}{2} = -7.864$ k.ft
3. The maximum moment is equal to $M_{max} = -7.864 + (0.749)(5)\frac{5}{2} = 1.50$ k.ft
5.4 Examples

Design: Reinforcement should be placed along the fibers which are under tension, that is on the side of the negative moment\(^3\). The figure below schematically illustrates the location of the flexural\(^4\) reinforcement.

![Diagram of Reinforcement](image)

Example 5-5: Shear Moment Diagrams for Frame

\(^3\)That is why in most European countries, the sign convention for design moments is the opposite of the one commonly used in the U.S.A.; Reinforcement should be placed where the moment is “positive”.

\(^4\)Shear reinforcement is made of a series of vertical stirrups.
Example 5-6: Shear Moment Diagrams for Inclined Frame
5.4.3 3D Frame

Example 5-7: 3D Frame
1. The frame has a total of 6 reactions (3 forces and 3 moments) at the support, and we have a total of 6 equations of equilibrium, thus it is statically determinate.

2. Each member has the following internal forces (defined in terms of the local coordinate system of each member $x' - y' - z'$)

<table>
<thead>
<tr>
<th>Member</th>
<th>Internal Forces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axial</td>
</tr>
<tr>
<td>C − D</td>
<td>$N_{x'}$</td>
</tr>
<tr>
<td>B − C</td>
<td>$V_{x'}$</td>
</tr>
<tr>
<td>A − B</td>
<td>$V_{x'}$</td>
</tr>
</tbody>
</table>

3. The numerical calculations for the analysis of this three dimensional frame are quite simple, however the main complexity stems from the difficulty in visualizing the inter-relationships between internal forces of adjacent members.

4. In this particular problem, rather than starting by determining the reactions, it is easier to determine the internal forces at the end of each member starting with member $C − D$. Note that temporarily we adopt a sign convention which is compatible with the local coordinate systems.

C-D

$\Sigma F_x = 0 \Rightarrow V_x^C = (20)(2) = +40\text{kN}$
$\Sigma F_y = 0 \Rightarrow V_y^C = +60\text{kN}$
$\Sigma M_{y'} = 0 \Rightarrow M_{y'}^C = -(60)(2) = -120\text{kN.m}$
$\Sigma M_{z'} = 0 \Rightarrow M_{z'}^C = (20)(2)^2 = +40\text{kN.m}$

B-C

$\Sigma F_x = 0 \Rightarrow N_B^y = V_x^C$ $= -60\text{kN}$
$\Sigma F_y = 0 \Rightarrow V_y^B = V_y^C$ $= +40\text{kN}$
$\Sigma M_{y'} = 0 \Rightarrow M_{y'}^B = M_{y'}^C$ $= -120\text{kN.m}$
$\Sigma M_{z'} = 0 \Rightarrow M_{z'}^B = V_y^C(4) = (40)(4) = +160\text{kN.m}$
$\Sigma T_{x'} = 0 \Rightarrow T_{x'}^B = -M_{z'}^C$ $= -40\text{kN.m}$
The interaction between axial forces N and shear V as well as between moments M and torsion T is clearly highlighted by this example.
5.5 Arches

2. See section ??.
Chapter 6

DEFLECTION of STRUCTURES;
Geometric Methods

1. Deflections of structures must be determined in order to satisfy serviceability requirements i.e. limit deflections under service loads to acceptable values (such as \(\Delta L \leq 360 \)).

2. Later on, we will see that deflection calculations play an important role in the analysis of statically indeterminate structures.

3. We shall focus on flexural deformation, however the end of this chapter will review axial and torsional deformations as well.

4. Most of this chapter will be a review of subjects covered in Strength of Materials.

5. This chapter will examine deflections of structures based on geometric considerations. Later on, we will present a more powerful method based on energy considerations.

6.1 Flexural Deformation

6.1.1 Curvature Equation

6. Let us consider a segment (between point 1 and point 2), Fig. 6.1 of a beam subjected to flexural loading.

7. The slope is denoted by \(\theta \), the change in slope per unit length is the curvature \(\kappa \), the radius of curvature is \(\rho \).

8. From Strength of Materials we have the following relations

\[
ds = \rho d\theta \Rightarrow \frac{d\theta}{ds} = \frac{1}{\rho}
\]

(6.1)

9. We also note by extension that \(\Delta s = \rho \Delta \theta \)

10. As a first order approximation, and with \(ds \approx dx \) and \(\frac{dy}{dx} = \theta \) Eq. 6.1 becomes

\[
\kappa = \frac{1}{\rho} = \frac{d\theta}{dx} = \frac{d^2y}{dx^2}
\]

(6.2)

† Next, we shall (re)derive the exact expression for the curvature. From Fig. 6.1, we have

\[
\tan \theta = \frac{dy}{dx}
\]

(6.3)
Defining t as

$$t = \frac{dy}{dx}$$ \hspace{1cm} (6.4)

and combining with Eq. 6.3 we obtain

$$\theta = \tan^{-1} t$$ \hspace{1cm} (6.5)

Applying the chain rule to $\kappa = \frac{d\theta}{ds}$ we have

$$\kappa = \frac{d\theta}{dt} \frac{dt}{ds}$$ \hspace{1cm} (6.6)

ds can be rewritten as

$$ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \cdot dx$$ \hspace{1cm} (6.7)

Next combining Eq. 6.6 and 6.7 we obtain

$$\theta = \tan^{-1} t \quad \frac{d\theta}{dt} = \frac{1}{1 + t^2} \quad \frac{dt}{dx} = \frac{1}{1 + t^2} \quad \kappa = \frac{\frac{d^2y}{dx^2}}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}$$ \hspace{1cm} (6.8)

Thus the slope θ, curvature κ, radius of curvature ρ are related to the y displacement at a point x along a flexural member by

$$\kappa = \frac{\frac{d^2y}{dx^2}}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}$$ \hspace{1cm} (6.9)
If the displacements are very small, we will have \(\frac{dy}{dx} \ll 1 \), thus Eq. 6.9 reduces to
\[
\kappa = \frac{d^2 y}{dx^2} = \frac{1}{\rho}
\] (6.10)

6.1.2 Differential Equation of the Elastic Curve

Again with reference to Figure 6.1 a positive \(d\theta \) at a positive \(y \) (upper fibers) will cause a *shortening* of the upper fibers
\[
\Delta u = -y \Delta \theta
\] (6.11)

This equation can be rewritten as
\[
\lim_{\Delta s \to 0} \frac{\Delta u}{\Delta s} = -y \lim_{\Delta s \to 0} \frac{\Delta \theta}{\Delta s}
\] (6.12)
and since \(\Delta s \approx \Delta x \)
\[
\frac{du}{dx} = -y \frac{d\theta}{dx}
\] (6.13)

Combining this with Eq. 6.10
\[
\frac{1}{\rho} = \kappa = -\frac{\varepsilon}{y}
\] (6.14)
This is the fundamental relationship between curvature (\(\kappa \)), elastic curve (\(y \)), and linear strain (\(\varepsilon \)).

Note that so far we made no assumptions about material properties, i.e. it can be elastic or inelastic.

For the elastic case:
\[
\varepsilon_x = \frac{\sigma}{E} = -M y
\]
Combining this last equation with Eq. 6.14 yields
\[
\frac{1}{\rho} = \frac{d\theta}{dx} = \frac{d^2 y}{dx^2} = \frac{M}{EI}
\] (6.16)
This fundamental equation relates moment to curvature.

Combining this equation with the moment-shear-force relations determined in the previous chapter
\[
\frac{dV}{dx} = w(x) \quad \frac{d^2 M}{dx^2} = V(x)
\] (6.17-a)
we obtain
\[
\frac{w(x)}{EI} = \frac{d^4 y}{dx^4}
\] (6.18)

6.1.3 Moment Temperature Curvature Relation

Assuming linear variation in temperature
\[
\Delta_T = \alpha \Delta T dx \quad \text{Top} \quad (6.19-a)
\]
\[
\Delta_B = \alpha \Delta T_B dx \quad \text{Bottom} \quad (6.19-b)
\]
Next, considering
\[\frac{d^2 y}{dx^2} = \frac{M}{EI} = -\frac{\varepsilon}{y} \] (6.20)

In this case, we can take \(\varepsilon = \alpha \Delta T \) at \(y = \frac{L}{2} \) or \(\varepsilon = \alpha (T_T - T_B) \) at \(y = h \) thus
\[\frac{d\theta}{dx} = \frac{d^2 y}{dx^2} = \frac{M}{EI} = -\frac{\alpha (T_T - T_B)}{h} \] (6.21)

6.2 Flexural Deformations

6.2.1 Direct Integration Method

Equation 6.18 lends itself naturally to the method of double integration which was presented in Strength of Materials.

Example 6-1: Double Integration

Determine the deflection at B for the following cantilevered beam

\[M = \frac{5}{18} wL^2 \]

Solution:

At: \(0 \leq x \leq \frac{2L}{3} \)

1. Moment Equation
\[EI \frac{d^2 y}{dx^2} = M_x = \frac{wL}{3}x - \frac{5}{18} wL^2 \] (6.22)

2. Integrate once
\[EI \frac{dy}{dx} = \frac{wL}{6}x^2 - \frac{5}{18} wL^2 x + C_1 \] (6.23)

However we have at \(x = 0, \frac{dy}{dx} = 0 \), \(\Rightarrow C_1 = 0 \)

3. Integrate twice
\[EI y = \frac{wL}{18}x^3 - \frac{5wL^2}{36} x^2 + C_2 \] (6.24)

Again we have at \(x = 0, y = 0 \), \(\Rightarrow C_2 = 0 \)
At: \(\frac{2L}{3} \leq x \leq L \)

1. Moment equation

\[
EI \frac{d^2y}{dx^2} = M_x = \frac{wL}{3} x - \frac{5}{18} wL^2 - w(x - \frac{2L}{3}) \left(\frac{x - \frac{4L}{3}}{2} \right)
\]

(6.25)

2. Integrate once

\[
EI \frac{dy}{dx} = \frac{wL}{6} x^2 - \frac{5}{18} wL^2 x - \frac{w}{6} (x - \frac{2L}{3})^3 + C_3
\]

(6.26)

Applying the boundary condition at \(x = \frac{2L}{3} \), we must have \(\frac{dy}{dx} \) equal to the value coming from the left, \(\Rightarrow C_3 = 0 \)

3. Integrating twice

\[
EI y = \frac{wL}{18} x^3 - \frac{5}{36} wL^2 x^2 - \frac{w}{24} (x - \frac{2L}{3})^4 + C_4
\]

(6.27)

Again following the same argument as above, \(C_4 = 0 \)

Substituting for \(x = L \) we obtain

\[
y = \frac{163}{1944} \frac{wL^4}{EI}
\]

(6.28)

6.2.2 Curvature Area Method (Moment Area)

6.2.2.1 First Moment Area Theorem

From equation 6.16 we have

\[
\frac{d\theta}{dx} = \frac{M}{EI}
\]

(6.29)

this can be rewritten as (note similarity with \(\frac{dV}{dx} = w(x) \)).

\[
\theta_{21} = \theta_2 - \theta_1 = \int_{x_1}^{x_2} d\theta = \int_{x_1}^{x_2} \frac{M}{EI} dx
\]

(6.30)

or with reference to Figure 6.2

\textbf{First Area Moment Theorem:} The change in slope from point 1 to point 2 on a beam is equal to the area under the \(M/EI \) diagram between those two points.

6.2.2.2 Second Moment Area Theorem

Similarly, with reference to Fig. 6.2, we define by \(t_{21} \) the distance between point 2 and the tangent at point 1. For an infinitesimal distance \(ds = \rho d\theta \) and for small displacements

\[
\frac{dt}{dx} = \frac{d\theta(x_2 - x)}{M} = \frac{M}{EI} (x_2 - x) dx
\]

(6.31)

To evaluate \(t_{21} \)

\[
t_{21} = \int_{x_1}^{x_2} dt = \int_{x_1}^{x_2} \frac{M}{EI} (x_2 - x) dx
\]

(6.32)

or

\textbf{Second Moment Area Theorem:} The tangent distance \(t_{21} \) between a point, 2, on the beam and the tangent of another point, 1, is equal to the moment of the \(M/EI \) diagram between points 1 and 2, with respect to point 2.
Figure 6.2: Moment Area Theorems
Figure 6.3: Sign Convention for the Moment Area Method

<table>
<thead>
<tr>
<th>degree</th>
<th>AREA</th>
<th>CENTROID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xy</td>
<td>$\frac{x}{2}$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{xy}{2}$</td>
<td>$\frac{2}{3}x$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{xy}{3}$</td>
<td>$\frac{3}{4}x$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{xy}{4}$</td>
<td>$\frac{4}{5}x$</td>
</tr>
<tr>
<td>n</td>
<td>$\frac{axy}{n-1}$</td>
<td>$\frac{x}{n+2}$</td>
</tr>
</tbody>
</table>

Figure 6.4: Areas and Centroid of Polynomial Curves
The sign convention is as shown in Fig. 6.3

Fig. 6.4 is a helpful tool to determine centroid and areas.

Example 6-2: Moment Area, Cantilevered Beam

Determine the deflection of point A

\[E I t_{A/C} = \frac{1}{2} \left(-\frac{2wL^2}{5} \right) \left(\frac{5L}{2} \right) \left(\frac{25L}{3} \right) + \frac{1}{3} \left(-\frac{wL^2}{2} \right) \left(L \right) \left(\frac{9L}{4} \right) = \frac{29wL^4}{24} \]

Thus, \(\Delta_A = \frac{29wL^4}{24EI} \)

Example 6-3: Moment Area, Simply Supported Beam

Determine \(\Delta_C \) and \(\theta_C \) for the following example
Solution:

Deflection Δ_C is determined from $\Delta_C = c'c = c''c - c''c_C = t_{C/B}$, and $c'' = \frac{t_{A/B}}{2}$ from geometry

$$t_{A/B} = \frac{1}{EI} \left[\left(\frac{3Pa}{4} \right) \left(\frac{a}{2} \right) \left(\frac{2a}{3} \right) \right] + \left(\frac{3Pa}{4} \right) \left(\frac{3a}{2} \right) \left(a + \frac{3a}{3} \right) = \frac{5Pa^3}{2EI} \quad (6.34)$$
This is positive, thus above tangent from B

\[t_{C/B} = \frac{1}{EI} \left(\frac{Pa}{2} \right) \left(\frac{2a}{2} \right) \left(\frac{2a}{3} \right) = \frac{Pa^3}{3EI} \] \hspace{1cm} (6.35)

Positive, thus above the tangent from B Finally,

\[\Delta_C = \frac{5Pa^3}{4EI} - \frac{Pa^3}{3EI} = \frac{11Pa^3}{12EI} \] \hspace{1cm} (6.36)

Rotation \(\theta_C \) is

\[
\begin{align*}
\theta_{BC} &= \theta_B - \theta_C \Rightarrow \theta_C = \theta_B - \theta_{BC} \\
\theta_{BC} &= \frac{A_3}{L} \\
\theta_B &= \frac{t_{A/B}}{L}
\end{align*}
\]

\[\Rightarrow \theta_C = \frac{5Pa^3}{2EI(4a)} - \left(\frac{Pa}{2} \right) \left(\frac{2a}{2} \right) = \frac{Pa^2}{8EI} \] \hspace{1cm} (6.37)

6.2.2.3 Maximum Deflection

A joint along the beam will have the maximum (or minimum) relative deflection if \(\frac{\partial y}{\partial x} = 0 \) or \(\theta = 0 \) So we can determine \(\Delta_{max} \) if \(x \) is known, Fig. 6.5.

To determine \(x \):

1. Compute \(t_{C/A} \)
2. \(\theta_A = \frac{t_{C/A}}{L} \)
3. \(\theta_B = 0 \) and \(\theta_{AB} = \theta_A - \theta_B \), thus \(\theta_{AB} = \theta_A \). Hence, compute \(\theta_{AB} \) in terms of \(x \) using First Theorem.
4. Equate items 2 and 3, then solve for \(x \).
Determine the deflection at D, and the maximum deflection at B

Solution:

Deflection at D:

\[\Delta_D = t_{D/A} - \frac{9}{5} t_{C/A} \] \hspace{1cm} (6.38-a)

\[EIt_{C/A} = \frac{1}{2} \left(-\frac{4PL}{5} \right) (L) \left(\frac{L}{3} \right) \] \hspace{1cm} (6.38-b)

\[t_{C/A} = -\frac{2PL^3}{15EI} \] \hspace{1cm} (6.38-c)

\[EIt_{D/A} = \frac{1}{2} \left(-\frac{4PL}{5} \right) (L) \left(\frac{17L}{15} \right) + \frac{1}{2} \left(-\frac{4PL}{5} \right) \left(\frac{4L}{5} \right) \left(\frac{8L}{15} \right) \] \hspace{1cm} (6.38-d)

\[t_{D/A} = -\frac{234PL^3}{375EI} \] \hspace{1cm} (6.38-e)

Substituting we obtain

\[\Delta_D = -\frac{48}{125} \frac{PL^3}{EI} \] \hspace{1cm} (6.39)

Maximum deflection at B:

\[t_{C/A} = -\frac{2PL^3}{15EI} \] \hspace{1cm} (6.40-a)

\[\theta_A = \frac{t_{C/A}}{L} = -\frac{2PL^2}{15EI} \] \hspace{1cm} (6.40-b)

\[\theta_{AB} = \frac{1}{EI} \left[\frac{1}{2} \left(\frac{4Px}{5} \right) (x) \right] = -\frac{2}{5} \frac{P}{EI} \] \hspace{1cm} (6.40-c)

\[\theta_A = \theta_{AB} \Rightarrow -\frac{2}{15} \frac{PL^2}{EI} = -\frac{2}{5} \frac{P}{EI} \Rightarrow x = \frac{L}{\sqrt{3}} \] \hspace{1cm} (6.40-d)

\[\Delta_{max} = \left(\frac{4Px}{5EI} \right) \left(\frac{x}{2} \right) \left(\frac{2}{3} x \right) \text{ at } x = \frac{L}{\sqrt{3}} \] \hspace{1cm} (6.40-e)

\[\Rightarrow \Delta_{max} = \frac{4PL^3}{45\sqrt{3}EI} \] \hspace{1cm} (6.40-f)

Example 6-5: Frame Deflection
Complete the following example problem

Solution:

Example 6-6: Frame Subjected to Temperature Loading

Neglecting axial deformation, compute displacement at A for the following frame

Solution:

1. First let us sketch the deformed shape
2. BC flexes ⇒ \(\theta_B = \theta_C \neq 0 \)

3. Rigid hinges at B and C with no load on AB and CD

4. Deflection at A

\[
\begin{align*}
\Delta_A &= AA'' = AA' + A'A'' \\
AA' &= \Delta_B = \Delta_C = |\theta_C|h_2 \\
A'A' &= |\theta_B|h_1
\end{align*}
\] (6.41-a)

5. We need to compute \(\theta_B \& \theta_C \)

\[
\begin{align*}
\theta_B &= \frac{t_{C/B}}{L} \\
\theta_C &= \theta_{CB} + \theta_B \text{ or } \theta_C = \frac{t_{B/C}}{L}
\end{align*}
\] (6.42-b)

6. In order to apply the curvature are theorem, we need a curvature (or moment diagram).

\[
\frac{1}{\rho} = \alpha \left(\frac{T_B - T_T}{h} \right) = \frac{M}{EI}
\] (6.43)

7. \[t_{C/B} = A \left(\frac{L}{2} \right) \Rightarrow |\theta_B| = A \left(\frac{L}{2} \right) \left(\frac{1}{h} \right) = \frac{A}{2} \text{ or } \theta_B = -\frac{A}{2} \text{ (-ve)} \] (6.44)

8. \[
\begin{align*}
\theta_{CB} &= A \\
\theta_C &= \theta_{CB} + \theta_B \Rightarrow \theta_C = A - \frac{A}{2} = \frac{A}{2} \text{ (+ve)}
\end{align*}
\] (6.45)

9. From above,

\[
\begin{align*}
\Delta_A &= |\theta_C|h_2 + |\theta_B|h_1 = \frac{4}{3}h_2 + \frac{4}{3}h_1 \\
A &= \frac{1}{\alpha(T_B - T_T)L}
\end{align*}
\]

\[
\Delta_A = \alpha(T_B - T_T) \frac{1}{h} \left(\frac{L}{2} \right) (h_2 + h_1)
\] (6.46)

10. Substitute

\[
\Delta_A = (6.5 \times 10^{-6})(200 - 60) \frac{(20)(12)}{(16)} \frac{1}{2}(10 + 25)(12)
\] (6.47-a)

\[= 2.87 \text{ in} \] (6.47-b)

11. Other numerical values:

\[
\begin{align*}
\theta_B &= \theta_C = A \left(\frac{1}{2} \right) = \frac{1}{2} \alpha(T_B - T_T) \frac{L}{h} \\
&= \frac{1}{2} (6.5 \times 10^{-6}) \frac{(200 - 60)}{(16)} (20)(12)
\end{align*}
\] (6.48-a)

\[= .00683 \text{rad. (.39 degrees)} = \frac{dy}{dx} << 1 \] (6.48-c)

Note: \(\sin(.00683) = .006829947 \) and \(\tan(.00683) = .006830106 \)

\[
\frac{M}{EI} = \frac{1}{\rho} = \alpha \left(\frac{T_B - T_T}{h} \right)
\] (6.49-a)

\[= (6.5 \times 10^{-6}) \frac{(200 - 60)}{16} = 5.6875 \times 10^{-5} \] (6.49-b)

\[\Rightarrow \rho = \frac{1}{5.6875 \times 10^{-5}} = 1.758 \times 10^4 \text{ in} = 1,465 \text{ ft} \] (6.49-c)
12. In order to get M, we need E & I. Note the difference with other statically determinate structures; the stiffer the beam, the higher the moment; the higher the moment, the higher the stress? NO!!

13. $\sigma = \frac{M}{I} = \frac{Ey}{I}$. Note the difference with other statically determinate structures; σ is constant \Rightarrow BC is on arc of circle M is constant \& $\frac{M}{EI} = \frac{d^2y}{dx^2}$ \& $\frac{M}{EI} = C \Rightarrow y = C \frac{x^2}{2} + dx + e$

14. $\frac{1}{\rho} = \frac{M}{EI} = \frac{d^2y}{dx^2} \approx \frac{d^2y}{dx^2}$ \hspace{1cm} (6.50)

29 Let us get curvature from the parabola slope and compare it with ρ

\[y = \frac{cx^2}{2} + dx + e \quad (6.51-a) \]
\[\frac{dy}{dx} = cx + d \quad (6.51-b) \]
\[\frac{d^2y}{dx^2} = c \quad (6.51-c) \]

at $x = 0$, $y = 0$, thus $e = 0$
at $x = 0$, $\frac{dy}{dx} = \theta_B = -.00683$ thus $d = -.00683$
at $x = 20$ ft, $\frac{dy}{dx} = \theta_C = .00683$ thus $c(20) - .00683 = .00683$ thus $c = 6.83 \times 10^{-4}$ thus

\[y = 6.83 \times 10^{-4} \left(\frac{x^2}{2} - 10x \right) \quad (6.52-a) \]
\[\frac{dy}{dx} = 6.83 \times 10^{-4} (x - 10) \quad (6.52-b) \]
\[\frac{d^2y}{dx^2} = 6.83 \times 10^{-4} \quad (6.52-c) \]
\[\kappa = 6.83 \times 10^{-4} \quad (6.52-d) \]
\[\rho = \frac{1}{6.83 \times 10^{-4}} = 1,464 ft \text{ as expected!} \quad (6.52-e) \]

If we were to use the exact curvature formula

\[\frac{\frac{d^2y}{dx^2} \sqrt{1 + (\frac{dy}{dx})^2}}{1 + (\frac{dy}{dx})^2} \approx \frac{6.83 \times 10^{-4}}{[1 + (.00683)^2]^2} \]
\[= 6.829522 \times 10^{-4} \quad (6.53-b) \]
\[\Rightarrow \rho = 1464.23 ft \text{ (compared with 1465ft)} \quad (6.53-c) \]

\[6.2.3 \text{ Elastic Weight/Conjugate Beams} \]

<table>
<thead>
<tr>
<th>V and M</th>
<th>θ and y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{12} = \int_{x_1}^{x_2}wdx$</td>
<td>$\theta_{12} = \int_{x_1}^{x_2} \frac{1}{\rho} dx$</td>
</tr>
<tr>
<td>$M_{12} = \int_{x_1}^{x_2} Vdx$</td>
<td>$t_{21} = \int_{x_1}^{x_2} \theta dx$</td>
</tr>
<tr>
<td>$\int Vdx + C_1$</td>
<td>$y = \int \theta dx + C_2$</td>
</tr>
</tbody>
</table>

Victor Saouma

Structural Analysis
6.2 Flexural Deformations

![Figure 6.6: Conjugate Beams](image)

This leads to the following equations:

\[
\text{Load } q \equiv \text{ curvature } \frac{1}{\rho} = \kappa = \frac{M}{EI} \quad (6.54)
\]

\[
\text{Shear } V \equiv \text{ slope } \theta \quad (6.55)
\]

\[
\text{Moment } M \equiv \text{ deflection } y \quad (6.56)
\]

Since \(V \) & \(M \) can be conjugated from statics, by analogy \(\theta \) & \(y \) can be thought of as the \(V \) & \(M \) of a fictitious beam (or conjugate beam) loaded by \(\frac{M}{EI} \text{ elastic weight} \).

What about Boundary Conditions? Table 6.1, and Fig. 6.6.

<table>
<thead>
<tr>
<th>Actual Beam</th>
<th>Conjugate Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge</td>
<td>(\theta \neq 0), (y = 0), (V \neq 0), (M = 0) “Hinge”</td>
</tr>
<tr>
<td>Fixed End</td>
<td>(\theta = 0), (y = 0), (V = 0), (M = 0) Free end</td>
</tr>
<tr>
<td>Free End</td>
<td>(\theta \neq 0), (y \neq 0), (V \neq 0), (M \neq 0) Fixed end</td>
</tr>
<tr>
<td>Interior Hinge</td>
<td>(\theta \neq 0), (y \neq 0), (V \neq 0), (M \neq 0) Interior support</td>
</tr>
<tr>
<td>Interior Support</td>
<td>(\theta \neq 0), (y = 0), (V \neq 0), (M = 0) Interior hinge</td>
</tr>
</tbody>
</table>

Table 6.1: Conjugate Beam Boundary Conditions

Whereas the Moment area method has a well defined basis, its direct application can be sometimes confusing.

Alternatively, the moment area method was derived from the moment area method, and is a far simpler method to remember and use in practice when simple “back of the envelope” calculations are required.

Note that we can only have distributed load, and that the load the load is positive for a positive moment, and negative for a negative moment. “Shear” and “Moment” diagrams should be drawn accordingly.

Units of the “distributed load” \(w^* \) are \(\frac{FL}{L^2} \) (force time length divided by \(EI \)). Thus the “Shear” would have units of \(w^* \times L \) or \(\frac{FL^2}{L^2} \) and the “moment” would have units of \((w^* \times L) \times L \) or \(\frac{FL^3}{L^2} \). Recalling that \(EI \) has units of \(FL^{-2}L^4 = FL^2 \), we observe that indeed the “shear” corresponds to a rotation in radians and the “moment” to a displacement.
Example 6-7: Conjugate Beam

Analyze the following beam.

Solution:

3 equations of equilibrium and 1 equation of condition = 4 = number of reactions.
Deflection at D = Shear at D of the corresponding conjugate beam (Reaction at D)
Take AC and ΣM with respect to C

\[R_A(L) - \left(\frac{4PL}{5EI} \right) \left(\frac{L}{2} \right) \left(\frac{L}{3} \right) = 0 \]
\[\Rightarrow R_A = \frac{2PL^2}{15EI} \]

(Slope in real beam at A) As computed before!
Let us draw the Moment Diagram for the conjugate beam

\[M = \frac{P}{EI} \left[\frac{2}{15} L^2x - \left(\frac{4}{5} \right) \left(\frac{x}{2} \right) \left(\frac{x}{3} \right) \right] \]
\[= \frac{P}{15EI} \left(\frac{2}{15} L^2x - \frac{2}{15} x^3 \right) \]
\[= \frac{2P}{15EI} \left(L^2x - x^3 \right) \]

Point of Maximum Moment (\(\Delta_{max} \)) occurs when \(\frac{dM}{dx} = 0 \)

\[\frac{dM}{dx} = \frac{2P}{15EI} (L^2 - 3x^2) = 0 \Rightarrow 3x^2 = L^2 \Rightarrow x = \frac{L}{\sqrt{3}} \]
6.3 Axial Deformations

Statics: $\sigma = \frac{P}{A}$

Material: $\sigma = E\varepsilon$

Kinematics: $\Sigma = \frac{\Delta}{L}$

$$\Delta = \frac{PL}{AE}$$ (6.61)

6.4 Torsional Deformations

Since torsional effects are seldom covered in basic structural analysis, and students may have forgotten the derivation of the basic equations from the Strength of Material course, we shall briefly review the basic equations.

Assuming a linear elastic material, and a linear strain (and thus stress) distribution along the radius of a circular cross section subjected to torsional load, Fig. 6.7 we have:

$$T = \int_A \rho \tau_{\text{max}} \frac{dA}{\text{arm}}$$ (6.62)

$$= \frac{\tau_{\text{max}}}{c} \int_A \rho^2 dA$$ (6.63)

$$\tau_{\text{max}} = \frac{Tc}{J}$$ (6.64)
Note the analogy of this last equation with \(\sigma = \frac{M_c}{I_y} \)

\[\int_A \rho^2 dA \] is the polar moment of inertia \(J \) for circular cross sections and is equal to:

\[
J = \int_A \rho^2 dA = \int_0^c \rho^2 (2\pi \rho d\rho) \\
= \frac{\pi c^4}{2} = \frac{\pi d^4}{32}
\] \hspace{1cm} (6.65)

Having developed a relation between torsion and shear stress, we now seek a relation between torsion and torsional rotation. Considering Fig. 6.7-b, we look at the arc length BD

\[
\frac{\gamma_{max}}{\gamma_{max}} d\Phi = d\Phi_c \Rightarrow \frac{d\Phi}{dx} = \frac{\gamma_{max}}{c} \\
= \frac{d\Phi}{dx} = \frac{\tau_{max}}{\tau_{max} = \frac{Gc}{J}} \\
\frac{d\Phi}{dx} = \frac{T}{GJ}
\] \hspace{1cm} (6.66)

Finally, we can rewrite this last equation as \(\int T dx = \int Gj d\Phi \) and obtain:

\[
T = \frac{GJ}{L} \Phi
\] \hspace{1cm} (6.67)
Chapter 7

ENERGY METHODS; Part I

7.1 Introduction

Energy methods are powerful techniques for both formulation (of the stiffness matrix of an element\(^1\)) and for the analysis (i.e. deflection) of structural problems.

We shall explore two techniques:

1. Real Work
2. Virtual Work (Virtual force)

7.2 Real Work

We start by revisiting the first law of thermodynamics:

The time-rate of change of the total energy (i.e., sum of the kinetic energy and the internal energy) is equal to the sum of the rate of work done by the external forces and the change of heat content per unit time.

\[
\frac{d}{dt}(K + U) = W_e + H
\]

where \(K\) is the kinetic energy, \(U\) the internal strain energy, \(W_e\) the external work, and \(H\) the heat input to the system.

For an adiabatic system (no heat exchange) and if loads are applied in a quasi static manner (no kinetic energy), the above relation simplifies to:

\[
W_e = U
\]

Simply stated, the first law stipulates that the external work must be equal to the internal strain energy due to the external load.

7.2.1 External Work

The external work is given by, Fig. 7.1

\[
W_e = \int_0^{\Delta_f} P d\Delta = \int_0^{\theta_f} M d\theta
\]

\(^1\)More about this in Matrix Structural Analysis.
Figure 7.1: Load Deflection Curves

for point loads and concentrated moments respectively.

7 For **linear elastic systems**, we have for point loads

\[
P = K \Delta_f \\
W_e = \int_0^{\Delta_f} Pd\Delta \\
W_e = K \int_0^{\Delta_f} \Delta d\Delta = \frac{1}{2} K \Delta_f^2
\]

(7.4)

When this last equation is combined with \(P_f = K \Delta_f \), we obtain

\[
W_e = \frac{1}{2} P_f \Delta_f
\]

(7.5)

where \(K \) is the **stiffness** of the structure.

8 Similarly for an applied moment we have

\[
W_e = \frac{1}{2} M_f \theta_f
\]

(7.6)

7.2.2 Internal Work

9 Considering an infinitesimal element from an arbitrary structure subjected to uniaxial state of stress, the strain energy can be determined with reference to Fig. 7.2. The net force acting on the element while deformation is taking place is \(P = \sigma_x dy dz \). The element will undergo a displacement \(u = \varepsilon_x dx \). Thus, for a linear elastic system, the strain energy density is \(dU = \frac{1}{2} \sigma \varepsilon \). And the total strain energy will thus be

\[
U = \frac{1}{2} \int_{\text{Vol}} \varepsilon \varepsilon \text{dVol}
\]

(7.7)

10 When this relation is applied to various structural members it would yield:
Axial Members:

\[
U = \int \frac{\varepsilon \sigma}{2} d\text{Vol} \quad \sigma = \frac{P}{A} \quad \varepsilon = \frac{P}{AE} dV = Adx
\]

Torsional Members:

\[
U = \frac{1}{2} \int \varepsilon E \varepsilon d\text{Vol} \quad U = \frac{1}{2} \int \gamma_{xy} G \gamma_{xy} d\text{Vol} \quad \tau_{xy} = \frac{T}{J} \quad \gamma_{xy} = \frac{G}{J} \quad d\text{Vol} = rd\theta dr dx \\
J = \int_{0}^{2\pi} 2\pi r^2 d\theta dr
\]

Flexural Members:

\[
U = \frac{1}{2} \int \varepsilon E \varepsilon d\text{Vol} \quad \sigma_x = \frac{M_{xy}}{I_x} \quad \varepsilon = \frac{M_{xy}}{EI_x} d\text{Vol} = dA dx \\
I_z = \int_{A} y^2 dA
\]

Example 7-1: Deflection of a Cantilever Beam, (Chajes 1983)

Determine the deflection of the cantilever beam, Fig. 7.3 with span \(L \) under a point load \(P \) applied at its free end. Assume constant \(EI \).

Solution:

\[
W_c = \frac{1}{2} P \Delta_f
\]
Figure 7.3: Deflection of Cantilever Beam

\[U = \int_0^L \frac{M^2}{2EI} \, dx \]
(7.11-b)

\[M = -Px \]
(7.11-c)

\[U = \frac{P^2}{2EI} \int_0^L x^2 \, dx = \frac{P^2L^3}{6EI} \]
(7.11-d)

\[\frac{1}{2}P\Delta_f = \frac{P^2L^3}{6EI} \]
(7.11-e)

\[\Delta_f = \frac{PL^3}{3EI} \]
(7.11-f)

7.3 Virtual Work

A severe limitation of the method of real work is that only deflection along the externally applied load can be determined.

A more powerful method is the virtual work method.

The principle of Virtual Force (VF) relates force systems which satisfy the requirements of equilibrium, and deformation systems which satisfy the requirement of compatibility.

In any application the force system could either be the actual set of external loads \(dp \) or some virtual force system which happens to satisfy the condition of equilibrium \(\bar{dp} \). This set of external forces will induce internal actual forces \(d\sigma \) or internal virtual forces \(\delta\sigma \) compatible with the externally applied load.

Similarly the deformation could consist of either the actual joint deflections \(du \) and compatible internal deformations \(d\varepsilon \) of the structure, or some virtual external and internal deformation \(\delta\varepsilon \) and \(\delta\varepsilon \) which satisfy the conditions of compatibility.

It is often simplest to assume that the virtual load is a unit load.

Thus we may have 4 possible combinations, Table 7.1: where: \(d \) corresponds to the actual, and \(\delta \) (with an overbar) to the hypothetical values.

This table calls for the following observations:

1. The second approach is the same one on which the method of virtual or unit load is based. It is simpler to use than the third as a internal force distribution compatible with the assumed virtual...
Let us consider an arbitrary structure and load it with both real and virtual loads in the following sequence, Fig. 7.4. For the sake of simplicity, let us assume (or consider) that this structure develops only axial stresses.

1. If we apply the virtual load, then

\[
\frac{1}{2} \delta P \delta \Delta = \frac{1}{2} \int \delta \sigma \delta \varepsilon \, dV
\]

(7.12)
2. Load with the real (applied) load, since the external work must be equal to the internal strain
ergy over the entire volume, then:

\[\frac{1}{2} P_1 \Delta_1 = \frac{1}{2} \int_{\text{Vol}} \sigma \varepsilon \, d\text{Vol} \] \hspace{1cm} (7.13)

3. We now imagine that the virtual load was first applied, and we then apply the real (actual) load on top of it, then the total work done is

\[\frac{1}{2} \delta P \delta \Delta + \frac{1}{2} P_1 \Delta_1 + \delta P \Delta = \frac{1}{2} \int_{\text{Vol}} \delta \sigma \delta \varepsilon \, d\text{Vol} + \frac{1}{2} \int_{\text{Vol}} \sigma \varepsilon \, d\text{Vol} + \int_{\text{Vol}} \delta \sigma \varepsilon \, d\text{Vol} \] \hspace{1cm} (7.14)

4. Since the strain energy and work done must be the same whether the loads are applied together or separately, we obtain, from subtracting the sum of Eqs. 7.13 and 7.12 from 7.14 and generalizing, we obtain

\[\int (\delta \sigma \varepsilon + \delta \tau \gamma) \, d\text{Vol} = \frac{\delta P \Delta}{\delta W^*} \] \hspace{1cm} (7.15)

This last equation is the key to the method of virtual forces. The left hand side is the internal virtual strain energy \(\delta U^* \). Similarly the right hand side is the external virtual work.

7.3.1 External Virtual Work \(\delta W^* \)

The general expression for the external virtual work \(\delta W^* \) is

\[\delta W^* = \sum_{i=1}^{n} (\Delta_i) \delta P_i + \sum_{i=1}^{n} (\theta_i) \delta M_i \] \hspace{1cm} (7.16)

for distributed load, point load, and concentrated moment respectively.

Recall that all overbar quantities are virtual and the other ones are the real.

7.3.2 Internal Virtual Work \(\delta U^* \)

The general expression for the internal virtual work is

\[\int (\delta \sigma \varepsilon + \delta \tau \gamma) \, d\text{Vol} = \delta P \Delta \] \hspace{1cm} \frac{\delta W^*}{\delta U^*} \hspace{1cm} (7.17)

We will generalize it to different types of structural members.

We will first write the equations independently of the material stress strain relation, and then we will rewrite those same equations for a linear elastic system.

General:

Axial Members:

\[\delta U^* = \int_0^L \delta \sigma \varepsilon \, d\text{Vol} \]

\[d\text{Vol} = A \, dx \]

\[\delta U^* = A \int_0^L \delta \sigma \varepsilon \, dx \] \hspace{1cm} (7.18)
Figure 7.5: Torsion Rotation Relations

Torsional Members: With reference to Fig. 7.5 Note that in torsion the “strain” is \(\gamma \) the rate of change of rotation of the cross section about the longitudinal axis \(x \).

\[
\begin{align*}
\delta U^* &= \int_{\text{Vol}} \delta \tau_{xy} \gamma_{xy} \, d\text{Vol} \\
\delta T &= \int_{A} \delta \tau_{xy} r \, dA \\
\gamma_{xy} &= \frac{d\theta}{dx} \\
d\text{Vol} &= dA \, dx
\end{align*}
\]

\[
\Rightarrow \delta U^* = \int_{0}^{L} \left(\int_{A} \delta \tau_{xy} r \, dA \right) \theta \, dx \tag{7.19}
\]

Shear Members:

\[
\begin{align*}
\delta U^* &= \int_{\text{Vol}} \delta \tau_{xy} \gamma_{xy} \, d\text{Vol} \\
\delta V &= \int_{A} \delta \tau_{xy} \, dA \\
d\text{Vol} &= dA \, dx
\end{align*}
\]

\[
\Rightarrow \delta U^* = \int_{0}^{L} \delta V \gamma_{xy} \, dx \tag{7.20}
\]

Flexural Members:

\[
\begin{align*}
\delta U^* &= \int_{\text{Vol}} \delta \sigma_{x} \varepsilon_{x} \, d\text{Vol} \\
\delta M &= \int_{A} \delta \sigma_{xy} y \, dA \Rightarrow \frac{\delta M}{y} = \int_{A} \delta \sigma_{x} y \, dA \\
\phi &= \frac{1}{y} \\
\phi y &= \varepsilon \\
d\text{Vol} &= \int_{0}^{L} \int_{A} dA \, dx
\end{align*}
\]

\[
\Rightarrow \delta U^* = \int_{0}^{L} \delta M \phi \, dx \tag{7.21}
\]

Linear Elastic Systems Should we have a linear elastic material

\[
\sigma = E \varepsilon \tag{7.22}
\]
Axial Members:
\[
\begin{align*}
\delta U^* &= \int \varepsilon \delta \sigma dV \\
\delta \sigma &= \frac{\delta P}{A} \\
\varepsilon &= \frac{P}{AE} \\
dV &= Adx
\end{align*}
\]
Note that for a truss where we have \(n \) members, the above expression becomes
\[
\delta U^* = \sum_{i=1}^{n} \delta P_i \frac{P_i L_i}{A_i E_i}
\]
(7.24)

Shear Members:
\[
\begin{align*}
\delta U^* &= \int \delta \tau_{xy} \gamma_{xy} dV \\
\tau_{xy} &= \frac{k}{\gamma_{xy}} \\
\gamma_{xy} &= \frac{\tau_{xy}}{G} \\
dV &= Adx
\end{align*}
\]
\[
\begin{align*}
\delta U^* &= \lambda \int_0^L \delta V \frac{V}{GA} \gamma_{xy} dx
\end{align*}
\]
(7.25)

Note that the exact expression for the shear stress is
\[
\tau = \frac{VQ}{I_b}
\]
(7.26)
where \(Q \) is the moment of the area from the external fibers to \(y \) with respect to the neutral axis; For a rectangular section, this yields
\[
\begin{align*}
\tau &= \frac{VQ}{I_b} \\
&= \frac{V}{I_b} \int_y^{h/2} by' dy' = \frac{V}{2T} \left(h^2 \frac{y^2}{4} - y^2 \right) \\
&= \frac{6V}{bh^3} \left(\frac{h^2}{4} - 4 \right)
\end{align*}
\]
(7.27-a, 7.27-b, 7.27-c)
and we observe that the shear stress is zero for \(y = h/2 \) and maximum at the neutral axis where it is equal to \(1.5 \frac{V}{bh} \).

To determine the form factor \(\lambda \) of a rectangular section
\[
\begin{align*}
\tau &= \frac{VQ}{I_b} \\
Q &= \int_y^{h/2} by' dy' = \frac{b}{2} \left(\frac{h^2}{4} - y^2 \right) \\
k &= \frac{hr}{A} \left(\frac{h^2}{4} - y^2 \right) \\
\lambda b h &= \int_A k^2 dydz
\end{align*}
\]
\[
\begin{align*}
\lambda &= 1.2
\end{align*}
\]
(7.28)

Thus, the form factor \(\lambda \) may be taken as 1.2 for rectangular beams of ordinary proportions.

For I beams, \(k \) can be also approximated by 1.2, provided \(A \) is the area of the web.

Torsional Members:
\[
\begin{align*}
\delta U^* &= \int \delta \tau_{xy} \frac{\tau_{xy}}{G} \gamma_{xy} dV \\
\tau_{xy} &= \frac{T}{r} \\
\gamma_{xy} &= \frac{T}{r} \\
dV &= r d\theta dr dx
\end{align*}
\]
\[
\begin{align*}
\delta U^* &= \int_0^L \frac{\delta T}{\delta \theta} \frac{T}{r} \frac{dr \theta dx}{dr} dx
\end{align*}
\]
(7.29)
Note the similarity with the corresponding equation for shear deformation.

The torsional stiffness of cylindrical sections is given by

\[J = \frac{\pi d^4}{32} \]

(7.30)

where \(d \) is the shorter side of the section, \(d \) the longer, and \(k \) a factor given by Table 7.2.

<table>
<thead>
<tr>
<th>(d/b)</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>10</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>0.141</td>
<td>0.196</td>
<td>0.229</td>
<td>0.249</td>
<td>0.263</td>
<td>0.281</td>
<td>0.291</td>
<td>0.312</td>
<td>0.333</td>
</tr>
</tbody>
</table>

Table 7.2: \(k \) Factors for Torsion

Recall from strength of materials that

\[G = \frac{E}{2(1 + \nu)} \]

(7.31)

Flexural Members:

\[\delta U^* = \int \varepsilon E d\varepsilon dV \]

\[\sigma_x = \frac{M}{I_z} \]

\[\varepsilon = \frac{M}{E I_z} \]

\[dV = dA dx \]

\[I_z = \int y^2 dA \]

\[\delta U^* = \int_0^L \delta M M d\phi \]

(7.32)

7.3.3 Examples

Example 7-2: Beam Deflection (Chajes 1983)

Determine the deflection at point C in Fig. 7. 6 \(E = 29,000 \text{ ksi}, I = 100 \text{ in}^4 \).

Solution:

For the virtual force method, we need to have two expressions for the moment, one due to the real load, and the other to the (unit) virtual one, Fig. 7.7.

<table>
<thead>
<tr>
<th>Element</th>
<th>(x = 0)</th>
<th>(M)</th>
<th>(\delta M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>A</td>
<td>15(x - x^2)</td>
<td>-0.5(x)</td>
</tr>
<tr>
<td>BC</td>
<td>C</td>
<td>-(x^2)</td>
<td>-(x)</td>
</tr>
</tbody>
</table>

Applying Eq. 7.32 we obtain

\[\frac{\Delta_C \delta P}{\delta w} = \int_0^L \delta M \frac{M}{E I_z} dx \]

(7.33-a)

\[(1) \Delta_C = \int_0^{20} (-0.5x) M x^2 \frac{dx}{EI} + \int_0^{10} (-x^2) M x^2 \frac{dx}{EI} \]

(7.33-b)
Figure 7.6:

Figure 7.7:
\[\Delta_C = \frac{2,500}{EI} \frac{(2,500) k^2 - ft^3 (1,728) \text{in}^3 / \text{ft}^3}{(29,000) \text{ksi}(100) \text{in}^4} \]
\[\Delta_C = 1.49 \text{in} \]

Example 7-3: Deflection of a Frame (Chajes 1983)

Determine both the vertical and horizontal deflection at A for the frame shown in Fig. 7.8. \(E = 200 \times 10^6 \text{kN/ m}^2, I = 200 \times 10^6 \text{mm}^4 \).

\[50 \text{kN} \]
\[A \quad B \quad C \]
\[2 \text{m} \quad 2 \text{m} \]
\[5 \text{m} \]
\[D \]
\[100 \text{kN} \cdot \text{m} \]

\[50 \text{kN} \]
\[A \quad C \]
\[1 \text{kN} \rightarrow A \quad C \]
\[D \]
\[4 \text{kN} \cdot \text{m} \quad 1 \text{kN} \]

\[1 \text{kN} \]
\[D \]
\[5 \text{kN} \cdot \text{m} \]

Figure 7.8:

Solution:

To analyse this frame we must determine analytical expressions for the moments along each member for the real load and the two virtual ones. One virtual load is a unit horizontal load at A, and the other a unit vertical one at A also, Fig. 7.9.

<table>
<thead>
<tr>
<th>Element</th>
<th>(x = 0)</th>
<th>(M)</th>
<th>(\delta M_v)</th>
<th>(\delta M_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>A</td>
<td>0</td>
<td>(x)</td>
<td>0</td>
</tr>
<tr>
<td>BC</td>
<td>B</td>
<td>50(x)</td>
<td>(2 + x)</td>
<td>0</td>
</tr>
<tr>
<td>CD</td>
<td>C</td>
<td>100</td>
<td>4</td>
<td>(-x)</td>
</tr>
</tbody>
</table>

Note that moments are considered positive when they produce compression on the inside of the frame.
Substitution yields:

\[
\frac{\Delta_v}{\delta W} = \frac{\int_0^L \delta M}{EI_z} \frac{M}{dx} \tag{7.34-a}
\]

\[(1) \Delta_v = \int_0^2 \frac{(0)}{EI} dx + \int_0^2 \frac{(2 + x)(50x)}{EI} dx + \int_0^5 \frac{(4)(100)}{EI} dx \tag{7.34-b}
\]

\[= \frac{2,333}{EI} \text{ kN m}^3 \tag{7.34-c}
\]

\[= \frac{(2,333) \text{ kN m}^3(10^3)^4 \text{ mm}^4 / \text{ m}^4}{(200 \times 10^6) \text{ kN} / \text{ m}^2(200 \times 10^6) \text{ mm}^4} \tag{7.34-d}
\]

\[= 0.058 \text{ m} = 5.8 \text{ cm} \tag{7.34-e}
\]

Similarly for the horizontal displacement:

\[
\frac{\Delta_h}{\delta W} = \frac{\int_0^L \delta M}{EI_z} \frac{M}{dx} \tag{7.35-a}
\]

\[(1) \Delta_h = \int_0^2 \frac{(0)}{EI} dx + \int_0^2 \frac{(0)50x}{EI} dx + \int_0^5 \frac{(-x)100}{EI} dx \tag{7.35-b}
\]

\[= \frac{-1,250}{EI} \text{ kN m}^3 \tag{7.35-c}
\]

\[= \frac{(-1,250) \text{ kN m}^3(10^3)^4 \text{ mm}^4 / \text{ m}^4}{(200 \times 10^6) \text{ kN} / \text{ m}^2(200 \times 10^6) \text{ mm}^4} \tag{7.35-d}
\]

\[= -0.031 \text{ m} = -3.1 \text{ cm} \tag{7.35-e}
\]

Example 7-4: Rotation of a Frame (Chajes 1983)

Determine the rotation of joint C for frame shown in Fig. 7.10. \(E = 29,000 \text{ ksi}, I = 240 \text{ in}^4\).

Solution:

In this problem the virtual force is a unit moment applied at joint C, \(\delta M_e\). It will cause an internal moment \(\delta M_i\).

\[\frac{\Delta_v}{\delta W} = \frac{\int_0^L \delta M}{EI_z} \frac{M}{dx} \tag{7.34-a}
\]

\[(1) \Delta_v = \int_0^2 \frac{(0)}{EI} dx + \int_0^2 \frac{(2 + x)(50x)}{EI} dx + \int_0^5 \frac{(4)(100)}{EI} dx \tag{7.34-b}
\]

\[= \frac{2,333}{EI} \text{ kN m}^3 \tag{7.34-c}
\]

\[= \frac{(2,333) \text{ kN m}^3(10^3)^4 \text{ mm}^4 / \text{ m}^4}{(200 \times 10^6) \text{ kN} / \text{ m}^2(200 \times 10^6) \text{ mm}^4} \tag{7.34-d}
\]

\[= 0.058 \text{ m} = 5.8 \text{ cm} \tag{7.34-e}
\]

\[\frac{\Delta_h}{\delta W} = \frac{\int_0^L \delta M}{EI_z} \frac{M}{dx} \tag{7.35-a}
\]

\[(1) \Delta_h = \int_0^2 \frac{(0)}{EI} dx + \int_0^2 \frac{(0)50x}{EI} dx + \int_0^5 \frac{(-x)100}{EI} dx \tag{7.35-b}
\]

\[= \frac{-1,250}{EI} \text{ kN m}^3 \tag{7.35-c}
\]

\[= \frac{(-1,250) \text{ kN m}^3(10^3)^4 \text{ mm}^4 / \text{ m}^4}{(200 \times 10^6) \text{ kN} / \text{ m}^2(200 \times 10^6) \text{ mm}^4} \tag{7.35-d}
\]

\[= -0.031 \text{ m} = -3.1 \text{ cm} \tag{7.35-e}
\]
Figure 7.10:

<table>
<thead>
<tr>
<th>Element</th>
<th>x = 0</th>
<th>M</th>
<th>δM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BC</td>
<td>B</td>
<td>30x - 1.5x²</td>
<td>-0.05x</td>
</tr>
<tr>
<td>CD</td>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that moments are considered positive when they produce compression on the outside of the frame.

Substitution yields:

\[
\frac{\theta_C}{\delta W} = \int_0^L \frac{M \delta M}{EIz} \, dx \quad (7.36-a)
\]

(1) \[\theta_C = \int_0^{20} \left(-0.05x\right) \frac{(30x - 1.5x^2)}{EI} \, dx \quad k^2 \text{ ft}^3 \quad (7.36-b)\]

\[= \frac{(1,000)(144)}{(29,000)(240)} \quad (7.36-c)\]

\[= -0.021 \text{ radians} \quad (7.36-d)\]

Example 7-5: Truss Deflection (Chajes 1983)

Determine the vertical deflection of joint 7 in the truss shown in Fig. 7.11. \(E = 30,000 \text{ ksi}\).

Solution:

Two analyses are required. One with the real load, and the other using a unit vertical load at joint 7. Results for those analysis are summarized below. Note that advantage was taken of the symmetric load and structure.

<table>
<thead>
<tr>
<th>Member</th>
<th>(A)</th>
<th>(L)</th>
<th>(P)</th>
<th>(\delta P)</th>
<th>(\delta PPL/A)</th>
<th>(n)</th>
<th>(n\delta PPL/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 4</td>
<td>2</td>
<td>25</td>
<td>-50</td>
<td>-0.083</td>
<td>518.75</td>
<td>2</td>
<td>1,037.5</td>
</tr>
<tr>
<td>10 & 13</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>0.67</td>
<td>268.0</td>
<td>2</td>
<td>536.0</td>
</tr>
<tr>
<td>11 & 12</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>0.67</td>
<td>268.0</td>
<td>2</td>
<td>536.0</td>
</tr>
<tr>
<td>5 & 9</td>
<td>1</td>
<td>15</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6 & 8</td>
<td>1</td>
<td>25</td>
<td>16.7</td>
<td>0.83</td>
<td>346.5</td>
<td>2</td>
<td>693.0</td>
</tr>
<tr>
<td>2 & 3</td>
<td>2</td>
<td>20</td>
<td>-53.3</td>
<td>-1.33</td>
<td>708.9</td>
<td>2</td>
<td>1,417.8</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,220.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Victor Saouma Structural Analysis
Figure 7.11:

Thus from Eq. 7.24 we have:

$$\frac{\Delta \delta \omega}{\delta W} = \int_0^L \frac{\delta T \frac{P}{AE}}{EI} \, dx$$ \hspace{1cm} (7.37-a)

$$= \frac{\delta U}{AE}$$ \hspace{1cm} (7.37-b)

$$1\Delta = \frac{(4,220.3)(12)}{30,000}$$ \hspace{1cm} (7.37-c)

$$= 1.69 \text{ in}$$ \hspace{1cm} (7.37-d)

Example 7-6: Torsional and Flexural Deformation, (Chajes 1983)

Determine the vertical deflection at A in the structure shown in Fig. 7.12. $E = 30,000$ ksi, $I = 144 \text{ in}^4$, $G = 12,000$ ksi, $J = 288 \text{ in}^4$

Solution:

1. In this problem we have both flexural and torsional deformation. Hence we should determine the internal moment and torsion distribution for both the real and the unit virtual load.
2. Then we will use the following relation

$$\frac{\delta W}{\delta P \Delta_A} = \int \frac{\delta M}{EI} \, dx + \int \frac{\delta T}{GJ} \, dx$$

3. The moment and torsion expressions are given by
7.3 Virtual Work 7–15

Figure 7.12:

<table>
<thead>
<tr>
<th>Element</th>
<th>x = 0</th>
<th>M</th>
<th>δM</th>
<th>T</th>
<th>δT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>A</td>
<td>10x</td>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BC</td>
<td>B</td>
<td>15x</td>
<td>x</td>
<td>50</td>
<td>5</td>
</tr>
</tbody>
</table>

4. Substituting,

\[
\delta T \Delta_A = \int \delta M \frac{M}{EI} dx + \int \delta T \frac{T}{GJ} dx
\]

\[
1 \Delta_A = \int \frac{x}{EI} dx + \int \frac{15x}{EI} dx + \int (5) \frac{50}{GJ} dx
\]

\[
= \frac{10x}{(3.042)(1.728)} + \frac{15x}{(1.250)(1.728)}
\]

\[
= 0.417 + 0.625
\]

\[
= 1.04 \text{ in}
\]

Example 7-7: Flexural and Shear Deformations in a Beam (White et al. 1976)

Determine the deflection of a cantilevered beam, of length \(L \) subjected to an end force \(P \) due to both flexural and shear deformations. Assume \(G = 0.4E \), and a square solid beam cross section.

Solution:

1. The virtual work equation is

\[
\frac{\delta T}{L} \cdot \Delta = \int_0^L \delta M \frac{M}{EI} dx + \int_0^L \delta V \frac{V}{GA} dx
\]

\[
= \int_0^L \delta M \frac{M}{EI} dx + \lambda \int_0^L \delta V \frac{V}{GA} dx
\]

2. The first integral yields for \(M = Px \), and \(\delta M = (1)(x) \)

\[
\int_0^L \delta M \frac{M}{EI} dx = \frac{P}{EI} \int_0^L x^2 dx
\]

\[
= \frac{PL^3}{3EI}
\]
3. The second integral represents the contribution of the shearing action to the total internal virtual work and hence to the total displacement.

4. Both the real shear V and virtual shear δV are constant along the length of the member, hence

$$\int_0^L \delta V \frac{\lambda V}{GA} dx = \int_0^L \frac{\lambda P}{GA} dx = \frac{\lambda PL}{GA}$$ (7.40)

5. Since $\lambda = 1.2$ for a square beam; hence

$$1 \cdot \Delta = \frac{PL^3}{3EI} + \frac{1.2PL}{GA}$$ (7.41-a)

$$= \frac{PL}{3E} \left[\frac{L^2}{I} + \frac{3.6}{0.4A} \right] = \frac{PL}{3E} \left[\frac{L^2}{I} + \frac{9}{A} \right]$$ (7.41-b)

6. For a square beam of dimension h

$$I = \frac{h^4}{12} \quad \text{and} \quad A = h^2$$ (7.42)

then

$$\Delta = \frac{PL}{3E} \left[\frac{12L^2}{h^4} + \frac{9}{h^2} \right] = \frac{3PL}{Eh^2} \left[\frac{1.33L^2}{h^2} + 1 \right]$$ (7.43)

7. Choosing $L = 20$ ft and $h = 1.5$ ft ($L/h = 13.3$)

$$\Delta = \frac{3PL}{Eh^2} \left[1.33 \left(\frac{20}{1.5} \right)^2 + 1 \right] = \frac{3PL}{Eh^2} (237 + 1)$$ (7.44)

Thus the flexural deformation is 237 times the shear displacement. This comparison reveals why we normally neglect shearing deformation in beams.

As the beam gets shorter or deeper, or as L/h decreases, the flexural deformation decreases relative to the shear displacement. At $L/h = 5$, the flexural deformation has reduced to $1.33(5)^2 = 33$ times the shear displacement.

Example 7-8: Thermal Effects in a Beam (White et al. 1976)

The cantilever beam of example 7-7 is subjected to a thermal environment that produces a temperature change of $70^\circ C$ at the top surface and $230^\circ C$ at the bottom surface, Fig. 7.13.

If the beam is a steel, wide flange section, 2 m long and 200 mm deep, what is the angle of rotation, θ_1, at the end of beam as caused by the temperature effect? The original uniform temperature of the beams was $40^\circ C$.

Solution:

1. The external virtual force conforming to the desired real displacement θ_1 is a moment $\delta M = 1$ at the tip of the cantilever, producing an external work term of moment times rotation. The internal virtual force system for this cantilever beam is a uniform moment $\delta M_{int} = 1$.

2. The real internal deformation results from: (a) the average beam temperature of $150^\circ C$, which is $110^\circ C$ above that of the original temperature, and (b) the temperature gradient of $160^\circ C$ over the depth of the beam.

3. The first part of the thermal effect produces only a lengthening of the beam and does not enter into the work equation since the virtual loading produces no axial force corresponding to an axial change in length of the beam.

4. The second effect (thermal gradient) produces rotation $d\phi$, and an internal virtual work term of $\int_0^L \delta M d\phi$.

Victor Saouma
Structural Analysis
5. We determine the value of \(d\phi \) by considering the extreme fiber thermal strain as shown above. The angular rotation in the length \(dx \) is the extreme fiber thermal strain divided by half the beam depth, or

\[
d\phi = \frac{\varepsilon h}{2} = \frac{\alpha \Delta T dx}{h/2} = \frac{(11.7 \times 10^{-6})(80)dx}{100} = 936 \times 10^{-6}\frac{dx}{100} = (9.36 \times 10^{-6})dx \quad (7.45)
\]

6. Using the virtual work equation

\[
1 \cdot \theta_1 = \int_0^L \delta M d\phi \quad (7.46-a)
\]

\[
= \int_0^{2,000} 1(9.36 \times 10^{-6})dx = 0.01872 \quad (7.46-b)
\]

\[
= 0.01872 \text{ radians} \quad (7.46-c)
\]

7. This example raises the following points:

1. The value of \(\theta_1 \) would be the same for any shape of 200 mm deep steel beam that has its neutral axis of bending at middepth.

2. Curvature is produced only by thermal gradient and is independent of absolute temperature values.

3. The calculation of rotations by the method of virtual forces is simple and straightforward; the applied virtual force is a moment acting at the point where rotation is to be calculated.

4. Internal angular deformation \(d\phi \) has been calculated for an effect other than load-induced stresses. The extension of the method of virtual forces to treat inelastic displacements is obvious – all we need to know is a method for determining the inelastic internal deformations.

Example 7-9: Deflection of a Truss (White et al. 1976)
Determine the deflection at node 2 for the truss shown in Fig. 7.14.

Solution:

<table>
<thead>
<tr>
<th>Member</th>
<th>δP</th>
<th>P</th>
<th>L</th>
<th>A</th>
<th>E</th>
<th>$\frac{\delta P \cdot P \cdot L}{AE}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+0.25</td>
<td>+37.5</td>
<td>12</td>
<td>5.0</td>
<td>10×10^4</td>
<td>+22.5 $\times 10^{-4}$</td>
</tr>
<tr>
<td>2</td>
<td>+0.25</td>
<td>+52.5</td>
<td>12</td>
<td>5.0</td>
<td>10×10^3</td>
<td>+31.5 $\times 10^{-4}$</td>
</tr>
<tr>
<td>3</td>
<td>-0.56</td>
<td>-83.8</td>
<td>13.42</td>
<td>5.0</td>
<td>10×10^3</td>
<td>+125.9 $\times 10^{-4}$</td>
</tr>
<tr>
<td>4</td>
<td>+0.56</td>
<td>+16.8</td>
<td>13.42</td>
<td>5.0</td>
<td>10×10^3</td>
<td>+25.3 $\times 10^{-4}$</td>
</tr>
<tr>
<td>5</td>
<td>+0.56</td>
<td>-16.8</td>
<td>13.42</td>
<td>5.0</td>
<td>10×10^3</td>
<td>-25.3 $\times 10^{-4}$</td>
</tr>
<tr>
<td>6</td>
<td>-0.56</td>
<td>-117.3</td>
<td>13.42</td>
<td>5.0</td>
<td>10×10^3</td>
<td>+176.6 $\times 10^{-4}$</td>
</tr>
<tr>
<td>7</td>
<td>-0.50</td>
<td>-45.0</td>
<td>12</td>
<td>5.0</td>
<td>10×10^3</td>
<td>+54.0 $\times 10^{-4}$</td>
</tr>
</tbody>
</table>

The deflection is thus given by

$$\delta \Delta = \sum \frac{\delta P \cdot P \cdot L}{AE}$$

$$\Delta = (410.5 \times 10^{-4})(12 \text{ in/ft}) = 0.493 \text{ in}$$

Example 7-10: Thermal Deflection of a Truss; I (White et al. 1976)
7.3 Virtual Work 7–19

The truss in example 7-9 the preceding example is built such that the lower chords are shielded from the rays of the sun. On a hot summer day the lower chords are 30° F cooler than the rest of the truss members. What is the magnitude of the vertical displacement at joint 2 as a result of this temperature difference?

Solution:

1. The virtual force system remains identical to that in the previous example because the desired displacement component is the same.
2. The real internal displacements are made up of the shortening of those members of the truss that are shielded from the sun.
3. Both bottom chord members 1 and 2 thus shorten by
 \[\Delta l = \alpha(\Delta T)(L) = (0.0000128) \text{ in/ in} / \text{°F} (30) \text{°F (12) ft (12) in/ft} = 0.0553 \text{ in} \]
4. Then,
 \[1 \cdot \Delta = \sum \delta \Delta L = 0.25(-0.0553) + 0.25(-0.0553) = -0.0276 \]
 \[= -0.0276 \text{ in} \]
5. The negative sign on the displacement indicates that it is in opposite sense to the assumed direction of the displacement; the assumed direction is always identical to the direction of the applied virtual force.
6. Note that the same result would be obtained if we had considered the internal displacements to be made up of the lengthening of all truss members above the bottom chord.

Example 7-11: Thermal Deflections in a Truss; II (White et al. 1976)

A six-panel highway bridge truss, Fig. 7.15 is constructed with sidewalks outside the trusses so that

![Diagram of a six-panel highway bridge truss](image)

Figure 7.15:

the bottom chords are shaded. What will be the vertical deflection component of the bottom chord at the center of the bridge when the temperature of the bottom chord is 40°F (\(\Delta T\)) below that of the top chord, endposts, and webs? (coefficient of steel thermal expansion is \(\alpha=0.0000065\) per degree F.)

Solution:

1. The deflection is given by
 \[\frac{\Delta \delta \overline{P}}{\delta W} = \int_0^L \frac{\delta \overline{P} P}{AE} dx = \Sigma \delta \overline{P} \frac{PL}{AE} = \Sigma \delta \overline{P} \Delta L = \Sigma \delta \overline{P} \alpha \Delta T L \]
 \[(7.50) \]
where ΔL is the temperature change in the length of each member, and $\delta \bar{P}$ are the member virtual internal forces.

2. Taking advantage of symmetry:

<table>
<thead>
<tr>
<th>Member</th>
<th>L (ft)</th>
<th>$(0.0000065)(40)L$</th>
<th>$\alpha \Delta T L$</th>
<th>$\delta \bar{P}$ (k)</th>
<th>$\delta \bar{P} \Delta L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>35</td>
<td>$+0.00910$</td>
<td>$+0.625$</td>
<td>$+0.00568$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>$+0.00546$</td>
<td>$+0.75$</td>
<td>$+0.00409$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>$+0.00546$</td>
<td>$+1.13$</td>
<td>$+0.00616$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>$+0.00910$</td>
<td>-0.625</td>
<td>-0.00568</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>$+0.00728$</td>
<td>$+0.5$</td>
<td>$+0.00364$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>$+0.00910$</td>
<td>-0.625</td>
<td>-0.00568</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$+0.00821$

3. Hence, the total deflection is

$$\Delta = (2)(0.00821)(12) \text{ in/ft} = +0.20 \text{ in} \ (7.51)$$

4. A more efficient solution would have consisted in considering members 1,2, and 3 only and apply a $\Delta T = -40$, we would obtain the same displacement.

5. Note that the forces in members 1, 2, and 3 (-0.75, -0.375, and -0.375 respectively) were not included in the table because the corresponding $\Delta T = 0$.

6. A simpler solution would have $\Delta T = -40$ in members 1, 2, and 3 thus,

<table>
<thead>
<tr>
<th>Member</th>
<th>L (ft)</th>
<th>$(0.0000065)(40)L$</th>
<th>$\alpha \Delta T L$</th>
<th>$\delta \bar{P}$ (k)</th>
<th>$\delta \bar{P} \Delta L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>-0.00546</td>
<td>-0.75</td>
<td>$+0.004095$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>-0.00546</td>
<td>-0.375</td>
<td>$+0.0020475$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>-0.00546</td>
<td>-0.375</td>
<td>$+0.0020475$</td>
<td></td>
</tr>
</tbody>
</table>

$+0.00819$

$$\Delta = (2)(0.00819)(12) \text{ in/ft} = +0.20 \text{ in} \ (7.52)$$

Example 7-12: Truss with initial camber

It is desired to provide 3 in. of camber at the center of the truss shown below by fabricating the endposts and top chord members additionally long. How much should the length of each endpost and each panel of the top chord be increased?

Solution:

1. Assume that each endpost and each section of top chord is increased 0.1 in.
Thus,
\[(2)(0.250) = 0.50 \text{ in}\] (7.53)

2. Since the structure is linear and elastic, the required increase of length for each section will be
\[
\left(\frac{3.0}{0.50}\right)(0.1) = 0.60 \text{ in}\] (7.54)

3. If we use the practical value of 0.625 in., the theoretical camber will be
\[
\frac{(6.25)(0.50)}{0.1} = 3.125 \text{ in}\] (7.55)

Example 7-13: Prestressed Concrete Beam with Continuously Variable I (White et al. 1976)

A prestressed concrete beam is made of variable depth for proper location of the straight pretensioning tendon, Fig. 7.16. Determine the midspan displacement (point c) produced by dead weight of the girder. The concrete weights 23.6 kN/m³ and has \(E = 25,000 \text{ MPa (N/mm}^2\). The beam is 0.25 m wide.

Solution:

1. We seek an expression for the real moment \(M\), this is accomplished by first determining the reactions, and then considering the free body diagram.
2. We have the intermediary resultant forces
\[
R_1 = (0.25)x(0.26)m^3(23.6)kN/m^3 = 3.54x\] (7.56-a)
\[
R_2 = \frac{1}{2}(0.25)x(0.04x)m^3(23.6)kN/m^3 = 0.118x^2\] (7.56-b)

Hence,
\[
M(x) = 47.2x - 3.54x \left(\frac{x}{2}\right) - 0.118x^2 \left(\frac{x}{3}\right)\] (7.57-a)
\[
= 47.2x - 1.76x^2 - 0.0393x^3\] (7.57-b)

3. The moment of inertia of the rectangular beam varies continuously and is given, for the left half of the beam, by
\[
I(x) = \frac{1}{12}bh^3 = \frac{1}{12}(0.25)(0.6 + 0.04x)^3\] (7.58)

4. Thus, the real angle changes produced by dead load bending are
\[
d\phi = \frac{M}{EI}dx = \frac{47.2x - 1.76x^2 - 0.0393x^3}{E \left(\frac{1}{12}\right) (0.6 + 0.04x)^3}dx\] (7.59)

5. The virtual force system corresponding to the desired displacement is shown above with \(\delta M = (1/2)x\) for the left half of the span. Since the beam is symmetrical, the virtual work equations can be evaluated for only one half of the beam and the final answer is then obtained by multiplying the half-beam result by two.
Figure 7.16: *(correct 42.7 to 47.2)
6. The direct evaluation of the integral \(\int \delta M \, d\phi \) is difficult because of the complexity of the expression for \(d\phi \). Hence we shall use a numerical procedure, replacing the \(\int \delta M (M/EI) \, dx \) with the \(\sum \delta M (M/EI) \Delta x \), where each quantity in the summation is evaluated at the center of the interval \(\Delta x \) and held constant over the interval length. As \(\Delta x \) becomes very short, the solution approaches the exact answer.

7. An interval length of 1 meter, giving 10 elements in the half length of the beam, is chosen to establish an accurate result.

8. The internal virtual work quantity is then

\[
\int_0^{L/2} \frac{\delta M}{EI} \, dx \approx \sum \frac{\delta M}{EI} (\Delta x) = \sum \frac{\delta M}{E} (\frac{h^3}{h^3}) (\Delta x) \approx \frac{48}{E} \sum \frac{\delta M}{h^3} (\Delta x) \tag{7.60-a}
\]

9. The summation for the 10 elements in the left half of the beam gives

<table>
<thead>
<tr>
<th>Segment</th>
<th>(x)</th>
<th>(h)</th>
<th>(h^3)</th>
<th>(M)</th>
<th>(\delta M)</th>
<th>(\delta M/h^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.62</td>
<td>0.238</td>
<td>23.2</td>
<td>0.25</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>0.66</td>
<td>0.288</td>
<td>66.7</td>
<td>0.75</td>
<td>174</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>0.70</td>
<td>0.343</td>
<td>106.4</td>
<td>1.25</td>
<td>388</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>0.74</td>
<td>0.405</td>
<td>150</td>
<td>1.75</td>
<td>648</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>0.78</td>
<td>0.475</td>
<td>173</td>
<td>2.25</td>
<td>820</td>
</tr>
<tr>
<td>6</td>
<td>5.5</td>
<td>0.82</td>
<td>0.551</td>
<td>200</td>
<td>2.75</td>
<td>998</td>
</tr>
<tr>
<td>7</td>
<td>6.5</td>
<td>0.86</td>
<td>0.636</td>
<td>222</td>
<td>3.25</td>
<td>1,134</td>
</tr>
<tr>
<td>8</td>
<td>7.5</td>
<td>0.90</td>
<td>0.729</td>
<td>238</td>
<td>3.75</td>
<td>1,224</td>
</tr>
<tr>
<td>9</td>
<td>8.5</td>
<td>0.94</td>
<td>0.831</td>
<td>250</td>
<td>4.25</td>
<td>1,279</td>
</tr>
<tr>
<td>10</td>
<td>9.5</td>
<td>0.98</td>
<td>0.941</td>
<td>256</td>
<td>4.75</td>
<td>1,292</td>
</tr>
</tbody>
</table>

10. The SI units should be checked for consistency. Letting the virtual force carry the units of kN, the virtual moment \(\delta M \) has the units of \(m \cdot kN \), and the units of the equation

\[
\Delta c = \frac{1}{1 \text{kN}} \sum \frac{\delta M}{EI} \Delta x
\]

are

\[
1 \left(\frac{m \cdot kN}{(MN/m^2)} \right) = \frac{m}{1,000} = \text{mm}
\]

11. Then

\[
\int_0^L \frac{\delta M}{EI} \, dx \approx 2 \left[\frac{48}{25,000} (7,981)(1) \right] = 30.6 \text{mm}
\]

and the deflection at midspan is

\[
\Delta c = \boxed{30.6 \text{ mm}}
\]

12. Acceptably accurate results may be obtained with considerably fewer elements (longer intervals \(\Delta x \)). Using four elements with centers at 2, 5, 8, and 10, the \(\sum (\delta M/h^3) \Delta x \) is

\[
\sum = 3(174) + 3(820) + 3(1,224) + 1(1,292) = 7,946
\]

which is only 0.4% lower than the 10 element solution. If we go to two elements, 3 and 8, we obtain a summation of \(5(388) + 5(1,224) = 8,060 \), which is 1% high. A one element solution, with \(x = 5 \text{ m} \) and \(h = 0.8 \text{ m} \), gives a summation of \(9,136 \), which is 14.4% high and much less accurate than the 2 element solution.

13. Finally, it should be noted that the calculations involved in this example are essentially identical to those necessary in the moment area method.

Victor Saouma

Structural Analysis
7.4 *Maxwell Betti’s Reciprocal Theorem

If we consider a beam with two points, A, and B, we seek to determine

1. The deflection at A due to a unit load at B, or \(f_{AB} \)
2. The deflection at B due to a unit load at A, or \(f_{BA} \)

Applying the theorem of virtual work

\[
f_{AB} = \int_0^L \delta M_A \frac{M_B}{EI} dx \quad (7.66-a)
\]

\[
f_{BA} = \int_0^L \delta M_B \frac{M_A}{EI} dx \quad (7.66-b)
\]

But since the both the real and the virtual internal moments are caused by a unit load, both moments are numerically equal

\[
\delta M_A = M_A \quad (7.67-a)
\]

\[
\delta M_B = M_B \quad (7.67-b)
\]

thus we conclude that

\[
f_{BA} = f_{AB} \quad (7.68)
\]

or The displacement at a point B on a structure due to a unit load acting at point A is equal to the displacement of point A when the unit load is acting at point B.

Similarly The rotation at a point B on a structure due to a unit couple moment acting at point A is equal to the rotation at point A when a unit couple moment is acting at point B.

And The rotation in radians at point B on a structure due to a unit load acting at point A is equal to the displacement of point A when a unit couple moment is acting at point B.

These theorems will be used later on in justifying the symmetry of the stiffness matrix, and in construction of influence lines using the Müller-Breslau principle.

7.5 Summary of Equations
7.5 Summary of Equations

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>Virtual Force δU^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
<td>Linear</td>
</tr>
<tr>
<td>Axial</td>
<td>$\int_0^L \frac{P^2}{2AE} dx$</td>
<td>$\int_0^L \delta \sigma_e dx$</td>
</tr>
<tr>
<td>Shear</td>
<td>\ldots</td>
<td>$\int_0^L \delta \gamma_{xy} dx$</td>
</tr>
<tr>
<td>Flexure</td>
<td>$\int_0^L \frac{M^2}{2EI_z} dx$</td>
<td>$\int_0^L \delta M \phi dx$</td>
</tr>
<tr>
<td>Torsion</td>
<td>$\int_0^L \frac{T^2}{2GJ} dx$</td>
<td>$\int_0^L \delta T \theta dx$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>Virtual Force δW^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$\sum_i P_i \Delta_i$</td>
<td>$\sum_i \delta P_i \Delta_i$</td>
</tr>
<tr>
<td>M</td>
<td>$\sum_i \frac{1}{2} M_i \theta_i$</td>
<td>$\sum_i \delta M_i \theta_i$</td>
</tr>
<tr>
<td>w</td>
<td>$\int_0^L w(x)v(x)dx$</td>
<td>$\int_0^L \delta w(x)v(x)dx$</td>
</tr>
</tbody>
</table>

Table 7.3: Summary of Expressions for the Internal Strain Energy and External Work
Chapter 8

ARCHES and CURVED STRUCTURES

1 This chapter will concentrate on the analysis of arches.

2 The concepts used are identical to the ones previously seen, however the major (and only) difference is that equations will be written in polar coordinates.

3 Like cables, arches can be used to reduce the bending moment in long span structures. Essentially, an arch can be considered as an inverted cable, and is transmits the load primarily through axial compression, but can also resist flexure through its flexural rigidity.

4 A parabolic arch uniformly loaded will be loaded in compression only.

5 A semi-circular arch uniformly loaded will have some flexural stresses in addition to the compressive ones.

8.1 Arches

6 In order to optimize dead-load efficiency, long span structures should have their shapes approximate the corresponding moment diagram, hence an arch, suspended cable, or tendon configuration in a prestressed concrete beam all are nearly parabolic, Fig. 8.1.

7 Long span structures can be built using flat construction such as girders or trusses. However, for spans in excess of 100 ft, it is often more economical to build a curved structure such as an arch, suspended cable or thin shells.

8 Since the dawn of history, mankind has tried to span distances using arch construction. Essentially this was because an arch required materials to resist compression only (such as stone, masonry, bricks), and labour was not an issue.

9 The basic issues of static in arch design are illustrated in Fig. 8.2 where the vertical load is per unit horizontal projection (such as an external load but not a self-weight). Due to symmetry, the vertical reaction is simply \(V = \frac{wh}{L} \), and there is no shear across the midspan of the arch (nor a moment). Taking moment about the crown,

\[
M = Hh - \frac{wL}{2} \left(\frac{L}{2} - \frac{L}{4} \right) = 0
\]

Solving for \(H \)

\[
H = \frac{wL^2}{8h}
\]

We recall that a similar equation was derived for arches., and \(H \) is analogous to the \(C - T \) forces in a beam, and \(h \) is the overall height of the arch. Since \(h \) is much larger than \(d \), \(H \) will be much smaller.
\[M = \frac{wL^2}{8} \]

NOTE THAT THE "IDEAL" SHAPE FOR AN ARCH OR SUSPENSION SYSTEM IS EQUIVALENT TO THE DESIGN LOAD MOMENT DIAGRAM

Figure 8.1: Moment Resisting Forces in an Arch or Suspension System as Compared to a Beam, (Lin and Stotesbury 1981)

\[M_{\text{CROWN}} = \frac{VL}{2} - \frac{wL^2}{8} - Hh = 0 \]
\[M_{\text{BASE}} = \frac{wL^2}{8} - Hh = 0 \]

Figure 8.2: Statics of a Three-Hinged Arch, (Lin and Stotesbury 1981)
than $C - T$ in a beam.

10. Since equilibrium requires H to remain constant across the arch, a parabolic curve would theoretically result in no moment on the arch section.

11. Three-hinged arches are statically determinate structures which shape can accommodate support settlements and thermal expansion without secondary internal stresses. They are also easy to analyse through statics.

12. An arch carries the vertical load across the span through a combination of axial forces and flexural ones. A well dimensioned arch will have a small to negligible moment, and relatively high normal compressive stresses.

13. An arch is far more efficient than a beam, and possibly more economical and aesthetic than a truss in carrying loads over long spans.

14. If the arch has only two hinges, Fig. 8.3, or if it has no hinges, then bending moments may exist either at the crown or at the supports or at both places.

15. Since H varies inversely to the rise h, it is obvious that one should use as high a rise as possible. For a combination of aesthetic and practical considerations, a span/rise ratio ranging from 5 to 8 or perhaps as much as 12, is frequently used. However, as the ratio goes higher, we may have buckling problems, and the section would then have a higher section depth, and the arch advantage diminishes.

16. In a parabolic arch subjected to a uniform horizontal load there is no moment. However, in practice an arch is not subjected to uniform horizontal load. First, the depth (and thus the weight) of an arch is not usually constant, then due to the inclination of the arch the actual self weight is not constant. Finally, live loads may act on portion of the arch, thus the line of action will not necessarily follow the arch centroid. This last effect can be neglected if the live load is small in comparison with the dead load.

17. Since the greatest total force in the arch is at the support, \((R = \sqrt{V^2 + H^2})\), whereas at the crown we simply have H, the crown will require a smaller section than the support.
Example 8-1: Three Hinged Arch, Point Loads. (Gerstle 1974)

Determine the reactions of the three-hinged arch shown in Fig. 8.5

![Diagram of the three-hinged arch](image)

Solution:

Four unknowns, three equations of equilibrium, one equation of condition \(\Rightarrow \) statically determinate.

\[
\begin{align*}
(+ \blacklozenge) \Sigma M^C_z &= 0; \quad (R_{Ay})(140) + (80)(3.75) - (30)(80) - (20)(40) + R_{Ax}(26.25) = 0 \\
(+ \blacklozenge) \Sigma F_x &= 0; \quad 80 - R_{Ax} - R_{Cx} = 0 \\
(+ \blacklozenge) \Sigma F_y &= 0; \quad R_{Ay} + R_{Cy} - 30 - 20 = 0 \\
(+ \blacklozenge) \Sigma M^B_z &= 0; \quad (R_{Ax})(60) - (80)(30) - (30)(20) + (R_{Ay})(80) = 0 \Rightarrow 80R_{Ay} + 60R_{Ax} = 3,000
\end{align*}
\]

Solving those four equations simultaneously we have:

\[
\begin{bmatrix}
140 & 26.25 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
80 & 60 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
R_{Ay} \\
R_{Ax} \\
R_{Cy} \\
R_{Cx}
\end{bmatrix}
=
\begin{bmatrix}
2,900 \\
80 \\
50 \\
3,000
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
R_{Ay} \\
R_{Ax} \\
R_{Cy} \\
R_{Cx}
\end{bmatrix}
=
\begin{bmatrix}
15.1 \text{k} \\
29.8 \text{k} \\
34.9 \text{k} \\
50.2 \text{k}
\end{bmatrix}
\]

(8.4)

We can check our results by considering the summation with respect to b from the right:

\[
(+ \blacklozenge) \Sigma M^B_z = 0; \quad -(20)(20) - (50.2)(33.75) + (34.9)(60) = 0 \sqrt{\text{}}
\]

(8.5)

Example 8-2: Semi-Circular Arch, (Gerstle 1974)

Determine the reactions of the three hinged statically determined semi-circular arch under its own dead weight \(w \) (per unit arc length \(s \), where \(ds = rd\theta \)). 8.6

Solution:

I Reactions The reactions can be determined by integrating the load over the entire structure.
1. **Vertical Reaction** is determined first:

\[
(\sum_\theta) \Sigma M_A = 0; -(C_y)(2R) + \int_{\theta=0}^{\theta=\pi} wRd\theta \frac{R(1+\cos\theta)}{dP} = 0 \quad (8.6-a)
\]

\[
\Rightarrow C_y = \frac{wR}{2} \int_{\theta=0}^{\theta=\pi} (1+\cos\theta)d\theta = \frac{wR}{2} [\theta - \sin\theta] \bigg|_{\theta=0}^{\theta=\pi}
= \frac{wR}{2} [\pi - \sin\pi - (0 - \sin0)]
= \frac{\pi}{2} wR \quad (8.6-b)
\]

2. **Horizontal Reactions** are determined next

\[
(\sum_\theta) \Sigma M_B = 0; -(C_x)(R) + (C_y)(R) - \int_{\theta=0}^{\theta=\pi} wRd\theta \frac{R\cos\theta}{dP} = 0 \quad (8.7-a)
\]

\[
\Rightarrow C_x = \frac{\pi}{2} wR - \frac{wR}{2} \int_{\theta=0}^{\theta=\pi} \cos\theta d\theta
= \frac{\pi}{2} wR - wR[\sin\theta] \bigg|_{\theta=0}^{\theta=\pi} - \frac{\pi}{2} wR - wR(\frac{\pi}{2} - 0)
= \left(\frac{\pi}{2} - 1\right) wR \quad (8.7-b)
\]

By symmetry the reactions at A are equal to those at C

II Internal Forces can now be determined, Fig. 8.7.

1. **Shear Forces**: Considering the free body diagram of the arch, and summing the forces in the radial direction (\(\Sigma F_R = 0\)):

\[
-\left(\frac{\pi}{2} - 1\right) wR \cos\theta + \frac{\pi}{2} wR \sin\theta - \int_{\alpha=0}^{\alpha=\theta} wRd\alpha \sin\theta + V = 0 \quad (8.8)
\]

\[
\Rightarrow V = wR \left[\left(\frac{\pi}{2} - 1\right) \cos\theta + (\theta - \frac{\pi}{2}) \sin\theta\right] \quad (8.9)
\]

2. **Axial Forces**: Similarly, if we consider the summation of forces in the axial direction (\(\Sigma F_N = 0\)):

\[
\left(\frac{\pi}{2} - 1\right) wR \sin\theta + \frac{\pi}{2} wR \cos\theta - \int_{\alpha=0}^{\alpha=\theta} wRd\alpha \cos\theta + N = 0 \quad (8.10)
\]

\[
\Rightarrow N = wR \left[(\theta - \frac{\pi}{2}) \cos\theta - (\frac{\pi}{2} - 1) \sin\theta\right] \quad (8.11)
\]

3. **Moment**: Now we can consider the third equation of equilibrium (\(\Sigma M_z = 0\)):

\[
(\sum_\theta) \Sigma M \quad \left(\frac{\pi}{2} - 1\right) wR \cdot R \sin\theta - \frac{\pi}{2} wR^2 (1 - \cos\theta) +
\int_{\alpha=0}^{\alpha=\theta} wRd\alpha \cdot R \cos\alpha - \cos\theta + M = 0 \quad (8.12)
\]

\[
\Rightarrow M = wR^2 \left[\left(\frac{\pi}{2} - 1\right) \sin\theta + (\theta - \frac{\pi}{2}) \cos\theta\right] \quad (8.13)
\]
III Deflection are determined last

1. The real curvature \(\phi \) is obtained by dividing the moment by \(EI \)

\[
\phi = \frac{M}{EI} = \frac{wR^2}{EI} \left[\frac{\pi}{2} (1 - \sin \theta) + (\theta - \frac{\pi}{2}) \cos \theta \right]
\]

(8.14)

1. The virtual force \(\delta P \) will be a unit vertical point in the direction of the desired deflection, causing a virtual internal moment

\[
\delta M = \frac{R}{2} [1 - \cos \theta - \sin \theta] \quad 0 \leq \theta \leq \frac{\pi}{2}
\]

(8.15)

\(P \)

2. Hence, application of the virtual work equation yields:

\[
\frac{1}{\delta P} \cdot \Delta = 2 \int_{\theta=0}^{\theta=\pi} \frac{wR^2}{EI} \left[\frac{\pi}{2} (1 - \sin \theta) + (\theta - \frac{\pi}{2}) \cos \theta \right] \cdot \frac{R}{2} \cdot [1 - \cos \theta - \sin \theta] \frac{Rd\theta}{\delta M} dx
\]

\[
= \frac{wR^4}{16EI} \left[7\pi^2 - 18\pi - 12 \right]
\]

\[
= .0337 \frac{wR^4}{EI}
\]

(8.16-a)

\[
\]

8.1.2 Statically Indeterminate

Example 8-3: Statically Indeterminate Arch, (Kinney 1957)
Determine the value of the horizontal reaction component of the indicated two-hinged solid rib arch, Fig. 8.8 as caused by a concentrated vertical load of 10 k at the center line of the span. Consider shearing, axial, and flexural strains. Assume that the rib is a W24x130 with a total area of 38.21 in2, that it has a web area of 13.70 in2, a moment of inertia equal to 4,000 in4, E of 30,000 k/in2, and a shearing modulus G of 13,000 k/in2.

Solution:

1. Consider that end C is placed on rollers, as shown in Fig. ?? A unit fictitious horizontal force is applied at C. The axial and shearing components of this fictitious force and of the vertical reaction at C, acting on any section θ in the right half of the rib, are shown at the right end of the rib in Fig. 13-7.

2. The expression for the horizontal displacement of C is

$$
\Delta_{ch} = \frac{1}{P} \int_C^B \delta M \frac{M}{EI} ds + \int_C^B \delta V \frac{V}{AE} ds + \int_C^B \delta N \frac{N}{AE} ds
$$

(8.17)

3. From Fig. 8.9, for the rib from C to B,

$$
M = \frac{P}{2} (100 - R \cos \theta)
$$

(8.18-a)

$$
\delta M = 1(\dot{R} \sin \theta - 125.36)
$$

(8.18-b)

$$
V = \frac{P}{2} \sin \theta
$$

(8.18-c)

$$
\delta V = \cos \theta
$$

(8.18-d)

$$
N = \frac{P}{2} \cos \theta
$$

(8.18-e)
Figure 8.9: Statically Indeterminate Arch; ‘Horizontal Reaction Removed

\[\delta \bar{N} = - \sin \theta \quad (8.18-f) \]
\[ds = Rd\theta \quad (8.18-g) \]

4. If the above values are substituted in Eq. 8.17 and integrated between the limits of 0.898 and \(\pi / 2 \), the result will be

\[\Delta_{Ch} = 22.55 + 0.023 - 0.003 = 22.57 \quad (8.19) \]

5. The load \(P \) is now assumed to be removed from the rib, and a real horizontal force of 1 k is assumed to act toward the right at \(C \) in conjunction with the fictitious horizontal force of 1 k acting to the right at the same point. The horizontal displacement of \(C \) will be given by

\[\delta_{ChCh} = 2 \int_{C}^{B} \delta \bar{M} \frac{M}{EI} ds + 2 \int_{C}^{B} \delta \bar{V} \bar{V} A_{w} G ds + 2 \int_{C}^{B} \delta \bar{N} \bar{N} A_{Ed} ds \quad (8.20-a) \]
\[= 2.309 + 0.002 + 0.002 = 2.313 \text{ in} \quad (8.20-b) \]

6. The value of the horizontal reaction component will be

\[H_{C} = \frac{\Delta_{Ch}}{\delta_{ChCh}} = \frac{22.57}{2.313} = 9.75 \text{ k} \quad (8.21) \]

7. If only flexural strains are considered, the result would be

\[H_{C} = \frac{22.55}{2.309} = 9.76 \text{ k} \quad (8.22) \]

Comments

1. For the given rib and the single concentrated load at the center of the span it is obvious that the effects of shearing and axial strains are insignificant and can be disregarded.

2. Erroneous conclusions as to the relative importance of shearing and axial strains in the usual solid rib may be drawn, however, from the values shown in Eq. 8.19. These indicate that the effects of the shearing strains are much more significant than those of the axial strains. This is actually the case for the single concentrated load chosen for the demonstration, but only because the rib does not approximate the funicular polygon for the single load. As a result, the shearing components on most sections of the rib are more important than would otherwise be the case.
3. The usual arch encountered in practice, however, is subjected to a series of loads, and the axis of the rib will approximate the funicular polygon for these loads. In other words, the line of pressure is nearly perpendicular to the right section at all points along the rib. Consequently, the shearing components are so small that the shearing strains are insignificant and are neglected.

4. Axial strains, resulting in rib shortening, become increasingly important as the rise-to-span ratio of the arch decreases. It is advisable to determine the effects of rib shortening in the design of arches. The usual procedure is to first design the rib by considering flexural strains only, and then to check for the effects of rib shortening.

8.2 Curved Space Structures

Example 8-4: Semi-Circular Box Girder, (Gerstle 1974)

Determine the reactions of the semi-circular cantilevered box girder shown in Fig. 8.10 subjected to its own weight \(w \).

Solution:

I \textbf{Reactions} are again determined first. From geometry we have \(OA = R \), \(OB = R \cos \theta \), \(AB = OA - BO = R - R \cos \theta \), and \(BP = R \sin \theta \). The moment arms for the moments with respect to the \(x \) and \(y \) axis are \(BP \) and \(AB \) respectively. Applying three equations of equilibrium we obtain

\[
F_z^A - \int_{\theta=0}^{\theta=\pi} wRd\theta = 0 \Rightarrow F_z^A = wR\pi \quad (8.23-a)
\]

\[
M_x^A - \int_{\theta=0}^{\theta=\pi} (wRd\theta)(R \sin \theta) = 0 \Rightarrow M_x^A = 2wR^2 \quad (8.23-b)
\]

\[
M_y^A - \int_{\theta=0}^{\theta=\pi} (wRd\theta)R(1 - \cos \theta) = 0 \Rightarrow M_y^A = -wR^2\pi \quad (8.23-c)
\]

II \textbf{Internal Forces} are determined next

1. \textbf{Shear Force}:

\[
(+1) \sum F_z = 0 \Rightarrow V - \int_0^\theta wRd\alpha = 0 \Rightarrow V = wr\theta \quad (8.24)
\]
2. Bending Moment:

\[
\Sigma M_R = 0 \Rightarrow M - \int_0^\theta (wRd\alpha)(R\sin\alpha) = 0 \Rightarrow M = wR^2(1 - \cos\theta) \tag{8.25}
\]

3. Torsion:

\[
\Sigma M_T = 0 \Rightarrow + \int_0^\theta (wRd\alpha)R(1 - \cos\alpha) = 0 \Rightarrow T = -wR^2(\theta - \sin\theta) \tag{8.26}
\]

III Deflection are determined last we assume a rectangular cross-section of width \(b\) and height \(d = 2b\) and a Poisson’s ratio \(\nu = 0.3\).

1. Noting that the member will be subjected to both flexural and torsional deformations, we seek to determine the two stiffnesses.

2. The flexural stiffness \(EI\) is given by \(EI = E\frac{bd^3}{12} = E\frac{b(2b)^3}{12} = \frac{2b^3}{4} = .667Eb^4\).

3. The torsional stiffness of solid rectangular sections \(J = kb^3d\) where \(b\) is the shorter side of the section, \(d\) the longer, and \(k\) a factor equal to .229 for \(\frac{d}{b} = 2\). Hence \(G = \frac{\frac{E}{2(1+\nu)}}{2(1+\nu)} = \frac{E}{2(1+\nu)} = .385E\), and \(GJ = (.385E)(.229b^4) = .176Eb^4\).

4. Considering both flexural and torsional deformations, and replacing \(dx\) by \(rd\theta\):

\[
\frac{\delta T^\wedge}{\delta \nabla^\wedge} = \int_0^\pi \frac{\delta M}{EI} \frac{M}{zd\theta} + \int_0^\pi \frac{\delta T}{GJ} T \frac{GJ}{zd\theta}
\]

where the real moments were given above.

5. Assuming a unit virtual downward force \(\delta P = 1\), we have

\[
\delta M = R\sin\theta \tag{8.28-a}
\]

\[
\delta T = -R(1 - \cos\theta) \tag{8.28-b}
\]

6. Substituting these expression into Eq. 8.27

\[
\frac{1}{\delta P} \Delta = \frac{wR^2}{EI} \int_0^\pi (R\sin\theta)(1 - \cos\theta) Rd\theta + \frac{wR^2}{GJ} \int_0^\pi (\theta - \sin\theta) R(1 - \cos\theta) Rd\theta
\]

\[
= \frac{wR^4}{EI} \int_0^\pi (\sin\theta - \sin\theta \cos\theta) + \frac{1}{265}(\theta - \theta \cos\theta - \sin\theta + \sin\theta \cos\theta) d\theta
\]

\[
= \frac{wR^4}{EI} \left(\begin{array}{c} 2 \left(\frac{2}{4} + 18.56 \right) \right) = \frac{20.56wR^4}{EI} \tag{8.29-a}\]

8.2.1 Theory

\(\beta\) Adapted from (Gerstle 1974)

Because space structures may have complicated geometry, we must resort to vector analysis\(^1\) to determine the internal forces.

\(^1\) In general we have six internal forces (forces and moments) acting at any section.

\(^1\) To which you have already been exposed at an early stage, yet have very seldom used it so far in mechanics!
8.2 Curved Space Structures

8.2.1.1 Geometry

In general, the geometry of the structure is most conveniently described by a parameteric set of equations

\[x = f_1(\theta); \quad y = f_2(\theta); \quad z = f_3(\theta) \] \hspace{1cm} (8.30)

as shown in Fig. 8.11. The global coordinate system is denoted by \(X - Y - Z\), and its unit vectors are denoted \(\text{i}, \text{j}, \text{k}\).

The section on which the internal forces are required is cut and the principal axes are identified as \(N - S - W\) which correspond to the normal force, and bending axes with respect to the Strong and Weak axes. The corresponding unit vectors are \(\text{n}, \text{s}, \text{w}\).

The unit normal vector at any section is given by

\[\text{n} = \frac{dx \text{i} + dy \text{j} + dz \text{k}}{ds} = \frac{dx \text{i} + dy \text{j} + dz \text{k}}{(dx^2 + dy^2 + dz^2)^{1/2}} \] \hspace{1cm} (8.31)

The principal bending axes must be defined, that is if the strong bending axis is parallel to the \(XY\) plane, or horizontal (as is generally the case for gravity load), then this axis is normal to both the \(N\) and \(Z\) axes, and its unit vector is

\[\text{s} = \frac{\text{n} \times \text{k}}{|\text{n} \times \text{k}|} \] \hspace{1cm} (8.32)

The weak bending axis is normal to both \(N\) and \(S\), and thus its unit vector is determined from

\[\text{w} = \text{n} \times \text{s} \] \hspace{1cm} (8.33)

8.2.1.2 Equilibrium

For the equilibrium equations, we consider the free body diagram of Fig. 8.12 an applied load \(\text{P}\)

\(^2\)All vectorial quantities are denoted by a bold faced character.
is acting at point A. The resultant force vector F and resultant moment vector M acting on the cut section B are determined from equilibrium

\[\Sigma F = 0; \quad P + F = 0; \quad F = -P \]
\[\Sigma M^B = 0; \quad L \times P + M = 0; \quad M = -L \times P \]

where L is the lever arm vector from B to A.

The axial and shear forces N, V_s and V_w are all three components of the force vector F along the N, S, a and W axes and can be found by dot product with the appropriate unit vectors:

\[N = F \cdot n \]
\[V_s = F \cdot s \]
\[V_w = F \cdot w \]

Similarly the torsional and bending moments T, M_s and M_w are also components of the moment vector M and are determined from

\[T = M \cdot n \]
\[M_s = M \cdot s \]
\[M_w = M \cdot w \]

Hence, we do have a mean to determine the internal forces. In case of applied loads we summ, and for distributed load we integrate.

Example 8-5: Internal Forces in an Helicoidal Cantilevered Girder, (Gerstle 1974)

Determine the internal forces N, V_s, and V_w and the internal moments T, M_s and M_w along the helicoidal cantilevered girder shown in Flg. 8.13 due to a vertical load P at its free end.

Solution:

1. We first determine the geometry in terms of the angle θ

\[x = R \cos \theta; \quad y = R \sin \theta; \quad z = \frac{H}{\pi} \theta \]
8.2 Curved Space Structures

Figure 8.13: Helicoidal Cantilevered Girder

Draft
2. To determine the unit vector \(\mathbf{n} \) at any point we need the derivatives:

\[
\begin{align*}
 dx &= -R \sin \theta \, d\theta; \\
 dy &= R \cos \theta \, d\theta; \\
 dz &= \frac{H}{\pi} \, d\theta
\end{align*}
\]

and then insert into Eq. 8.31

\[
\mathbf{n} = \frac{-R \sin \theta \mathbf{i} + R \cos \theta \mathbf{j} + H/\pi \mathbf{k}}{[R^2 \sin^2 \theta + R^2 \cos^2 \theta + (H/\pi)^2]^{1/2}}
\]

(8.39-a)

\[
\mathbf{n} = \frac{1}{[1 + (H/\pi R)^2]^{1/2}} \left[\sin \theta \mathbf{i} + \cos \theta \mathbf{j} + (H/\pi R) \mathbf{k} \right]
\]

(8.39-b)

Since the denominator depends only on the geometry, it will be designated by \(K \).

3. The strong bending axis lies in a horizontal plane, and its unit vector can thus be determined from Eq. 8.32:

\[
\begin{align*}
 \mathbf{n} \times \mathbf{k} &= \frac{1}{K} \begin{vmatrix}
 \mathbf{i} & \mathbf{j} & \mathbf{k} \\
 -\sin \theta & \cos \theta & \frac{H}{\pi R} \\
 0 & 0 & 1
 \end{vmatrix} \\
 &= \frac{1}{K} (\cos \theta \mathbf{i} + \sin \theta \mathbf{j})
\end{align*}
\]

(8.40-a)

(8.40-b)

and the absolute magnitude of this vector \(|\mathbf{k} \times \mathbf{n}| = \frac{1}{K} \), and thus

\[
\mathbf{s} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}
\]

(8.41)

4. The unit vector along the weak axis is determined from Eq. 8.33

\[
\begin{align*}
 \mathbf{w} &= \mathbf{s} \times \mathbf{n} = \frac{1}{K} \begin{vmatrix}
 \mathbf{i} & \mathbf{j} & \mathbf{k} \\
 \cos \theta & \sin \theta & 0 \\
 -\sin \theta & \cos \theta & \frac{H}{\pi R}
 \end{vmatrix} \\
 &= \frac{1}{K} \left(\frac{H}{\pi R} \sin \theta \mathbf{i} - \frac{H}{\pi R} \cos \theta \mathbf{j} + \mathbf{k} \right)
\end{align*}
\]

(8.42-a)

(8.42-b)

5. With the geometry definition completed, we now examine the equilibrium equations. Eq. 8.34-a and 8.34-b.

\[
\begin{align*}
 \Sigma F &= 0; \quad \mathbf{F} &= -\mathbf{P} \\
 \Sigma M_b &= 0; \quad \mathbf{M} &= -\mathbf{L} \times \mathbf{P}
\end{align*}
\]

(8.43-a)

(8.43-b)

where

\[
\mathbf{L} = (R - R \cos \theta) \mathbf{i} + (0 - R \sin \theta) \mathbf{j} + \left(0 - \frac{\theta}{\pi} H \right) \mathbf{k}
\]

(8.44)

and

\[
\begin{align*}
 \mathbf{L} \times \mathbf{P} &= \begin{vmatrix}
 \mathbf{i} & \mathbf{j} & \mathbf{k} \\
 (1 - \cos \theta) & -\sin \theta & -\frac{\theta H}{\pi R} \\
 0 & 0 & \frac{H}{\pi R}
 \end{vmatrix} \\
 &= PR [-\sin \theta \mathbf{i} - (1 - \cos \theta) \mathbf{j}]
\end{align*}
\]

(8.45-a)

(8.45-b)

and

\[
\mathbf{M} = PR [\sin \theta \mathbf{i} + (1 - \cos \theta) \mathbf{j}]
\]

(8.46)
6. Finally, the components of the force $F = -P\mathbf{k}$ and the moment M are obtained by appropriate dot products with the unit vectors

$$
N = \mathbf{F} \cdot \mathbf{n} = -\frac{1}{R} P \frac{H}{\pi R} \tag{8.47-a}
$$

$$
V_s = \mathbf{F} \cdot \mathbf{s} = 0 \tag{8.47-b}
$$

$$
V_w = \mathbf{F} \cdot \mathbf{w} = -\frac{1}{R} P \tag{8.47-c}
$$

$$
T = \mathbf{M} \cdot \mathbf{n} = -\frac{PR}{\pi} (1 - \cos \theta) \tag{8.47-d}
$$

$$
M_s = \mathbf{M} \cdot \mathbf{s} = PR \sin \theta \tag{8.47-e}
$$

$$
M_w = \mathbf{M} \cdot \mathbf{w} = \frac{PH}{\pi R} (1 - \cos \theta) \tag{8.47-f}
$$
Chapter 9

APPROXIMATE FRAME ANALYSIS

1. Despite the widespread availability of computers, approximate methods of analysis are justified by
 1. Inherent assumption made regarding the validity of a linear elastic analysis \textit{vis a vis} of an ultimate failure design.
 2. Ability of structures to redistribute internal forces.
 3. Uncertainties in load and material properties

2. Vertical loads are treated separately from the horizontal ones.

3. We use the design sign convention for moments (+ve tension below), and for shear (ccw +ve).

4. Assume girders to be numbered from left to right.

5. In all free body diagrams assume positive forces/moments, and take algebraic sums.

6. The key to the approximate analysis method is our ability to sketch the deflected shape of a structure and identify inflection points.

7. We begin by considering a uniformly loaded beam and frame. In each case we consider an extreme end of the restraint: a) free or b) restrained. For the frame a relatively flexible or stiff column would be analogous to a free or fixed restrain on the beam, Fig. 9.1.

9.1 Vertical Loads

8. With reference to Fig. 9.1, we now consider an intermediary case as shown in Fig. 9.2.

9. With the location of the inflection points identified, we may now determine all the reactions and internal forces from statics.

10. If we now consider a multi-bay/multi-storey frame, the girders at each floor are assumed to be continuous beams, and columns are assumed to resist the resulting unbalanced moments from the girders, we may make the following assumptions
 1. Girders at each floor act as continuous beams supporting a uniform load.
 2. Inflection points are assumed to be at
 (a) One tenth the span from both ends of each girder.
 (b) Mid-height of the columns
 3. Axial forces and deformation in the girder are negligibly small.
Figure 9.1: Uniformly Loaded Beam and Frame with Free or Fixed Beam Restraint
Figure 9.2: Uniformly Loaded Frame, Approximate Location of Inflection Points
4. Unbalanced end moments from the girders at each joint is distributed to the columns above and below the floor.

Based on the first assumption, all beams are statically determinate and have a span, L_s equal to 0.8 the original length of the girder, L. (Note that for a rigidly connected member, the inflection point is at 0.211 L, and at the support for a simply supported beam; hence, depending on the nature of the connection one could consider those values as upper and lower bounds for the approximate location of the hinge).

End forces are given by

Maximum positive moment at the center of each beam is, Fig. 9.3

$$M^{+} = \frac{1}{8}wL_s^2 = \frac{1}{8}(0.8)^2L^2 = 0.08wL^2$$ \hspace{1cm} (9.1)

Maximum negative moment at each end of the girder is given by, Fig. 9.3

$$M^{left} = M^{right} = -\frac{w}{2}(0.1L)^2 - \frac{w}{2}(0.8L)(0.1L) = -0.045wL^2$$ \hspace{1cm} (9.2)

Girder Shear are obtained from the free body diagram, Fig. 9.4

$$V^{left} = \frac{wL}{2} \hspace{1cm} V^{right} = -\frac{wL}{2}$$ \hspace{1cm} (9.3)
Column axial force is obtained by summing all the girder shears to the axial force transmitted by the column above it. Fig. 9.4

\[P_{\text{down}} = P_{\text{up}} + V_{\text{right}}^{i} - V_{\text{left}}^{i-1} \]

(9.4)

Column Moment are obtained by considering the free body diagram of columns Fig. 9.5

\[M_{\text{top}} = M_{\text{bot}}^{\text{above}} - M_{i-1}^{\text{right}} + M_{i}^{\text{left}} \quad M_{\text{bot}} = -M_{\text{top}} \]

(9.5)

Column Shear Points of inflection are at mid-height, with possible exception when the columns on the first floor are hinged at the base, Fig. 9.5

\[V = \frac{M_{\text{top}}}{\frac{h}{2}} \]

(9.6)

Girder axial forces are assumed to be negligible eventhough the unbalanced column shears above and below a floor will be resisted by girders at the floor.

9.2 Horizontal Loads

13 Again, we begin by considering a simple frame subjected to a horizontal force, Fig. 9.6. depending on the boundary conditions, we will have different locations for the inflection points.

14 For the analysis of a multi-bays/multi-storeys frame, we must differentiate between low and high rise buildings.

Low rise buildings, where the height is at least smaller than the horizontal dimension, the deflected shape is characterized by shear deformations.
Figure 9.5: Approximate Analysis of Frames Subjected to Vertical Loads; Column Moments
9.2 Horizontal Loads

Figure 9.6: Horizontal Force Acting on a Frame, Approximate Location of Inflection Points
High rise buildings, where the height is several times greater than its least horizontal dimension, the deflected shape is dominated by overall flexural deformation.

9.2.1 Portal Method

Low rise buildings under lateral loads, have predominantly shear deformations. Thus, the approximate analysis of this type of structure is based on

1. Distribution of horizontal shear forces.
2. Location of inflection points.

The portal method is based on the following assumptions

1. Inflection points are located at
 (a) Mid-height of all columns above the second floor.
 (b) Mid-height of floor columns if rigid support, or at the base if hinged.
 (c) At the center of each girder.
2. Total horizontal shear at the mid-height of all columns at any floor level will be distributed among these columns so that each of the two exterior columns carry half as much horizontal shear as each interior columns of the frame.

Forces are obtained from

Column Shear is obtained by passing a horizontal section through the mid-height of the columns at each floor and summing the lateral forces above it, then Fig. 9.7

\[V_{ext} = \frac{\sum F_{lateral}}{2 \text{No. of bays}} \quad V_{int} = 2V_{ext} \]

Figure 9.7: Approximate Analysis of Frames Subjected to Lateral Loads; Column Shear
9.2 Horizontal Loads

Column Moments at the end of each column is equal to the shear at the column times half the height of the corresponding column, Fig. 9.7

\[M_{\text{top}} = \frac{V}{2} \quad M_{\text{bot}} = -M_{\text{top}} \quad (9.8) \]

Girder Moments is obtained from the columns connected to the girder, Fig. 9.8

\[M_{\text{lft}} = M_{\text{col}} - M_{\text{below}} + M_{\text{rgt}} - M_{\text{rgt}} \quad (9.9) \]

Girder Shears Since there is an inflection point at the center of the girder, the girder shear is obtained by considering the sum of moments about that point, Fig. 9.8

\[V^{\text{lft}} = -\frac{2M}{L} \quad V^{\text{rgt}} = V^{\text{lft}} \quad (9.10) \]

Column Axial Forces are obtained by summing girder shears and the axial force from the column above, Fig. ??

\[P = P_{\text{above}} + P^{\text{rgt}} + P^{\text{lft}} \quad (9.11) \]
In either case, you should always use a free body diagram in conjunction with this method, and never rely on a blind application of the formulae.

Example 9-1: Approximate Analysis of a Frame subjected to Vertical and Horizontal Loads

Draw the shear, and moment diagram for the following frame. Solution:

Vertical Loads

The analysis should be conducted in conjunction with the free body diagram shown in Fig. 9.11.
Figure 9.11: Free Body Diagram for the Approximate Analysis of a Frame Subjected to Vertical Loads
1. Top Girder Moments

\[M_{1t}^{ft} = -0.045w_{12}L_{12}^2 = -(0.045)(0.25)(20)^2 = -4.5 \text{ k.ft} \]
\[M_{1t}^{ct} = 0.08w_{12}L_{12}^2 = (0.08)(0.25)(20)^2 = 8.0 \text{ k.ft} \]
\[M_{1t}^{rt} = M_{1t}^{ft} = -4.5 \text{ k.ft} \]
\[M_{1t}^{ft} = -0.045w_{13}L_{13}^2 = -(0.045)(0.25)(30)^2 = -10.1 \text{ k.ft} \]
\[M_{1c}^{ct} = 0.08w_{13}L_{13}^2 = (0.08)(0.25)(30)^2 = 18.0 \text{ k.ft} \]
\[M_{1c}^{rt} = M_{1c}^{ft} = -10.1 \text{ k.ft} \]
\[M_{1t}^{ft} = -0.045w_{14}L_{14}^2 = -(0.045)(0.25)(24)^2 = -6.5 \text{ k.ft} \]
\[M_{1c}^{ct} = 0.08w_{14}L_{14}^2 = (0.08)(0.25)(24)^2 = 11.5 \text{ k.ft} \]
\[M_{1c}^{rt} = M_{1c}^{ft} = -6.5 \text{ k.ft} \]

2. Bottom Girder Moments

\[M_{9b}^{ft} = -0.045w_{9}L_{9}^2 = -(0.045)(0.5)(20)^2 = -9.0 \text{ k.ft} \]
\[M_{9b}^{ct} = 0.08w_{9}L_{9}^2 = (0.08)(0.5)(20)^2 = 16.0 \text{ k.ft} \]
\[M_{9b}^{rt} = M_{9b}^{ft} = -9.0 \text{ k.ft} \]
\[M_{10b}^{ft} = -0.045w_{10}L_{10}^2 = -(0.045)(0.5)(30)^2 = -20.3 \text{ k.ft} \]
\[M_{10b}^{ct} = 0.08w_{10}L_{10}^2 = (0.08)(0.5)(30)^2 = 36.0 \text{ k.ft} \]
\[M_{10b}^{rt} = M_{10b}^{ft} = -20.3 \text{ k.ft} \]
\[M_{12b}^{ft} = -0.045w_{12}L_{12}^2 = -(0.045)(0.5)(24)^2 = -13.0 \text{ k.ft} \]
\[M_{12b}^{ct} = 0.08w_{12}L_{12}^2 = (0.08)(0.5)(24)^2 = 23.0 \text{ k.ft} \]
\[M_{12b}^{rt} = M_{12b}^{ft} = -13.0 \text{ k.ft} \]

3. Top Column Moments

\[M_{5t}^{top} = +M_{12}^{ft} = -4.5 \text{ k.ft} \]
\[M_{5t}^{bot} = -M_{10}^{top} = 4.5 \text{ k.ft} \]
\[M_{6t}^{top} = -M_{12}^{rt} + M_{13}^{ft} = -(-4.5) + (-10.1) = -5.6 \text{ k.ft} \]
\[M_{6t}^{bot} = -M_{10}^{top} = 5.6 \text{ k.ft} \]
\[M_{7t}^{top} = -M_{13}^{ct} + M_{14}^{ft} = -(-10.1) + (-6.5) = -3.6 \text{ k.ft} \]
\[M_{7t}^{bot} = -M_{14}^{top} = 3.6 \text{ k.ft} \]
\[M_{8t}^{top} = -M_{14}^{rt} = -(-6.5) = 6.5 \text{ k.ft} \]
\[M_{8t}^{bot} = -M_{14}^{top} = 6.5 \text{ k.ft} \]

4. Bottom Column Moments

\[M_{5b}^{top} = +M_{5}^{bot} + M_{9}^{ft} = 4.5 - 9.0 = -4.5 \text{ k.ft} \]
\[M_{5b}^{bot} = -M_{5}^{top} = 4.5 \text{ k.ft} \]
\[M_{2b}^{top} = +M_{7}^{bot} - M_{10}^{rt} + M_{10}^{ft} = 5.6 - (-9.0) + (-20.3) = -5.6 \text{ k.ft} \]
\[M_{2b}^{bot} = -M_{2}^{top} = 5.6 \text{ k.ft} \]
\[M_{3b}^{top} = +M_{7}^{bot} - M_{11}^{rt} + M_{11}^{ft} = 3.6 - (-20.3) + (-13.0) = 3.6 \text{ k.ft} \]
\[M_{3b}^{bot} = -M_{3}^{top} = 3.6 \text{ k.ft} \]
\[M_{4b}^{top} = +M_{8}^{bot} - M_{11}^{ct} = -6.5 - (-13.0) = 6.5 \text{ k.ft} \]
\[M_{4b}^{bot} = -M_{4}^{top} = 6.5 \text{ k.ft} \]

5. Top Girder Shear

\[V_{12}^{ft} = \frac{w_{12}L_{12}}{2} = \frac{(0.25)(20)}{2} = 2.5 \text{ k} \]
\[V_{12}^{rt} = -V_{12}^{ft} = -2.5 \text{ k} \]
\[V_{13}^{ft} = \frac{w_{13}L_{13}}{2} = \frac{(0.25)(30)}{2} = 3.75 \text{ k} \]
\[V_{13}^{rt} = -V_{13}^{ft} = -3.75 \text{ k} \]
\[V_{14}^{ft} = \frac{w_{14}L_{14}}{2} = \frac{(0.25)(24)}{2} = 3.0 \text{ k} \]
\[V_{14}^{rt} = -V_{14}^{ft} = -3.0 \text{ k} \]
Figure 9.12: Approximate Analysis of a Building; Moments Due to Vertical Loads
6. Bottom Girder Shear

\[
\begin{align*}
V_{9}^{lf} &= \frac{w_{9}L_{9}}{2} = \frac{(0.5)(20)}{2} = 5.00 \text{ k} \\
V_{9}^{rgt} &= -V_{9}^{lf} = -5.00 \text{ k} \\
V_{10}^{lf} &= \frac{w_{10}L_{10}}{2} = \frac{(0.5)(30)}{2} = 7.50 \text{ k} \\
V_{10}^{rgt} &= -V_{10}^{lf} = -7.50 \text{ k} \\
V_{11}^{lf} &= \frac{w_{11}L_{11}}{2} = \frac{(0.5)(24)}{2} = 6.00 \text{ k} \\
V_{11}^{rgt} &= -V_{11}^{lf} = -6.00 \text{ k}
\end{align*}
\]

7. Column Shears

\[
\begin{align*}
V_5 &= \frac{M_{5}^{top}}{L_5} = -4.5 = -0.64 \text{ k} \\
V_6 &= \frac{M_{6}^{top}}{L_6} = -5.6 = -0.80 \text{ k} \\
V_7 &= \frac{M_{7}^{top}}{L_7} = 3.6 = 0.52 \text{ k} \\
V_8 &= \frac{M_{8}^{top}}{L_8} = 5.5 = 0.93 \text{ k} \\
V_9 &= \frac{M_{9}^{top}}{L_9} = -4.5 = -0.56 \text{ k} \\
V_{10} &= \frac{M_{10}^{top}}{L_{10}} = -5.6 = -0.70 \text{ k} \\
V_{11} &= \frac{M_{11}^{top}}{L_{11}} = 3.6 = 0.46 \text{ k} \\
V_{12} &= \frac{M_{12}^{top}}{L_{12}} = 6.5 = 0.81 \text{ k}
\end{align*}
\]

8. Top Column Axial Forces

\[
\begin{align*}
P_5 &= V_{12}^{lf} = 2.50 \text{ k} \\
P_6 &= -V_{12}^{rgt} - V_{13}^{lf} = -(2.50) + 3.75 = 6.25 \text{ k} \\
P_7 &= -V_{13}^{rgt} + V_{14}^{lf} = -3.75 + 3.00 = 0.75 \text{ k} \\
P_8 &= -V_{14}^{rgt} = 3.00 \text{ k}
\end{align*}
\]

9. Bottom Column Axial Forces

\[
\begin{align*}
P_1 &= P_5 + V_{9}^{lf} = 2.50 + 5.0 = 7.5 \text{ k} \\
P_2 &= P_6 - V_{10}^{rgt} + V_{9}^{lf} = 6.25 - (-5.00) + 7.50 = 18.75 \text{ k} \\
P_3 &= P_7 - V_{11}^{rgt} + V_{10}^{lf} = 0.75 - (-7.50) + 6.0 = 20.25 \text{ k} \\
P_4 &= P_8 - V_{11}^{rgt} = 3.00 - (-6.00) = 9.00 \text{ k}
\end{align*}
\]

Horizontal Loads, Portal Method

1. Column Shears

\[
\begin{align*}
V_5 &= \frac{15}{(2)(3)} = 2.5 \text{ k} \\
V_6 &= 2(V_5) = (2)(2.5) = 5 \text{ k} \\
V_7 &= 2(V_5) = (2)(2.5) = 5 \text{ k} \\
V_8 &= V_5 = 2.5 \text{ k} \\
V_9 &= \frac{15 + 30}{(2)(3)} = 7.5 \text{ k} \\
V_{10} &= 2(V_9) = (2)(7.5) = 15 \text{ k} \\
V_{11} &= 2(V_9) = (2)(2.5) = 15 \text{ k} \\
V_{12} &= V_9 = 7.5 \text{ k}
\end{align*}
\]
Figure 9.13: Approximate Analysis of a Building; Shears Due to Vertical Loads
Approximate Analysis Vertical Loads

APPROXIMATE FRAME ANALYSIS

Figure 9.14: Approximate Analysis for Vertical Loads; Spread-Sheet Format

		A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
1																		
2			L1			L2			L3									
3	Height	20				30			24									
4	Load	0.25				0.25			0.25									
5		0.5				0.5			0.5									
6				Bay 1			Bay 2			Bay 3								
7				Col			Beam	Column		Beam	Column		Beam	Col				
8																		
9				-4.5	8.0	-4.5		-10.1	18.0	-10.1		-6.5	11.5	-6.5				
10				-4.5	8.0	-4.5		-10.1	18.0	-10.1		-6.5	11.5	-6.5				
11				-9.0	16.0	-9.0		-20.3	36.0	-20.3		-13.0	23.0	-13.0				
12				-4.5	8.0	-4.5		-10.1	18.0	-10.1		-6.5	11.5	-6.5				
13				-4.5	8.0	-4.5		-10.1	18.0	-10.1		-6.5	11.5	-6.5				
14				-9.0	16.0	-9.0		-20.3	36.0	-20.3		-13.0	23.0	-13.0				
15				-4.5	8.0	-4.5		-10.1	18.0	-10.1		-6.5	11.5	-6.5				
16																		
17				Col			Beam	Column		Beam	Column		Beam	Col				
18																		
19				-2.50	-2.50		-3.75	-3.75		-3.00	-3.00							
20				-0.64	-0.80		0.52	0.52		0.93	0.93							
21				-5.00	-5.00		-7.50	-7.50		-6.00	-6.00							
22				-0.56	-0.70		0.46	0.46		0.81	0.81							
23																		
24				Bay 1			Bay 2			Bay 3								
25				Col			Beam	Column		Beam	Column		Beam	Col				
26																		
27				2.50	6.25		6.75	6.75		3.00	3.00							
28				0.00	0.00		0.00	0.00		0.00	0.00							
29				7.50	18.75		20.25	20.25		9.00	9.00							
30																		
Figure 9.15: Approximate Analysis for Vertical Loads: Equations in Spreadsheet.
Figure 9.16: Free Body Diagram for the Approximate Analysis of a Frame Subjected to Lateral Loads
2. Top Column Moments

\[M_{5}^{\text{top}} = \frac{V_4 H_5}{2} = \frac{(2.5)(14)}{2} = 17.5 \text{ kft} \]

\[M_{5}^{\text{bot}} = -M_{5}^{\text{top}} = -17.5 \text{ kft} \]

\[M_{6}^{\text{top}} = \frac{V_5 H_6}{2} = \frac{(5)(14)}{2} = 35.0 \text{ kft} \]

\[M_{6}^{\text{bot}} = -M_{6}^{\text{top}} = -35.0 \text{ kft} \]

\[M_{7}^{\text{top}} = \frac{V_6 H_7}{2} = \frac{(5)(14)}{2} = 35.0 \text{ kft} \]

\[M_{7}^{\text{bot}} = -M_{7}^{\text{top}} = -35.0 \text{ kft} \]

\[M_{8}^{\text{top}} = \frac{V_7 H_8}{2} = \frac{(2.5)(14)}{2} = 17.5 \text{ kft} \]

\[M_{8}^{\text{bot}} = -M_{8}^{\text{top}} = -17.5 \text{ kft} \]

3. Bottom Column Moments

\[M_{1}^{\text{top}} = \frac{V_1^{\text{dvn}} H_1}{2} = \frac{(7.5)(16)}{2} = 60 \text{ kft} \]

\[M_{1}^{\text{bot}} = -M_{1}^{\text{top}} = -60 \text{ kft} \]

\[M_{2}^{\text{top}} = \frac{V_2^{\text{dvn}} H_2}{2} = \frac{(15)(16)}{2} = 120 \text{ kft} \]

\[M_{2}^{\text{bot}} = -M_{2}^{\text{top}} = -120 \text{ kft} \]

\[M_{3}^{\text{top}} = \frac{V_3^{\text{dvn}} H_3}{2} = \frac{(15)(16)}{2} = 120 \text{ kft} \]

\[M_{3}^{\text{bot}} = -M_{3}^{\text{top}} = -120 \text{ kft} \]

\[M_{4}^{\text{top}} = \frac{V_4^{\text{dvn}} H_4}{2} = \frac{(7.5)(16)}{2} = 60 \text{ kft} \]

\[M_{4}^{\text{bot}} = -M_{4}^{\text{top}} = -60 \text{ kft} \]

4. Top Girder Moments

\[M_{12}^{\text{fft}} = M_{1}^{\text{top}} = 77.5 \text{ kft} \]

\[M_{12}^{\text{rgt}} = -M_{12}^{\text{fft}} = -17.5 \text{ kft} \]

\[M_{13}^{\text{fft}} = M_{12}^{\text{fft}} + M_{6}^{\text{top}} = -17.5 + 35 = 17.5 \text{ kft} \]

\[M_{13}^{\text{rgt}} = -M_{13}^{\text{fft}} = -17.5 \text{ kft} \]

\[M_{14}^{\text{fft}} = M_{13}^{\text{fft}} + M_{7}^{\text{top}} = -17.5 + 35 = 17.5 \text{ kft} \]

\[M_{14}^{\text{rgt}} = -M_{14}^{\text{fft}} = -17.5 \text{ kft} \]

5. Bottom Girder Moments

\[M_{9}^{\text{fft}} = M_{4}^{\text{top}} - M_{5}^{\text{bot}} = 60 - (-17.5) = 77.5 \text{ kft} \]

\[M_{9}^{\text{rgt}} = -M_{9}^{\text{fft}} = -77.5 \text{ kft} \]

\[M_{10}^{\text{fft}} = M_{9}^{\text{rgt}} + M_{6}^{\text{top}} - M_{6}^{\text{bot}} = -77.5 + 120 - (-35) = 77.5 \text{ kft} \]

\[M_{10}^{\text{rgt}} = -M_{10}^{\text{fft}} = -77.5 \text{ kft} \]

\[M_{11}^{\text{fft}} = M_{10}^{\text{fft}} + M_{7}^{\text{top}} - M_{7}^{\text{bot}} = -77.5 + 120 - (-35) = 77.5 \text{ kft} \]

\[M_{11}^{\text{rgt}} = -M_{11}^{\text{fft}} = -77.5 \text{ kft} \]

6. Top Girder Shear

\[V_{12}^{\text{fft}} = -\frac{2M_{12}^{\text{fft}}}{L_{12}^{\text{fft}}} = -\frac{(2)(17.5)}{20} = -1.75 \text{ k} \]

\[V_{12}^{\text{rgt}} = +V_{12}^{\text{fft}} = -1.75 \text{ k} \]

\[V_{13}^{\text{fft}} = -\frac{2M_{13}^{\text{fft}}}{L_{13}^{\text{fft}}} = -\frac{(2)(17.5)}{30} = -1.17 \text{ k} \]

\[V_{13}^{\text{rgt}} = +V_{13}^{\text{fft}} = -1.17 \text{ k} \]

\[V_{14}^{\text{fft}} = -\frac{2M_{14}^{\text{fft}}}{L_{14}^{\text{fft}}} = -\frac{(2)(17.5)}{24} = -1.46 \text{ k} \]

\[V_{14}^{\text{rgt}} = +V_{14}^{\text{fft}} = -1.46 \text{ k} \]

7. Bottom Girder Shear

\[V_{9}^{\text{fft}} = -\frac{2M_{9}^{\text{fft}}}{L_{9}^{\text{fft}}} = -\frac{(2)(77.5)}{20} = -7.75 \text{ k} \]

\[V_{9}^{\text{rgt}} = +V_{9}^{\text{fft}} = -7.75 \text{ k} \]

\[V_{10}^{\text{fft}} = -\frac{2M_{10}^{\text{fft}}}{L_{10}^{\text{fft}}} = -\frac{(2)(77.5)}{30} = -5.17 \text{ k} \]

\[V_{10}^{\text{rgt}} = +V_{10}^{\text{fft}} = -5.17 \text{ k} \]

\[V_{11}^{\text{fft}} = -\frac{2M_{11}^{\text{fft}}}{L_{11}^{\text{fft}}} = -\frac{(2)(77.5)}{24} = -6.46 \text{ k} \]

\[V_{11}^{\text{rgt}} = +V_{11}^{\text{fft}} = -6.46 \text{ k} \]
Figure 9.17: Approximate Analysis of a Building; Moments Due to Lateral Loads
8. Top Column Axial Forces (+ve tension, -ve compression)

\[P_5 = -V_{12}^{lf} = -(-1.75) \text{ k} \]
\[P_6 = +V_{12}^{rg} - V_{12}^{lf} = -1.75 - (-1.17) = -0.58 \text{ k} \]
\[P_7 = +V_{13}^{rg} - V_{14}^{lf} = -1.17 - (-1.46) = 0.29 \text{ k} \]
\[P_8 = V_{14}^{rg} = -1.46 \text{ k} \]

9. Bottom Column Axial Forces (+ve tension, -ve compression)

\[P_1 = P_5 + V_{9}^{lf} = 1.75 - (-7.75) = 9.5 \text{ k} \]
\[P_2 = P_6 + V_{10}^{rg} + V_{9}^{lf} = -0.58 - 7.75 - (-5.17) = -3.16 \text{ k} \]
\[P_3 = P_7 + V_{11}^{rg} + V_{10}^{lf} = 0.29 - 5.17 - (-6.46) = 1.58 \text{ k} \]
\[P_4 = P_8 + V_{11}^{rg} = -1.46 - 6.46 = -7.66 \text{ k} \]

Design Parameters
On the basis of the two approximate analyses, vertical and lateral load, we now seek the design parameters for the frame, Table 9.2.

<table>
<thead>
<tr>
<th>Mem.</th>
<th>Vert.</th>
<th>Hor.</th>
<th>Design Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Moment</td>
<td>4.50</td>
<td>60.00</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>7.50</td>
<td>9.50</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.56</td>
<td>7.50</td>
</tr>
<tr>
<td>2</td>
<td>Moment</td>
<td>5.60</td>
<td>120.00</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>18.75</td>
<td>15.83</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.70</td>
<td>15.00</td>
</tr>
<tr>
<td>3</td>
<td>Moment</td>
<td>3.60</td>
<td>120.00</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>20.25</td>
<td>14.25</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.45</td>
<td>15.00</td>
</tr>
<tr>
<td>4</td>
<td>Moment</td>
<td>6.50</td>
<td>60.00</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>9.00</td>
<td>7.92</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.81</td>
<td>7.50</td>
</tr>
<tr>
<td>5</td>
<td>Moment</td>
<td>4.50</td>
<td>17.50</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>2.50</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.64</td>
<td>2.50</td>
</tr>
<tr>
<td>6</td>
<td>Moment</td>
<td>5.60</td>
<td>35.00</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>6.25</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.80</td>
<td>5.00</td>
</tr>
<tr>
<td>7</td>
<td>Moment</td>
<td>3.60</td>
<td>35.00</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>6.75</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.51</td>
<td>5.00</td>
</tr>
<tr>
<td>8</td>
<td>Moment</td>
<td>6.50</td>
<td>17.50</td>
</tr>
<tr>
<td></td>
<td>Axial</td>
<td>3.00</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.93</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Table 9.1: Columns Combined Approximate Vertical and Horizontal Loads
Portal Method: Spread-Sheet Format

Approximate Frame Analysis

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S |
| **PORTAL METHOD** |
1	# of Bays	3																	
2	L1	L2	L3																
3	20	30	24																
MOMENTS																			
4																			
# of Stories																			
5																			
6	H	Force Lat. Tot	Shear Ext	Int	Col	Beam	Column	Beam	Column	Beam	Column	Col							
7																			
8	H1	14	15	2.5	5	17.5	-35.0	17.5	-35.0	17.5	-35.0								
9																			
10																			
11	H2	16	30	45	7.5	15	77.5	-77.5	77.5	-77.5	77.5	-77.5							
12																			
13																			
SHEAR																			
14																			
15	Bay 1	Bay 2	Bay 3																
16	Col	Beam	Column	Beam	Column	Beam	Col												
17																			
18																			
19																			
20																			
21																			
22																			
23																			
AXIAL FORCE																			
24																			
25	Bay 1	Bay 2	Bay 3																
26	Col	Beam	Column	Beam	Column	Beam	Col												
27																			
28																			
29																			
30																			

Figure 9.18: Portal Method; Spread-Sheet Format
9.2 Horizontal Loads

Figure 9.19: Portal Method; Equations in Spread-Sheet
<table>
<thead>
<tr>
<th>Mem.</th>
<th>Vert.</th>
<th>Hor.</th>
<th>Design Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-ve Moment</td>
<td>9.00</td>
<td>77.50</td>
</tr>
<tr>
<td></td>
<td>+ve Moment</td>
<td>16.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>5.00</td>
<td>7.75</td>
</tr>
<tr>
<td>10</td>
<td>-ve Moment</td>
<td>20.20</td>
<td>77.50</td>
</tr>
<tr>
<td></td>
<td>+ve Moment</td>
<td>36.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>7.50</td>
<td>5.17</td>
</tr>
<tr>
<td>11</td>
<td>-ve Moment</td>
<td>13.0</td>
<td>77.50</td>
</tr>
<tr>
<td></td>
<td>+ve Moment</td>
<td>23.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>6.00</td>
<td>6.46</td>
</tr>
<tr>
<td>12</td>
<td>-ve Moment</td>
<td>4.50</td>
<td>17.50</td>
</tr>
<tr>
<td></td>
<td>+ve Moment</td>
<td>8.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>2.50</td>
<td>1.75</td>
</tr>
<tr>
<td>13</td>
<td>-ve Moment</td>
<td>10.10</td>
<td>17.50</td>
</tr>
<tr>
<td></td>
<td>+ve Moment</td>
<td>18.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>3.75</td>
<td>1.17</td>
</tr>
<tr>
<td>14</td>
<td>-ve Moment</td>
<td>6.50</td>
<td>17.50</td>
</tr>
<tr>
<td></td>
<td>+ve Moment</td>
<td>11.50</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>3.00</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Table 9.2: Girders Combined Approximate Vertical and Horizontal Loads
Chapter 10

STATIC INDETERMINANCY;
FLEXIBILITY METHOD

All the examples in this chapter are taken verbatim from White, Gergely and Sexmith

10.1 Introduction

1. A statically indeterminate structure has more unknowns than equations of equilibrium (and equations of conditions if applicable).
2. The advantages of a statically indeterminate structures are:
 1. Lower internal forces
 2. Safety in redundancy, i.e. if a support or members fails, the structure can redistribute its internal forces to accommodate the changing B.C. without resulting in a sudden failure.
3. Only disadvantage is that it is more complicated to analyse.
4. Analysis methods of statically indeterminate structures must satisfy three requirements

 Equilibrium

 Force-displacement (or stress-strain) relations (linear elastic in this course).
 Compatibility of displacements (i.e. no discontinuity)

5. This can be achieved through two classes of solution

 Force or Flexibility method;
 Displacement or Stiffness method

6. The flexibility method is first illustrated by the following problem of a statically indeterminate cable structure in which a rigid plate is supported by two aluminum cables and a steel one. We seek to determine the force in each cable, Fig. 10.1

1. We have three unknowns and only two independent equations of equilibrium. Hence the problem is statically indeterminate to the first degree.
2. Applying the equations of equilibrium

 \[\sum M_z = 0; \quad \Rightarrow \quad P_{\text{left}}^{\text{Al}} = P_{\text{right}}^{\text{Al}} \]
 \[\sum F_y = 0; \quad \Rightarrow \quad 2P_{\text{Al}} + P_{\text{St}} = P \]

 (10.1-a)

 Thus we effectively have two unknowns and one equation.
3. We need to have a third equation to solve for the three unknowns. This will be derived from the compatibility of the displacements in all three cables, i.e. all three displacements must be equal:

\[D_{Al} = D_{St} \] \hspace{1cm} (10.2)

4. Finally, those displacements are obtained from the Force-Displacement relations:

\[
\begin{align*}
\sigma &= \frac{P}{A} \\
\varepsilon &= \frac{\Delta L}{L} \\
\varepsilon &= \frac{\sigma}{E} \\
\frac{P_{Al}L}{E_{Al}A_{Al}D_{Al}} &= \frac{P_{St}L}{E_{St}A_{St}D_{St}} \\
\Rightarrow P_{Al} &= \frac{(EA)_{Al}}{(EA)_{St}} P_{St}
\end{align*}
\] \hspace{1cm} (10.4)

or

\[-(EA)_{St}P_{Al} + (EA)_{Al}P_{St} = 0 \] \hspace{1cm} (10.5)

5. Solution of Eq. 10.1-a and 10.5 yields

\[
\begin{bmatrix}
2 & 1 \\
-(EA)_{St} & (EA)_{Al}
\end{bmatrix}
\begin{bmatrix}
P_{Al} \\
P_{St}
\end{bmatrix} =
\begin{bmatrix}
P \\
0
\end{bmatrix}
\]

\[
\Rightarrow
\begin{bmatrix}
P_{Al} \\
P_{St}
\end{bmatrix} =
\begin{bmatrix}
2 & 1 \\
-(EA)_{St} & (EA)_{Al}
\end{bmatrix}^{-1}
\begin{bmatrix}
P \\
0
\end{bmatrix}
\]

\[
= \frac{1}{2(EA)_{Al} + (EA)_{St}}
\begin{bmatrix}
(EA)_{Al} & -1 \\
(EA)_{St} & 2
\end{bmatrix}
\begin{bmatrix}
P \\
0
\end{bmatrix}
\]

6. We observe that the solution of this problem, contrarily to statically determinate ones, depends on the elastic properties.

Another example is the propped cantilever beam of length \(L \), Fig. 10.2

1. First we remove the roller support, and are left with the cantilever as a primary structure.

2. We then determine the deflection at point \(B \) due to the applied load \(P \) using the virtual force method

\[
1.D = \int \delta M \frac{M}{EI} dx \] \hspace{1cm} (10.6-a)

\[
= \int_0^{L/2} 0 \frac{P}{EI} dx + \int_0^{L/2} \left(\frac{PL}{2} + Px \right) (-x) dx \] \hspace{1cm} (10.6-b)
Figure 10.2: Propped Cantilever Beam
\[= \frac{1}{EI} \int_0^{L/2} \left(\frac{PL}{2} x + Px^2 \right) dx \quad (10.6-c) \]
\[= \frac{1}{EI} \left[\frac{PLx^2}{4} + \frac{Px^3}{3} \right]_0^{L/2} \quad (10.6-d) \]
\[= \frac{5}{48} PL^3 \quad (10.6-e) \]

3. We then apply a unit load at point B and solve for the displacement at B using the virtual force method

\[1f_{BB} = \int \delta M \frac{M}{EI} dx \quad (10.7-a) \]
\[= \int_0^{L/2} \left(x \right) \frac{x}{EI} dx \quad (10.7-b) \]
\[= \frac{(1)L^3}{24EI} \quad (10.7-c) \]

4. Then we argue that the displacement at point B is zero, and hence the displacement \(f_{BB} \) should be multiplied by \(R_B \) such that

\[R_B f_{BB} = D \quad (10.8) \]

to ensure compatibility of displacements, hence

\[R_B = \frac{D}{f_{BB}} = \frac{\frac{5}{8} PL^3 EI}{(1)L^3/24EI} = \frac{5P}{2} \quad (10.9) \]

10.2 The Force/Flexibility Method

Based on the previous two illustrative examples, we now seek to develop a general method for the linear elastic analysis of statically indeterminate structures.

1. Identify the degree of static indeterminacy (exterior and/or interior) \(n \).
2. Select \(n \) redundant unknown forces and/or couples in the loaded structure along with \(n \) corresponding releases (angular or translation).
3. The \(n \) releases render the structure statically determinate, and it is called the primary structure.
4. Determine the \(n \) displacements in the primary structure (with the load applied) corresponding to the releases, \(D_i \).
5. Apply a unit force at each of the releases \(j \) on the primary structure, without the external load, and determine the displacements in all releases \(i \), we shall refer to these displacements as the flexibility coefficients, \(f_{ij} \), i.e. displacement at release \(i \) due to a unit force at \(j \).
6. Write the compatibility of displacement relation

\[
\begin{bmatrix}
 f_{11} & f_{12} & \cdots & f_{1n} \\
 f_{21} & f_{22} & \cdots & f_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{n1} & f_{n2} & \cdots & f_{nn}
\end{bmatrix}
\begin{bmatrix}
 R_1 \\
 R_2 \\
 \vdots \\
 R_n
\end{bmatrix}
= \begin{bmatrix}
 D_1 \\
 D_2 \\
 \vdots \\
 D_n
\end{bmatrix}
\]

\[= \begin{bmatrix}
 D_1^0 \\
 D_2^0 \\
 \vdots \\
 D_n^0
\end{bmatrix} \quad (10.10) \]

and

\[|R| = |f|^{-1} \{ D - D_i^0 \} \quad (10.11) \]

Note that \(D_i^0 \) is the vector of initial displacements, which is usually zero unless we have an initial displacement of the support (such as support settlement).
7. The reactions are then obtained by simply inverting the flexibility matrix.

9. Note that from Maxwell-Betti’s reciprocal theorem, the flexibility matrix $[f]$ is always symmetric.

10.3 Short-Cut for Displacement Evaluation

Since deflections due to flexural effects must be determined numerous times in the flexibility method, Table 10.1 may simplify some of the evaluation of the internal strain energy. You are strongly discouraged to use this table while still at school!

<table>
<thead>
<tr>
<th>$g_1(x)$</th>
<th>$g_2(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (L)</td>
<td>(Lc)</td>
</tr>
<tr>
<td>(a) (L)</td>
<td>(\frac{Lac}{3})</td>
</tr>
<tr>
<td>(L)</td>
<td>(\frac{Lac}{6})</td>
</tr>
<tr>
<td>(a) (L)</td>
<td>(\frac{Lac}{2})</td>
</tr>
<tr>
<td>(a) (L)</td>
<td>(\frac{Lc}{2})</td>
</tr>
<tr>
<td>(a) (b) (L)</td>
<td>(\frac{Lc}{2})</td>
</tr>
</tbody>
</table>

Table 10.1: Table of $\int_0^L g_1(x) g_2(x) dx$

10.4 Examples

Example 10-1: Steel Building Frame Analysis, (White et al. 1976)

A small, mass-produced industrial building, Fig. 10.3, is to be framed in structural steel with a typical cross section as shown below. The engineer is considering three different designs for the frame: (a) for poor or unknown soil conditions, the foundations for the frame may not be able to develop any dependable horizontal forces at its bases. In this case the idealized base conditions are a hinge at one of the bases and a roller at the other; (b) for excellent soil conditions with properly designed foundations, the bases of the frame legs will have no tendency to move horizontally, and the idealized base condition is that of hinges at both points A and D; and (c) a design intermediate to the above cases, with a steel tie member capable of carrying only tension running between points A and D in the floor of the building. The foundations would not be expected to provide any horizontal restraint for this latter case, and the hinge-roller details at points A and D would apply.

Critical design loads for a frame of this type are usually the gravity loads (dead load + snow load) and the combination of dead load and wind load. We will restrict our attention to the first combination, and will use a snow load of 30 psf and an estimated total dead load of 20 psf. With frames spaced at 15 ft on centers along the length of the building, the design load is 15 (30 + 20) = 750 lb/ft.
If the frame is made of steel beam sections 21 in. deep and weighing 62 lb/ft of length \((W_{21} \times 62)\), and the tie member for design \((c)\) is tentatively chosen as a 2-in.\(^2\) bar, determine the bending moment diagrams for the three designs and discuss the alternate solutions.

Solution:

Structure a This frame is statically determinate since it has three possible unknown external forces acting on it, and the bending moment is shown in Fig. 10.6-a.

Structure b Hinging both legs of the frame results in another unknown force, making the structure statically indeterminate to the first degree (one redundant).

1. A lateral release at point \(A\) is chosen. with the redundant shearing force \(R_1\). The displacement \(D_{1Q}\) in the primary structure, as a result of the real loading, is shown in Figure 10.4-a. \(D_{1Q}\) is computed by virtual work.
2. The virtual force system in Figure 10.4-b produces a virtual bending moment \(\delta M\), which is uniform across the top member of the frame. The virtual moment acting through the real angle changes gives the internal work term

\[
\int \delta M d\phi = \int_0^{40} \delta M \frac{M}{EI} dx
\]

(10.12)
3. Equating this to the external virtual work of $1 \cdot D_{1Q}$, we have

$$1 \cdot D_{1Q} = \int_{0}^{40} \frac{(12)(2)(.75)(Lx-x^2)}{EI} \, dx$$

(10.13)

or

$$D_{1Q} = \frac{48,000}{EI} \text{ k ft}^3 \rightarrow$$

(10.14)

4. The equation of consistent displacement is $D_{1Q} + f_{11}R_1 = 0$. The flexibility coefficient f_{11} is computed by applying a unit horizontal force at the release and determining the displacement at the same point.

5. It is seen that the real loading and the virtual loading are identical for this calculation, and

$$1 \cdot f_{11} = 2 \left[\int_{0}^{12} \frac{x^2 \, dx}{EI} + \int_{0}^{20} \frac{12^2 \, dx}{EI} \right]$$

(10.15)

or

$$f_{11} = \frac{6,912}{EI} \text{ k ft}^3 \rightarrow$$

(10.16)

6. Solving for R_1

$$\frac{1}{EI} [48,000 + 6,912R_1] = 0$$

(10.17)

or

$$R_1 = \frac{6.93}{k} \text{ k}$$

(10.18)

7. The bending moment diagram is given below

Structure c The frame with the horizontal tie between points A and D has three unknown external forces. However, the structure is statically indeterminate to the first degree since the tie member provides one degree of internal redundancy.

8. The logical release to choose is a longitudinal release in the tie member, with its associated longitudinal displacement and axial force.

9. The primary structure Fig. 10.5 is the frame with the tie member released. The compatibility equation is based on the fact that the displacement at the release must be zero; that is, the relative displacement of the two sections of the tie at the point of release must be zero, or

$$D_{1Q} + f_{11}R_1 = 0$$

(10.19)
10–8 STATIC INDETERMINANCY; FLEXIBILITY METHOD

where
\[D_{1Q} = \text{displacement at release 1 in the primary structure, produced by the loading}, \]
\[f_{11} = \text{relative displacement at release 1 for a unit axial force in the tie member}, \]
\[R_1 = \text{force in the tie member in the original structure}. \]

10. Virtual work is used to determine both displacement terms.

11. The value of \(D_{1Q} \) is identical to the displacement \(D_{1Q} \) computed for structure (b) because the tie member has no forces (and consequently no deformations) in the primary structure. Thus

\[
D_{1Q} = \frac{(48,000)(1,728)}{(30 \cdot 10^3)(1,327)} = 2.08 \text{ in}
\]

12. The flexibility coefficient \(f_{11} \) is composed of two separate effects: a flexural displacement due to the flexibility of the frame, and the axial displacement of the stressed tie member. The virtual and real loadings for this calculation are shown in Figure 10.5. The virtual work equation is

\[
1 \cdot f_{11} = 2 \left[\int_0^{12} \frac{x^2 dx}{EI} + \int_0^{20} \frac{(12)^2 dx}{EI} \right] + \delta \frac{P \cdot pL}{EA} \]

(10.21-a)

\[
= \frac{6.912}{EI} + \frac{1(1)(40)}{EA} \]

(10.21-b)

\[
= \frac{(6.912)(1,728)}{(30 \cdot 10^3)(1,327)} + \frac{40(12)}{(30 \cdot 10^3)(2)} \]

(10.21-c)

\[
= 0.300 + 0.008 = 0.308
\]

(10.21-d)

and

\[f_{11} = 0.308 \text{ in} / k \] (10.22)

13. The equation of consistent deformation is

\[D_{1Q} + f_{11} R_1 = 0 \] (10.23)

or

\[2.08 - 0.308 R_1 = 0 \] (10.24)

or

\[R_1 = 6.75 \text{ k (tension)} \] (10.25)

14. The two displacement terms in the equation must carry opposite signs to account for their difference in direction.

Comments The bending moment in the frame, Figure 10.6-c differs only slightly from that of structure (b). In other words, the tie member has such high axial stiffness that it provides nearly as much restraint as the foundation of structure (b). Frames with tie members are used widely in industrial buildings. A lesson to be learned here is that it is easy to provide high stiffness through an axially loaded member.

![Figure 10.6:](image)

The maximum moment in frames (b) and (c) is about 55% of the maximum moment in frame (a). This effect of continuity and redundancy is typical – the positive bending moments in the members are lowered while the joint moments increase and a more economical design can be realized.

Finally, we should notice that the vertical reactions at the bases of the columns do not change with the degree of horizontal restraint at the bases. A question to ponder is “Does this type of reaction behavior occur in all frames, or only in certain geometrical configurations?”

Victor Saouma

Structural Analysis
Example 10-2: Analysis of Irregular Building Frame, (White et al. 1976)

The structural steel frame for the Church of the Holy Spirit, Penfield, New York is shown below. In this example we will discuss the idealization of the structure and then determine the forces and bending moments acting on the frame.

Solution:

1. A sectional view of the building is given in Figure 10.8-a.

 ![Frame geometry](image1.png)

 ![Idealized frame](image2.png)

 ![Primary structure with angular release at B](image3.png)

 Figure 10.7:

 The two main horizontal members of the frame are supported at points A and D by masonry walls.

2. The connection used at these points is not intended to transmit axial forces from the frame to the wall; accordingly, the axial forces in the horizontal members are assumed to be zero and the joints at A and D are idealized as rollers that transmit vertical forces only.

3. The base joint E is designed to resist both horizontal and vertical loads, but not moment, and is assumed to be a hinge.

4. Finally, joints B and C are designed to provide continuity and will be taken as rigid; that is, the angles of intersection of the members at the joint do not change with applied loading.

5. The frame is simplified for analysis by removing the small 4-in. wide flange members EF and FG and replacing their load effect by applying the roof load which acts on EF directly to the segment AG.

6. The idealized frame is shown in Figure 10.8-b.

7. The dead load on the higher portion of the frame is \(w_{AB} = 25 \) psf times the frame spacing of 13.33 ft, or \(w_{AB} = 25(13.33) = 334 \) lb/ft along the frame.

8. The dead load on CD is less because the weight of the frame member is substantially smaller, and the dead load is about 19 psf, or \(w_{CD} = 19(13.33) = 254 \) lb/ft of frame.

9. Snow load is 35 psf over both areas, or \(w = 35(13.33) = 467 \) lb/ft.

10. Total loads are then
Figure 10.8:
10.4 Examples

Member \(AB \): \(w = 334 + 467 = 800 \text{ lb/ft} = 0.8 \text{ k/ft} \)

Member \(CD \): \(w = 254 + 467 = 720 \text{ lb/ft} = 0.72 \text{ k/ft} \)

11. The frame has four unknown reaction components and therefore has one redundant. Although several different releases are possible, we choose an angular (bending) release at point \(B \).

12. The resulting primary structure is shown in Figure 10.8-c, where the redundant quantity \(R_1 \) is the bending moment at point \(B \).

13. The equation of compatibility is

\[
\theta_{1Q} + \theta_{11} R_1 = 0 \tag{10.26}
\]

where \(\theta_{1Q} \) is the relative angular rotation corresponding to release 1 as produced by the actual loading, and \(\theta_{11} \) is the flexibility coefficient for a unit moment acting at the release.

14. From virtual work we have

\[
1 \cdot \theta_{1Q} = \int \delta \overline{M} d\phi = \int \delta \overline{M} \frac{M}{EI} dx \tag{10.27}
\]

and

\[
1 \cdot \theta_{11} = \int \delta \overline{M} d\phi = \int \delta \overline{M} \frac{M}{EI} dx \tag{10.28}
\]

where \(m \) is a real unit load and \(\delta \overline{M} \) and \(M \) are defined in Figure 10.8-d and e.

15. Then

\[
\theta_{1Q} = \frac{1}{(EI)_{AB}} \int_{0}^{61.42} \left(\frac{x}{61.42} \right)^2 (24.6x - 0.4x^2) dx \tag{10.29-a}
\]

\[
+ \frac{1}{(EI)_{CD}} \int_{0}^{21.33} \left(\frac{x}{21.33} \right)^2 (7.68x - 0.36x^2) dx \tag{10.29-b}
\]

\[
= \frac{7750}{(EI)_{AB}} + \frac{295}{(EI)_{CD}} \tag{10.29-c}
\]

16. with \(I_{AB} = 4,470 \text{ in.}^4 \) and \(I_{CD} = 290 \text{ in.}^4 \)

\[
\theta_{1Q} = \frac{1.733}{E} + \frac{1.0107}{E} = \frac{2.75}{E} \tag{10.30}
\]

17. Similarly

\[
\theta_{11} = \frac{1}{(EI)_{AB}} \int_{0}^{61.42} \left(\frac{x}{61.42} \right)^2 dx \tag{10.31-a}
\]

\[
+ \frac{1}{(EI)_{CD}} \int_{0}^{21.33} \left(\frac{x}{21.33} \right)^2 dx + \frac{1}{(EI)_{BC}} \int_{0}^{8} (1)^2 dx \tag{10.31-b}
\]

18. with \(I_{BC} = 273 \text{ in}^4 \)

\[
\theta_{11} = \frac{20.5}{(EI)_{AB}} + \frac{7.11}{(EI)_{CD}} + \frac{8.0}{(EI)_{BC}} = \frac{0.0585}{E} \tag{10.32}
\]

Note that the numerators of \(\theta_{1Q} \) and \(\theta_{11} \) have the units \(\text{k-ft}^2/\text{in}^4 \).

19. Applying the compatibility equation,

\[
\frac{2.75}{E} + \frac{0.0585}{E} R_1 = 0 \tag{10.33}
\]

and the bending moment at point \(B \) is \(R_1 = -47.0 \text{ ft-k} \). The reactions and moments in the structure are given in Figure 10.8-f.
Determine the bar forces in the steel truss shown below using the force method of analysis. The truss is part of a supporting tower for a tank, and the 20 kN horizontal load is produced by wind loading on the tank.

Solution:

1. Applying the criteria for indeterminacy, \(2 \times 4 = 8\) equations, 6 members + 3 reactions \(\Rightarrow\) one degree of indeterminacy. A longitudinal release in any of the six bars may be chosen.
2. Because the truss members carry only axial load, a longitudinal release is identical to actually cutting the member and removing its axial force capability from the truss.
3. In analyzing trusses with double diagonals it is both convenient and customary to select the release in one of the diagonal members because the resulting primary structure will be the conventional truss form to which we are accustomed.
4. Choosing the diagonal member \(BC\) for release, we cut it and remove its axial stiffness from the structure. The primary structure is shown in Figure 10.9-b.
5. The analysis problem reduces to applying an equation of compatibility to the changes in length of the release member. The relative displacement \(D_{1Q}\) of the two cut ends of member \(BC\), as produced by the real loading, is shown in Figure 10.9-c.
6. The displacement is always measured along the length of the redundant member, and since the redundant is unstressed at this stage of the analysis, the displacement \(D_{1Q}\) is equal to the relative displacement of joint \(B\) with respect to joint \(C\).
7. This displacement must be eliminated by the relative displacements of the cut ends of member \(BC\) when the redundant force is acting in the member. The latter displacement is written in terms of the axial flexibility coefficient \(f_{11}\), and the desire equation of consistent deformation is
 \[D_{1Q} + f_{11}R_1 = 0\] (10.34)
8. The quantity \(D_{1Q}\) is given by
 \[1 \cdot D_{1Q} = \Sigma \delta \bar{P}(\Delta l) = \Sigma \delta \bar{P}(PL/AE)\] (10.35)
where \(\delta P \) and \(P \) are given in Figure 10.9-d and c, respectively.

9. Similarly,

\[
f_{11} = \Sigma \delta P (PL/AE)
\]

10. Evaluating these summations in tabular form:

<table>
<thead>
<tr>
<th>Member</th>
<th>(P)</th>
<th>(\delta P)</th>
<th>(L)</th>
<th>(\delta P L)</th>
<th>(\delta P L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>0</td>
<td>-0.707</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>(BC)</td>
<td>0</td>
<td>-0.707</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>(CD)</td>
<td>+20</td>
<td>-0.707</td>
<td>3</td>
<td>-42.42</td>
<td>1.5</td>
</tr>
<tr>
<td>(AC)</td>
<td>+20</td>
<td>-0.707</td>
<td>3</td>
<td>-42.42</td>
<td>1.5</td>
</tr>
<tr>
<td>(AD)</td>
<td>-28.28</td>
<td>+1</td>
<td>4.242</td>
<td>-119.96</td>
<td>4.242</td>
</tr>
<tr>
<td>(BC)</td>
<td>0</td>
<td>+1</td>
<td>4.242</td>
<td>0</td>
<td>4.242</td>
</tr>
</tbody>
</table>

\[
-204.8 \quad 14.484
\]

11. Since \(A = \text{constant} \) for each member

\[
D_{1Q} = \Sigma \delta P (PL/AE) = -204.8 \quad \text{and} \quad f_{11} = \frac{14.484}{AE}
\]

then

\[
\frac{1}{AE} [-204.8 + 14.484 R_1] = 0
\]

12. The solution for the redundant force value is \(R_1 = 14.14 \text{ kN} \)

13. The final values for forces in each of the truss members are given by superimposing the forces due to the redundant and the forces due to the real loading.

14. The real loading forces are shown in Figure 10.9-c while the redundant force effect is computed by multiplying the member forces in Figure 10.9-d by 2.83, the value of the redundant.

15. It is informative to compare the member forces from this solution to the approximate analysis obtained by assuming that the double diagonals each carry half the total shear in the panel. The comparison is given in Figure 10.10; it reveals that the approximate analysis is the same as the exact analysis for this particular truss. The reason for this is that the stiffness provided by each of the diagonal members (against “shear” deformation of the rectangular panel) is the same, and therefore they each carry an equal portion of the total shear across the panel.

16. How would this structure behave if the diagonal members were very slender?

Example 10-4: Truss with Two Redundants, (White et al. 1976)

![Exact analysis](image1)

![Approximate analysis](image2)

Figure 10.10:

a) Exact analysis.

b) Approximate analysis.

Another panel with a second redundant member is added to the truss of Example 10-3 and the new truss is supported at its outermost lower panel points, as shown in Figure 10.11. The truss, which is similar in form to trusses used on many railway bridges, is to be analyzed for bar forces under the given loading.

Solution:

1. The twice redundant truss is converted to a determinate primary structure by releasing two members of the truss; we choose two diagonals (DB and BF).
2. Releasing both diagonals in a single panel, such as members AE and DB, is inadmissible since it leads to an unstable truss form.
3. The member forces and required displacements for the real loading and for the two redundant forces in members DB and BF are given in Figure 10.11.
4. Although the real loading ordinarily stresses all members of the entire truss, we see that the unit forces corresponding to the redundants stress only those members in the panel that contains the redundant; all other bar forces are zero.
5. Recognizing this fact enables us to solve the double diagonal truss problem more rapidly than a frame with multiple redundants.
6. The virtual work equations for computing the six required displacements (two due to load and four flexibilities) are

\[
1 \cdot D_{1Q} = \sum \delta P_1 \left(\frac{PL}{AE} \right) \quad (10.39-a)
\]

\[
1 \cdot D_{2Q} = \sum \delta P_2 \left(\frac{PL}{AE} \right) \quad (10.39-b)
\]

\[
1 \cdot f_{11} = \sum \delta P_1 \left(\frac{P_1L}{AE} \right) \quad (10.39-c)
\]

\[
1 \cdot f_{21} = \sum \delta P_2 \left(\frac{P_1L}{AE} \right) \quad (10.39-d)
\]

\[
f_{12} = f_{21} \quad \text{by the reciprocal theorem} \quad (10.39-e)
\]
10.4 Examples

7. If we assume tension in a truss member as positive, use tensile unit loads when computing the flexibility coefficients corresponding to the redundants, and let all displacement terms carry their own signs, then in the solution for the redundants a positive value of force indicates tension while a negative value means the member is in compression.

8. The calculation of f_{22} involves only the six members in the left panel of the truss; f_{21} involves only member BE.

9. The simple procedures used for performing the displacement analyses, as summarized in tabular form in Table 10.2, leads one quickly to the compatibility equations which state that the cut ends of both redundant members must match (there can be no gaps or overlaps of members in the actual structure).

10. The equations are

$$D_{1Q} + f_{11}R_1 + f_{12}R_2 = 0$$

$$D_{2Q} + f_{21}R_1 + f_{22}R_2 = 0$$

or

$$\frac{1}{AE} \begin{bmatrix} 580 & 60 \\ 60 & 580 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = -\frac{1}{AE} \begin{bmatrix} 3,528 \\ 5,164 \end{bmatrix}$$

and

$$R_1 = \begin{bmatrix} 5.20 k \end{bmatrix}$$

$$R_2 = \begin{bmatrix} -8.38 k \end{bmatrix}$$

11. The final set of forces in the truss is obtained by adding up, for each member, the three separate effects. In terms of the forces shown in Figure 10.11 and Table 10.2, the force in any member is given by $F = P + R_1 \overline{P}_1 + R_2 \overline{P}_2$. The final solution is given in Figure 10.11-e. The truss is part of a supporting tower for a tank, and the 20 kN horizontal load is produced by wind loading on the tank.

12. NOTE: A mixture of internal redundant forces and external redundant reactions is no more difficult than the preceding example. Consider the two-panel truss of this example modified by the addition of another reaction component at joint E, Figure 10.12. The three releases for this truss can be chosen from a number of possible combinations: diagonals DB and BF and the reaction at E; the same two diagonals and the reaction at F; the same diagonals and the top chord member BC, etc. The only requirement to be met is that the primary structure be stable and statically determinate.

13. For any set of releases there are four new displacement components: the displacement at the third release resulting from the actual load on the primary structure, and the three flexibility coefficients $f_{31}, f_{32},$ and f_{33}. Judicious choice of releases often results in a number of the flexibility coefficients being zero.

<table>
<thead>
<tr>
<th>Member</th>
<th>P</th>
<th>\overline{P}_1</th>
<th>\overline{P}_2</th>
<th>L</th>
<th>D_{1Q}</th>
<th>D_{2Q}</th>
<th>f_{11}</th>
<th>f_{21}</th>
<th>f_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>-9.5</td>
<td>-0.707</td>
<td>0</td>
<td>120</td>
<td>+806</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BC</td>
<td>-9.5</td>
<td>0</td>
<td>-0.707</td>
<td>120</td>
<td>0</td>
<td>+806</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>CF</td>
<td>-9.5</td>
<td>0</td>
<td>-0.707</td>
<td>120</td>
<td>0</td>
<td>+806</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>EF</td>
<td>0</td>
<td>0</td>
<td>-0.707</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>DE</td>
<td>+4</td>
<td>-0.707</td>
<td>0</td>
<td>120</td>
<td>-340</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AD</td>
<td>-5.5</td>
<td>-0.707</td>
<td>0</td>
<td>120</td>
<td>+466</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AE</td>
<td>+7.78</td>
<td>+1</td>
<td>0</td>
<td>170</td>
<td>+1,322</td>
<td>0</td>
<td>170</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BE</td>
<td>.15</td>
<td>-0.707</td>
<td>-0.707</td>
<td>120</td>
<td>+1,272</td>
<td>+1,272</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>CE</td>
<td>+13.43</td>
<td>0</td>
<td>+1</td>
<td>170</td>
<td>0</td>
<td>+2,280</td>
<td>0</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>BD</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>170</td>
<td>0</td>
<td>0</td>
<td>170</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BF</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>170</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>170</td>
<td></td>
</tr>
</tbody>
</table>

Table 10.2:

$+3,528 +5,164 +580 +60 +580$
Example 10-5: Analysis of Nonprismatic Members, (White et al. 1976)

The nonprismatic beam of Figure 10.13-a is loaded with an end moment M_A at its hinged end A. Determine the moment induced at the fixed end B by this loading.

Solution:

1. The beam has one redundant force; we select M_B as the redundant R_1, and obtain the primary structure shown in Figure 10.13-c. It can be shown that the flexibility coefficients for unit moments applied at each end are those shown in Fig. 10.13-d and e, with a sign convention of counterclockwise as positive.

2. The equation of consistent displacements at B is

$$-\frac{M_A}{8EI} + \frac{3}{16EI} R_1 = 0 \quad (10.43)$$

and the value of M_B is
3. The resulting moment diagram is given in Figure 10.13-f. We note that the inflection point is 0.40\textit{l} from the fixed end. If the beam had a uniform value of \textit{I} across its span, the inflection point would be \textit{L}/3 from the fixed end. Thus the inflection point shifts toward the section of reduced stiffness.

4. The end rotation \(\theta_A \) is given by

\[
\theta_A = \frac{5}{16} \frac{M_A l}{EI} - \frac{1}{8} \left(\frac{2}{3} M_A \right) \frac{l}{EL} = \frac{11 M_A l}{48 \ EI} \tag{10.45}
\]

5. The ratio of applied end moment to rotation, \(M_A/\theta_A \), is called the rotational stiffness and is

\[
\frac{M_A}{\theta_A} = \frac{48 EI}{11 l} = 4.364 \frac{EI}{l} \tag{10.46}
\]

6. If we now reverse the boundary conditions, making \(A \) fixed and \(B \) hinged, and repeat the analysis for an applied moment \(M_B \), the resulting moment diagram will be as given in Figure 10.13-h. The moment induced at end \(A \) is only 40% of the applied end moment \(M_B \). The inflection point is 0.286\textit{l} from the fixed end \(A \). The corresponding end rotation \(\theta_B \) in Figure 10.13-g is

\[
\theta_B = \frac{11 M_B l}{80 EI} \tag{10.47}
\]

7. The rotational stiffness \(\frac{M_B}{\theta_B} \) is

\[
\frac{M_B}{\theta_B} = \frac{80 EI}{11 l} = 7.272 \frac{EI}{l} \tag{10.48}
\]

8. A careful comparison of the rotational stiffnesses, and of the moment diagrams in Figures 10.13-f and h, illustrate the fact that flexural sections of increased stiffness attract more moment, and that inflection points always shift in the direction of decreased stiffness.

9. The approach illustrated here may be used to determine moments and end rotations in any type of nonprismatic member. The end rotations needed in the force analysis may be calculated by either virtual work or moment area (or by other methods). Complex variations in \(EI \) are handled by numerical integration of the virtual work equation or by approximating the resultant \(M/EI \) areas and their locations in the moment area method.

Example 10-6: Fixed End Moments for Nonprismatic Beams, (White et al. 1976)

The beam of example 10-5, with both ends fixed, is loaded with a uniform load \(w \), Figure 10.14-a. Determine the fixed end moments \(M_A \) and \(M_B \).

Solution:

1. The beam has two redundant forces and we select \(M_A \) and \(M_B \). Releasing these redundants, \(R_1 \) and \(R_2 \), the primary structure is as shown in Figure 10.14-c.

2. The equations of consistent deformations are

\[
\begin{align*}
D_1Q + f_{11}R_1 + f_{12}R_2 & = 0 \tag{10.49-a} \\
D_2Q + f_{21}R_1 + f_{22}R_2 & = 0 \tag{10.49-b}
\end{align*}
\]

where \(R_1 \) is \(M_A \) and \(R_2 \) is \(M_B \).

3. The values of \(D_1Q \) and \(D_2Q \), the end rotations produced by the real loading on the primary structure, can be computed by the virtual work method.

4. The flexibility coefficients are also separately derived (not yet in these notes) and are given in Figures 10.14-d and e of the previous example.
5. We define counterclockwise end moments and rotations a positive and obtain
\[
\frac{l}{EI} \begin{bmatrix}
\frac{3}{8} & -\frac{1}{8} \\
-\frac{1}{8} & \frac{3}{16}
\end{bmatrix} \begin{bmatrix}
R_1 \\
R_2
\end{bmatrix} = \frac{wl^3}{EI} \begin{bmatrix}
-0.352 \\
+0.0273
\end{bmatrix}
\] (10.50)
from which
\[
R_1 = M_A = 0.0742wl^2
\] (10.51-a)
\[
R_2 = M_B = 0.0961wl^2
\] (10.51-b)

6. The stiffer end of the beam attracts 30% more than the flexible end.
7. For a prismatic beam with constant \(I\), the fixed end moments are equal in magnitude \(M_A = -M_B = \frac{wl^2}{12}\) and intermediate in value between the two end moments determined above.
8. Fixed end moments are an essential part of indeterminate analysis based on the displacement (stiffness) method and will be used extensively in the Moment Distribution method.

Example 10-7: Rectangular Frame; External Load, (White et al. 1976)

Solution:
1. The structure is statically indeterminate to the third degree, and the displacements (flexibility terms) are shown in Fig. 10.15
2. In order to evaluate the 9 flexibility terms, Fig. 10.16 we refer to Table 10.3
3. Substituting \(h = 10\) ft, \(L = 20\) ft, and \(EI_b = EI_c = EI\), the flexibility matrix then becomes
\[
[f] = \frac{1}{EI} \begin{bmatrix}
2,667 & 3,000 & -300 \\
3,000 & 6,667 & -400 \\
-300 & -400 & 40
\end{bmatrix}
\] (10.52)
and the vector of displacements for the primary structure is
\[
[D] = \frac{1}{EI} \begin{bmatrix}
-12,833 \\
-31,333 \\
1,800
\end{bmatrix}
\] (10.53)
where the units are kips and feet.
Figure 10.15:

Figure 10.16: Definition of Flexibility Terms for a Rigid Frame
<table>
<thead>
<tr>
<th>D</th>
<th>δM</th>
<th>M</th>
<th>$\int \delta M , dx$</th>
<th>$\int \frac{\delta M , dx}{EI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AB</td>
<td>BC</td>
</tr>
<tr>
<td>f_{11}</td>
<td>$+ \frac{h^3}{3}$</td>
<td>$+ Lh^2$</td>
<td>$+ \frac{h^3}{3}$</td>
<td>$+ \frac{2h^3}{3EI_c}$</td>
</tr>
<tr>
<td>f_{12}</td>
<td>$+ \frac{h^2L}{2}$</td>
<td>$+ \frac{L^2h}{2}$</td>
<td>0</td>
<td>$+ \frac{h^2L}{2EI_c}$</td>
</tr>
<tr>
<td>f_{13}</td>
<td>$- \frac{h^2}{2}$</td>
<td>$- Lh$</td>
<td>$- \frac{h^2}{2}$</td>
<td>$- \frac{h^2}{2EI_c}$</td>
</tr>
<tr>
<td>f_{21}</td>
<td>$+ \frac{h^2L}{2}$</td>
<td>$+ \frac{L^2h}{2}$</td>
<td>0</td>
<td>$+ \frac{h^2L}{2EI_c}$</td>
</tr>
<tr>
<td>f_{22}</td>
<td>$+ L^2h$</td>
<td>$+ \frac{L^3}{3}$</td>
<td>0</td>
<td>$+ \frac{L^2h}{3EI_c}$</td>
</tr>
<tr>
<td>f_{23}</td>
<td>$- hL$</td>
<td>$- \frac{L^2}{3}$</td>
<td>0</td>
<td>$- \frac{hL}{EI_c}$</td>
</tr>
<tr>
<td>f_{31}</td>
<td>$- \frac{h^2}{2}$</td>
<td>$- Lh$</td>
<td>$- \frac{h^2}{2}$</td>
<td>$- \frac{h^2}{2EI_c}$</td>
</tr>
<tr>
<td>f_{32}</td>
<td>$- hL$</td>
<td>$- \frac{L^2}{3}$</td>
<td>0</td>
<td>$- \frac{hL}{EI_c}$</td>
</tr>
<tr>
<td>f_{33}</td>
<td>$+ h$</td>
<td>$+ L$</td>
<td>$+ h$</td>
<td>$+ \frac{2h}{EI_c}$</td>
</tr>
<tr>
<td>D_{1Q}</td>
<td>$- \frac{h^2(2h+15L-30)}{6}$</td>
<td>$+ \frac{Lh(20-5L)}{2}$</td>
<td>0</td>
<td>$- \frac{h^2(2h+15L-30)}{6EI_c}$</td>
</tr>
<tr>
<td>D_{2Q}</td>
<td>$- \frac{Lh(2h+10L-20)}{2}$</td>
<td>$+ \frac{L^2(30-10L)}{6}$</td>
<td>0</td>
<td>$- \frac{Lh(2h+10L-20)}{2EI_c}$</td>
</tr>
<tr>
<td>D_{3Q}</td>
<td>$+ \frac{h(2h+10L-20)}{2}$</td>
<td>$- \frac{L(20-5L)}{2}$</td>
<td>0</td>
<td>$- \frac{h(2h+10L-20)}{2EI_c}$</td>
</tr>
</tbody>
</table>

Table 10.3: Displacement Computations for a Rectangular Frame
4. The inverse of the flexibility matrix is

\[
[f]^{-1} = 10^{-3} EI \begin{bmatrix}
2.40 & 0.00 & 18.00 \\
0.00 & 0.375 & 3.750 \\
18.00 & 3.750 & 197.5
\end{bmatrix}
\] (10.54)

5. Hence the reactions are determined from

\[
\{R\} = \begin{bmatrix}
R_1 \\
R_2 \\
R_3
\end{bmatrix} = 10^{-3} EI \begin{bmatrix}
2.40 & 0.00 & 18.00 \\
0.00 & 0.375 & 3.750 \\
18.00 & 3.750 & 197.5
\end{bmatrix} \begin{bmatrix}
12,833 \\
31,333 \\
1,800
\end{bmatrix} = \begin{bmatrix}
-1.60 \\
+5.00 \\
-7.00
\end{bmatrix}
\] (10.55)

Example 10-8: Frame with Temperature Effectsand Support Displacements, (White et al. 1976)

The single bay frame, of example 10-7, has a height \(h = 10\) ft and span \(L = 20\) ft and its two supports rigidly connected and is constructed of reinforced concrete. It supports a roof and wall partitions in such a manner that a linear temperature variation occurs across the depth of the frame members when inside and outside temperatures differ. Assume the member depth is constant at 1 ft, and that the structure was built with fixed bases \(A\) and \(D\) at a temperature of 85\(^\circ\)F. The temperature is now 70\(^\circ\)F inside and 20\(^\circ\)F outside. We wish to determine the reactions at \(D\) under these conditions. Assume that the coefficient of linear expansion of reinforced concrete is \(\alpha = 0.0000055/\circ\)F.

Solution:

1. Our analysis proceeds as before, using Equation 10.11 with the \([D]\) vector interpreted appropriately. The three releases shown in Fig. 10.16 will be used.

2. The first stage in the analysis is the computation of the relative displacements \(D_1\Delta, D_2\Delta, D_3\Delta\) of the primary structure caused by temperature effects. These displacements are caused by two effects: axial shortening of the members because of the drop in average temperature (at middepth of the members), and curvature of the members because of the temperature gradient.

3. In the following discussion the contributions to displacements due to axial strain are denoted with a single prime (\(\prime\)) and those due to curvature by a double prime (\(\prime\)).

4. Consider the axial strain first. A unit length of frame member shortens as a result of the temperature decrease from 85\(^\circ\)F to 45\(^\circ\)F at the middepth of the member. The strain is therefore

\[
\alpha\Delta T = (0.0000055)(40) = 0.00022
\] (10.56)

5. The effect of axial strain on the relative displacements needs little analysis. The horizontal member shortens by an amount \((0.00022)(20) = 0.0044\) ft. The shortening of the vertical members results in no relative displacement in the vertical direction. No rotation occurs.

6. We therefore have \(D_{1\Delta} = -0.0044\) ft, \(D_{2\Delta} = 0\), and \(D_{3\Delta} = 0\).

7. The effect of curvature must also be considered. A frame element of length \(dx\) undergoes an angular strain as a result of the temperature gradient as indicated in Figure 10.17. The change in length at an extreme fiber is

\[
\epsilon = \alpha\Delta T dx = 0.0000055(25)dx = 0.000138dx
\] (10.57)

8. with the resulting real rotation of the cross section

\[
d\phi = \epsilon/0.5 = 0.000138dx/0.5 = 0.000276dx\ \text{radians}
\] (10.58)

9. The relative displacements of the primary structure at \(D\) are found by the virtual force method. A virtual force \(\delta\overrightarrow{Q}\) is applied in the direction of the desired displacement and the resulting moment diagram \(\delta\overrightarrow{M}\) determined.
11. The virtual work equation
\[\delta Q_D = \int \delta M d\phi \] (10.59)
is used to obtain each of the desired displacements \(D\).

12. The results, which you should verify, are
\[
\begin{align*}
D''_1\Delta &= 0.0828 \text{ ft} \quad (10.60-a) \\
D''_2\Delta &= 0.1104 \text{ ft} \quad (10.60-b) \\
D''_3\Delta &= -0.01104 \text{ radians} \quad (10.60-c)
\end{align*}
\]

13. Combining the effects of axial and rotational strain, we have
\[
\begin{align*}
D_{1\Delta} &= D'_{1\Delta} + D''_{1\Delta} = 0.0784 \text{ ft} \\
D_{2\Delta} &= D'_{2\Delta} + D''_{2\Delta} = 0.1104 \text{ ft} \\
D_{3\Delta} &= D'_{3\Delta} + D''_{3\Delta} = -0.01104 \text{ radians} \quad (10.61)
\end{align*}
\]

14. We now compute the redundants caused by temperature effects:
\[
[R] = [f]^{-1}(-[D]) \quad (10.62)
\]
\[
\begin{bmatrix}
R_1 \\
R_2 \\
R_3
\end{bmatrix} = 10^{-3} EI \begin{bmatrix}
18.0 \\
3.75 \\
197.5
\end{bmatrix} \begin{bmatrix}
-0.0784 \\
-0.1104 \\
+0.01104
\end{bmatrix} = \begin{bmatrix}
+0.0106 \\
+0.355 \\
+0.0106
\end{bmatrix} \cdot 10^{-3} EI \quad (10.63)
\]
where the units are feet and kips.

15. You should construct the moment diagram for this structure using the values of the redundants found in the analysis.

16. Notice that the stiffness term \(EI\) does not cancel out in this case. Internal forces and reactions in a statically indeterminate structure subject to effects other than loads (such as temperature) are dependent on the actual stiffnesses of the structure.

17. The effects of axial strain caused by forces in the members have been neglected in this analysis. This is usual for low frames where bending strain dominates behavior. To illustrate the significance of this assumption, consider member \(BC\). We have found \(R_1 = 10.6 \cdot 10^{-6} EI\) k. The tension in \(BC\) has this same value, resulting in a strain for the member of \(10.6 \cdot 10^{-6} EI / EA\). For a rectangular member, \(I/A = (bd^3/12)(bd) = d^2/12\). In our case \(d = 1\) ft, therefore the axial strain is \(10.6 \cdot 10^{-6}(0.0833) = 8.83 \cdot 10^{-7}\), which is several orders of magnitude smaller than the temperature strain computed for the same member. We may therefore rest assured that neglecting axial strain caused by forces does not affect the values of the redundants in a significant manner for this structure.

18. Now consider the effects of foundation movement on the same structure. The indeterminate frame behavior depends on a structure that we did not design: the earth. The earth is an essential part of nearly all structures, and we must understand the effects of foundation behavior on structural behavior.
For the purposes of this example, assume that a foundation study has revealed the possibility of a clockwise rotation of the support at \(D \) of 0.001 radians and a downward movement of the support at \(D \) of 0.12 ft. We wish to evaluate the redundants \(R_1, R_2, \) and \(R_3 \) caused by this foundation movement.

19. No analysis is needed to determine the values of \(D_{1\Delta}, D_{2\Delta}, \) and \(D_{3\Delta} \) for the solution of the redundants. These displacements are found directly from the support movements, with proper consideration of the originally chosen sign convention which defined the positive direction of the relative displacements. From the given support displacements, we find \(D_{1\Delta} = 0, D_{2\Delta} = +0.12 \) ft, and \(D_{3\Delta} = -0.001 \) radians. Can you evaluate these quantities for a case in which the support movements occurred at \(A \) instead of \(D? \)

20. The values of the redundants is given by

\[
[R] = [f]^{-1}(-[D])
\]

\[
\begin{bmatrix}
R_1 \\
R_2 \\
R_3
\end{bmatrix} = 10^{-3}EI \begin{bmatrix}
18.0 & 3.75 & 197.5 \\
-0.12 & +0.001 & \\
18.0 & -252.5
\end{bmatrix}
\]

(10.65)

with units in kips and feet.

21. A moment diagram may now be constructed, and other internal force quantities computed from the now known values of the redundants. The redundants have been valued separately for effects of temperature and foundation settlement. These effects may be combined with those due to loading using the principle of superposition.

Example 10-9: Braced Bent with Loads and Temperature Change, (White et al. 1976)

The truss shown in Figure 10.18 represents an internal braced bent in an enclosed shed, with lateral loads of 20 kN at the panel points. A temperature drop of 30°C may occur on the outer members (members 1-2, 2-3, 3-4, 4-5, and 5-6). We wish to analyze the truss for the loading and for the temperature effect.

Solution:

1. The first step in the analysis is the definition of the two redundants. The choice of forces in diagonals 2-4 and 1-5 as redundants facilitates the computations because some of the load effects are easy to analyze. Figure ??-b shows the definition of \(R_1 \) and \(R_2. \)

2. The computations are organized in tabular form in Table 10.4. The first column gives the bar forces \(P \) in the primary structure caused by the actual loads. Forces are in kN. Column 2 gives the force in each bar caused by a unit load (1 kN) corresponding to release 1. These are denoted \(p_1 \) and also represent the bar force \(\delta q_i / \delta Q_j \) caused by a virtual force \(\delta Q_j \) applied at the same location. Column 3 lists the same quantity for a unit load and for a virtual force \(\delta Q_j \) applied at release 2. These three columns constitute a record of the truss analysis needed for this problem.

3. Column 4 gives the value of \(L_c / EA_c \) for each bar in terms of \(L_c / EA_c \) of the vertical members. This is useful because the term \(L_c / EA \) cancels out in some of the calculations.

4. The method of virtual work is applied directly to compute the displacements \(D_{1Q} \) and \(D_{2Q} \) corresponding to the releases and caused by the actual loads. Apply a virtual force \(\delta Q_1 \) at release 1. The internal virtual forces \(\delta q_i \) are found in column 2. The internal virtual work \(\delta q_i \Delta l \) is found in column 5 as the product of columns 1, 2, and 4. The summation of column 5 is \(D_{1\Delta} = -122.42 \) \(L_c / EA_c \). Similarly, column 6 is the product of columns 1, 3, and 4, giving \(D_{2\Delta} = -273.12 \) \(L_c / EA_c \).

5. The same method is used to compute the flexibilities \(f_{ij} \). In this case the real loading is a unit load corresponding first to release 1 leading to \(f_{11} \), and \(f_{21} \), and then to release 2 leading to \(f_{12} \) and \(f_{22} \). Column 7 shows the computation for \(f_{11} \). It is the product of column 2 representing force due to the real unit load with column 2 representing force due to a virtual load \(\delta Q_1 \) at the same location (release 1) multiplied by column 4 to include the \(L_c / EA_c \) term. Column 8 derives from columns 2, 3, 4 and 5 and leads to \(f_{21} \). Columns 9 and 10 are the computations for the remaining flexibilities.
10–24

Draft

Victor Saouma
multiply by
1-2
60.0
2-3
20.00
3-4
0
4-5
0
5-6
−20.00
6-1
40.00
2-5
20.00
1-5
0
2-6
−56.56
2-4
0
3-5
−28.28

p1

p2

0
−0.707
−0.707
−0.707
0
0
−0.707
0
0
1.00
1.00

−0.707
0
0
0
−0.707
−0.707
−0.707
1.00
1.00
0
0

L/EA
Lc /EAc
1
1
2
1
1
2
2
2.828
2.828
2.828
2.838

D1Q
q̄1 P L/EA
Lc /EAc
0
−14.14
0
0
0
0
−28.28
0
0
0
−80.00
−122.42

D2Q
q̄2 P L/EA
Lc /EAc
−42.42
0
0
0
14.14
−56.56
−28.28
0
−160.00
0
0
−273.12

f11
q̄1 p1 L/EA
Lc /EAc
0
0.50
1.00
0.50
0
0
1.00
0
0
2.83
2.83
8.66

f21
q̄2 p2 L/EA
Lc /EAc
0
0
0
0
0
0
1.00
0
0
0
0
1.00

f12
q̄p2 L/EA
Lc /EAc
0
0
0
0
0
0
1.00
0
0
0
0
1.00

f22
q̄2 p2 L/EA
Lc /EAc
0.50
0
0
0
0.50
1.00
1.00
2.83
2.83
0
0
8.66

∆/temp
Lc
−0.0003
−0.0003
−0.0003
−0.0003
−0.0003
0
0
0
0
0
0

D1∆
q̄1 ∆/
10−4 Lc
0
2.12
2.12
2.12
0
0
0
0
0
0
0
6.36

D2∆
q̄2 ∆/
10−4 Lc
2.12
0
0
0
2.12
0
0
0
0
0
0
4.24

Structural Analysis

STATIC INDETERMINANCY; FLEXIBILITY METHOD

P


6. We have assumed that a temperature drop of 30°C occurs in the outer members. The corresponding
length changes are found in column 11. Again using the virtual work method, column 12 tabulates the
internal virtual work of virtual forces \bar{q}_1 through displacements Δl where for each bar, $\Delta l = a l \Delta T$.
Column 12 is therefore the product of columns 2 and 11. The summation of the elements of column 12
is the displacement D_1 corresponding to release 1. Column 13 repeats this process for D_2 corresponding
to release 2.

7. The tabulated information provides the necessary terms for a matrix solution of the problem. We have

$$f = \begin{bmatrix} 8.66 & 1.00 \\ 1.00 & 8.66 \end{bmatrix} \frac{L_c}{EA_c}$$ (10.66-a)

$$D_q = \begin{bmatrix} -122.42 \\ -273.12 \end{bmatrix} \frac{L_c}{EA_c}$$ (10.66-b)

$$D_\Delta = \begin{bmatrix} 6.36 \\ 4.24 \end{bmatrix} (10)^{-4} L_c$$ (10.66-c)

therefore

$$f^{-1} = \begin{bmatrix} 0.117 & -0.0134 \\ -0.0134 & 0.117 \end{bmatrix} \frac{EA_c}{L_c}$$ (10.67)

8. The redundant forces due to the applied loading are

$$R = f^{-1}(-D_q) = \begin{bmatrix} -0.0134 & 0.117 \end{bmatrix} \frac{EA_c}{L_c} \begin{bmatrix} 122.42 \\ 273.12 \end{bmatrix} \frac{L_c}{EA_c} = \begin{bmatrix} 10.66 \\ 30.32 \end{bmatrix}$$ (10.68-b)

9. thus $R_1 = 10.66$ kN, $R_2 = 30.32$ kN.

10. The redundant forces due to the temperature drop are $R = f^{-1}(-D_\Delta)$

$$= \begin{bmatrix} -0.0134 & 0.117 \end{bmatrix} \frac{EA_c}{L_c} \begin{bmatrix} -6.36 \\ -4.24 \end{bmatrix} 10^{-4} L_c = \begin{bmatrix} -6.87 \\ -4.11 \end{bmatrix} 10^{-5} EA_c$$

11. Thus with $E = 200$ kN/mm², $A_c = 500$ mm², we have

$$R_1 = 6.87(10^{-5})(200)(500) = -6.87kN$$ (10.69-a)

$$R_2 = 4.11(10^{-5})(200)(500) = -4.11kN$$ (10.69-b)
12. Using the redundant forces from each of these analyses, the remainder of the bar forces are computed by simple equilibrium. The information in Table 10.4 contains the basis for such computations. The bar force in any bar is the force of column 1 added to that in column 2 multiplied by R_1 plus that in column 3 multiplied by R_2. This follows from the fact that columns 2 and 3 are bar forces caused by a force of unity corresponding to each of the redundant. The results of the calculations are shown in Figure ??-c for the applied loading and ??-d for the temperature drop. The forces caused by the temperature drop are similar in magnitude to those caused by wind load in this example. Temperature differences, shrinkage, support settlement, or tolerance errors can cause important effects in statically indeterminate structures. These stresses are self-limiting, however, in the sense that if they cause yielding or some ductile deformation failure does not necessarily follow, rather relief from th
Chapter 11

KINEMATIC INDETERMINANCY; STIFFNESS METHOD

11.1 Introduction

11.1.1 Stiffness vs Flexibility

There are two classes of structural analysis methods, Table 11.1:

Flexibility: where the primary unknown is a force, where equations of equilibrium are the starting point, static indeterminacy occurs if there are more unknowns than equations, and displacements of the entire structure (usually from virtual work) are used to write an equation of compatibility of displacements in order to solve for the redundant forces.

Stiffness: method is the counterpart of the flexibility one. Primary unknowns are displacements, and we start from expressions for the forces written in terms of the displacements (at the element level) and then apply the equations of equilibrium. The structure is considered to be *kinematically indeterminate* to the *n*th degree where *n* is the total number of independent displacements. From the displacements, we then compute the internal forces.

<table>
<thead>
<tr>
<th>Primary Variable (d.o.f.)</th>
<th>Flexibility</th>
<th>Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indeterminacy</td>
<td>Forces</td>
<td>Displacements</td>
</tr>
<tr>
<td>Force-Displacement</td>
<td>Static</td>
<td>Kinematic</td>
</tr>
<tr>
<td>Governing Relations</td>
<td>Displacement(Force)/Structure</td>
<td>Force(Displacement)/Element</td>
</tr>
<tr>
<td>Methods of analysis</td>
<td>Compatibility of displacement</td>
<td>Equilibrium</td>
</tr>
<tr>
<td></td>
<td>“Consistent Deformation”</td>
<td>Slope Deflection; Moment Distribution</td>
</tr>
</tbody>
</table>

Table 11.1: Stiffness vs Flexibility Methods

In the flexibility method, we started by releasing as many redundant forces as possible in order to render the structure *statically determinate*, and this made it quite flexible. We then applied an appropriate set of forces such that *kinematic constraints* were satisfied.

In the stiffness method, we follow a different approach, we stiffen the structure by constraining all the displacements, hence making it *kinematically determinate*, and then we will release all the constraints in such a way to satisfy *equilibrium*.
In the slope deflection method, all constraints are released *simultaneously*, thus resulting in a linear system of \(n \) equations with \(n \) unknowns. In the Moment Distribution method, we release the constraints *one at a time* and essentially solve for the system of \(n \) equations *iteratively*.

11.1.2 Sign Convention

The sign convention in the stiffness method is different than the one previously adopted in structural analysis/design, Fig. 12.3.

In the stiffness method the sign convention adopted is consistent with the prevailing coordinate system. Hence, we define a positive moment as one which is counter-clockwise at the end of the element, Fig. 12.3.

![Figure 11.1: Sign Convention, Design and Analysis](image1)

11.2 Degrees of Freedom

A degree of freedom (d.o.f.) is an independent generalized nodal displacement of a node.

The displacements must be linearly independent and thus not related to each other. For example, a roller support on an inclined plane would have three displacements (rotation \(\theta \), and two translations \(u \) and \(v \)), however since the two displacements are kinematically constrained, we only have two independent displacements, Fig. 12.5.

![Figure 11.2: Independent Displacements](image2)

We note that we have been referring to *generalized* displacements, because we want this term to include translations as well as rotations. Depending on the type of structure, there may be none, one or more than one such displacement.

The types of degrees of freedom for various types of structures are shown in Table 12.4.
11.3 Kinematic Relations

<table>
<thead>
<tr>
<th>Type</th>
<th>Node 1</th>
<th>Node 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dimension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam</td>
<td>{p}</td>
<td>{\delta}</td>
</tr>
<tr>
<td></td>
<td>(F_{y1}, M_{z2})</td>
<td>(F_{y3}, M_{z4})</td>
</tr>
<tr>
<td></td>
<td>(v_1, \theta_2)</td>
<td>(v_3, \theta_4)</td>
</tr>
<tr>
<td>2 Dimension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truss</td>
<td>{p}</td>
<td>{\delta}</td>
</tr>
<tr>
<td></td>
<td>(F_{x1})</td>
<td>(F_{x2})</td>
</tr>
<tr>
<td></td>
<td>(u_1)</td>
<td>(u_2)</td>
</tr>
<tr>
<td>Frame</td>
<td>{p}</td>
<td>{\delta}</td>
</tr>
<tr>
<td></td>
<td>(F_{x1}, F_{y2}, M_{z3})</td>
<td>(F_{x4}, F_{y5}, M_{z6})</td>
</tr>
<tr>
<td></td>
<td>(u_1, v_2, \theta_3)</td>
<td>(u_4, v_5, \theta_6)</td>
</tr>
<tr>
<td>3 Dimension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truss</td>
<td>{p}</td>
<td>{\delta}</td>
</tr>
<tr>
<td></td>
<td>(F_{x1}), (F_{x2})</td>
<td>(F_{x2})</td>
</tr>
<tr>
<td></td>
<td>(u_1), (u_2)</td>
<td>(u_2)</td>
</tr>
<tr>
<td>Frame</td>
<td>{p}</td>
<td>{\delta}</td>
</tr>
<tr>
<td></td>
<td>(F_{x1}, F_{y2}, M_{x3}, F_{x4}, F_{y5}, M_{z6})</td>
<td>(F_{x7}, F_{y8}, F_{y9}, T_{x10}, M_{y11}, M_{z12})</td>
</tr>
<tr>
<td></td>
<td>(u_1, v_2, w_3, \theta_4, \theta_5, \theta_6)</td>
<td>(u_7, v_8, w_9, \theta_{10}, \theta_{11}, \theta_{12})</td>
</tr>
</tbody>
</table>

Table 11.2: Degrees of Freedom of Different Structure Types Systems

Fig. 12.4 also shows the geometric (upper left) and elastic material (upper right) properties associated with each type of element.

11.2.1 Methods of Analysis

There are three methods for the stiffness based analysis of a structure:

Slope Deflection: (Mohr, 1892) Which results in a system of \(n\) linear equations with \(n\) unknowns, where \(n\) is the degree of kinematic indeterminancy (i.e. total number of independent displacements/rotation).

Moment Distribution: (Cross, 1930) which is an iterative method to solve for the \(n\) displacements and corresponding internal forces in flexural structures.

Direct Stiffness method: (1960) which is a formal statement of the stiffness method and cast in matrix form is by far the most powerful method of structural analysis.

The first two methods lend themselves to hand calculation, and the third to a computer based analysis.

11.3 Kinematic Relations

11.3.1 Force-Displacement Relations

Whereas in the flexibility method we sought to obtain a displacement in terms of the forces (through virtual work) for an entire structure, our starting point in the stiffness method is to develop a set of relationship for the force in terms of the displacements for a single element.

\[
\begin{bmatrix}
V_1 \\
M_1 \\
V_2 \\
M_2
\end{bmatrix} =
\begin{bmatrix}
- & - & - & - \\
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\theta_1 \\
v_2 \\
\theta_2
\end{bmatrix} \quad (11.1)
\]
Figure 11.3: Total Degrees of Freedom for various Type of Elements
We start from the differential equation of a beam, Fig. 11.4 in which we have all positive known
displacements, we have from strength of materials

\[
M = -EI \frac{d^2 v}{dx^2} = M_1 - V_1 x + m(x)
\]
(11.2)

where \(m(x)\) is the moment applied due to the applied load only. It is positive when counterclockwise.

Integrating twice

\[
-EI v' = M_1 x - \frac{1}{2} V_1 x^2 + f(x) + C_1
\]

\[
-EI v = \frac{1}{2} M_1 x^2 - \frac{1}{6} V_1 x^3 + g(x) + C_1 x + C_2
\]

where \(f(x) = \int m(x) dx\), and \(g(x) = \int f(x) dx\).

Applying the boundary conditions at \(x = 0\)

\[
\begin{align*}
v' &= \theta_1 \\
v &= v_1
\end{align*}
\]

\[
\Rightarrow \begin{cases}
C_1 = -EI \theta_1 \\
C_2 = -EI v_1
\end{cases}
\]
(11.5)

Applying the boundary conditions at \(x = L\) and combining with the expressions for \(C_1\) and \(C_2\)

\[
\begin{align*}
v' &= \theta_2 \\
v &= v_2
\end{align*}
\]

\[
\Rightarrow \begin{cases}
-EI \theta_2 = M_1 L - \frac{1}{2} V_1 L^2 + f(L) - EI \theta_1 \\
-EI v_2 = \frac{1}{2} M_1 L^2 - \frac{1}{6} V_1 L^3 + g(L) - EI \theta_1 L - EI v_1
\end{cases}
\]
(11.6)

Since equilibrium of forces and moments must be satisfied, we have:

\[
V_1 + q + V_2 = 0 \quad M_1 - V_1 L + m(L) + M_2 = 0
\]
(11.7)

where \(q = \int_0^L p(x) dx\), thus

\[
V_1 = \frac{(M_1 + M_2)}{L} + \frac{1}{L} m(L) \quad V_2 = -(V_1 + q)
\]
(11.8)

Substituting \(V_1\) into the expressions for \(\theta_2\) and \(v_2\) in Eq. 11.6 and rearranging

\[
\begin{align*}
M_1 - M_2 &= 2EI \theta_1 + \frac{2EI}{L^2} \theta_2 + m(L) - \frac{2}{L} f(L) \\
2M_1 - M_2 &= 2EI \theta_1 - \frac{6EI}{L^2} v_1 - \frac{6EI}{L^2} v_2 + m(L) - \frac{6}{L^2} g(L)
\end{align*}
\]
(11.9)

Solving those two equations, we obtain:
The equations derived for calculating the fixed-end actions can be summarized as follows. We recall

\[M_1 = \frac{2EI_z}{L} (2\theta_1 + \theta_2) - \frac{6EI_z}{L^2} (v_2 - v_1) + M_1^F \] (11.10)

\[M_2 = \frac{2EI_z}{L} (\theta_1 + 2\theta_2) - \frac{6EI_z}{L^2} (v_2 - v_1) + M_2^F \] (11.11)

where

\[M_1^F = \frac{2}{L^2} [Lf(L) - 3g(L)] \] (11.12-a)

\[M_2^F = -\frac{1}{L^2} [L^2m(L) - 4Lf(L) + 6g(L)] \] (11.12-b)

\(M_1^F \) and \(M_2^F \) are the fixed end moments for \(\theta_1 = \theta_2 = 0 \) and \(v_1 = v_2 = 0 \), that is fixed end moments. They can be obtained either from the analysis of a fixed end beam, or more readily from the preceding two equations.

In Eq. 11.10 and 11.11 we observe that the moments developed at the end of a member are caused by: I) end rotation and displacements; and II) fixed end members.

Finally, we can substitute those expressions in Eq. 11.8

\[V_1 = \frac{6EI_z}{L^2} (\theta_1 + \theta_2) - \frac{12EI_z}{L^3} (v_2 - v_1) + V_1^F \] (11.13)

\[V_2 = -\frac{6EI_z}{L^2} (\theta_1 + \theta_2) + \frac{12EI_z}{L^3} (v_2 - v_1) + V_2^F \] (11.14)

where

\[V_1^F = \frac{6}{L^3} [Lf(L) - 2g(L)] \] (11.15-a)

\[V_2^F = -\left[\frac{6}{L^3} [Lf(L) - 2g(L)] + q \right] \] (11.15-b)

The relationships just derived enable us now to determine the stiffness matrix of a beam element.

\[
\begin{bmatrix}
V_1 \\
M_1 \\
V_2 \\
M_2
\end{bmatrix} =
\begin{bmatrix}
v_1 \\
\frac{12EI_z}{L} \\
v_2 \\
\frac{6EI_z}{L}
\end{bmatrix} +
\begin{bmatrix}
\theta_1 \\
\frac{6EI_z}{L} \\
\theta_2 \\
\frac{6EI_z}{L}
\end{bmatrix}
\begin{bmatrix}
\frac{12EI_z}{L^3} \\
\frac{6EI_z}{L^2} \\
\frac{12EI_z}{L^3} \\
\frac{6EI_z}{L^2}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
\theta_1 \\
V_2 \\
\theta_2
\end{bmatrix}
\] (11.16)

\[k_e \]

11.3.2 Fixed End Actions

As mentioned above, the end actions developed in a member involve the end displacements, rotations, and the in-span loads. In-spans loads exhibit themselves in the form of fixed-end forces.

The fixed-end actions can be determined from the equations derived above, or by analyzing a fixed-end beam under the applied loads.

Note that in both cases, the load has to be assumed positive, i.e. pointing up for a beam.

The equations derived for calculating the fixed-end actions can be summarized as follows. We recall that, with the \(x \) axis directed to the right, positive loads and shear forces act upward and positive
moments are counterclockwise. To calculate the fixed end actions the only thing we need is an expression for the moment of the applied loads (without the end reactions) in the analysis sign convention. Thus with

\[m(x) = \text{moment due to the applied loads at section } x \quad (11.17-a) \]
\[f(x) = \int m(x) \, dx \quad (11.17-b) \]
\[g(x) = \int f(x) \, dx \quad (11.17-c) \]
\[q = \int p(x) \, dx = \text{total load on the span} \quad (11.17-d) \]

and

\[
\begin{align*}
M_1^F &= \frac{2}{L^2} [Lf(L) - 3g(L)] \quad (11.18) \\
M_2^F &= -\frac{1}{L^2} [L^2m(L) - 4Lf(L) + 6g(L)] \quad (11.19) \\
V_1^F &= \frac{6}{L^3} [Lf(L) - 2g(L)] \quad (11.20) \\
V_2^F &= -\frac{6}{L^3} [Lf(L) - 2g(L)] - q \quad (11.21)
\end{align*}
\]

11.3.2.1 Uniformly Distributed Loads

For a uniformly distributed load \(w \) over the entire span,

\[m(x) = \frac{1}{2}wx^2; \quad f(x) = \frac{1}{6}wx^3; \quad g(x) = \frac{1}{24}wx^4; \quad q = wL \quad (11.22) \]

Substituting

\[
\begin{align*}
M_1^F &= \frac{2}{L^2} \left[L \left(\frac{1}{6}wL^3 \right) - 3 \left(\frac{1}{24}wL^4 \right) \right] = -\frac{wL^2}{12} \quad (11.23-a) \\
M_2^F &= -\frac{1}{L^2} \left[L^2 \left(\frac{1}{2}wL^2 \right) - 4L \left(\frac{1}{6}wL^3 \right) + 6 \left(\frac{1}{24}wL^4 \right) \right] = \frac{wL^2}{12} \quad (11.23-b) \\
V_1^F &= \frac{6}{L^3} \left[L \left(\frac{1}{6}wL^3 \right) - 2 \left(\frac{1}{24}wL^4 \right) \right] = -\frac{wL}{2} \quad (11.23-c) \\
V_2^F &= -\frac{6}{L^3} \left[L \left(\frac{1}{6}wL^3 \right) - 2 \left(\frac{1}{24}wL^4 \right) \right] - wL = -\frac{wL}{2} \quad (11.23-d)
\end{align*}
\]

11.3.2.2 Concentrated Loads

For a concentrated load \(P \) acting at \(a \) from the left-hand end with \(b = L - a \),

\[
\begin{align*}
 m(x) &= -P(x - a)H_a \quad \text{gives} \quad m(L) = -Pb \\
f(x) &= -\frac{1}{2}P(x - a)^2H_a \quad f(L) = -\frac{1}{2}Pb^2 \\
g(x) &= -\frac{1}{6}P(x - a)^3H_a \quad g(L) = -\frac{1}{6}Pb^3
\end{align*}
\]

where we define \(H_a = 0 \) if \(x < a \), and \(H_a = 1 \) if \(x \geq a \).

And

\[
\begin{align*}
 q &= P \quad (11.25-a) \\
M_1^F &= \frac{2}{L^2} \left[L \left(-\frac{1}{2}Pb^2 \right) - 3 \left(-\frac{1}{6}Pb^3 \right) \right] = -\frac{Pb^2a}{L^2} \quad (11.25-b)
\end{align*}
\]
\[M_F^2 = -\frac{1}{L^2} \left[L^2 (-Pb) - 4L \left(-\frac{1}{2}Pb^2 \right) + 6 \left(-\frac{1}{6}Pb^3 \right) \right] = \frac{Pb}{L^2} \left(L^2 - 2Lb + b^2 \right) \] (11.25-c)
\[V_F^1 = \frac{6}{L^3} \left[L \left(-\frac{1}{2}Pb^2 \right) - 2 \left(-\frac{1}{6}Pb^3 \right) \right] = \frac{-Pb^2}{L} (3L - 2b) \] (11.25-d)
\[V_F^2 = -\left(\frac{6}{L^3} \left[L \left(-\frac{1}{2}Pb^2 \right) - 2 \left(-\frac{1}{6}Pb^3 \right) \right] + P \right) = \frac{-Pb^2}{L^3} (a + 3b) \] (11.25-e)

If the load is applied at midspan \((a = b = L/2)\), then the previous equation reduces to

\[M_F^1 = -\frac{PL}{8} \] (11.26)
\[M_F^2 = \frac{PL}{8} \] (11.27)
\[V_F^1 = -\frac{P}{2} \] (11.28)
\[V_F^2 = -\frac{P}{2} \] (11.29)

11.4 Slope Deflection; Direct Solution

11.4.1 Slope Deflection Equations

In Eq. 11.10 and 11.11 if we let \(\Delta = v_2 - v_1\) (relative displacement), \(\psi = \Delta / L\) (rotation of the chord of the member), and \(K = I / L\) (stiffness factor) then the end equations are:

\[M_1 = 2EK(2\theta_1 + \theta_2 - 3\psi) + M_F^1 \] (11.30)
\[M_2 = 2EK(\theta_1 + 2\theta_2 - 3\psi) + M_F^2 \] (11.31)

Note that \(\psi\) will be positive if counterclockwise, negative otherwise.

From Eq. 11.30 and 11.31, we note that if a node has a displacement \(\Delta\), then both moments in the adjacent element will have the same sign. However, the moments in elements on each side of the node will have different sign.

11.4.2 Procedure

To illustrate the general procedure, we consider the two span beam in Fig. 11.5 under the applied load, we will have three rotations \(\theta_1, \theta_2,\) and \(\theta_3\) (i.e. three degrees of freedom) at the supports. Separating the spans from the supports, we can write the following equilibrium equations for each support

\[M_{12} = 0 \] (11.32-a)
\[M_{21} + M_{23} = 0 \] (11.32-b)
\[M_{32} = 0 \] (11.32-c)

The three equilibrium equations in turn can be expressed in terms of the three unknown rotations, thus we can analyze this structure (note that in the slope deflection this will always be the case).

Using equations 11.30 and 11.31 we obtain

\[M_{12} = 2EK_{12}(2\theta_1 + \theta_2) + M_{12}^F \] (11.33-a)
\[M_{21} = 2EK_{12}(\theta_1 + 2\theta_2) + M_{21}^F \] (11.33-b)
\[M_{23} = 2EK_{23}(2\theta_2 + \theta_3) \] (11.33-c)
\[M_{32} = 2EK_{23}(\theta_2 + 2\theta_3) \] (11.33-d)
Substituting into the equations of equilibrium, we obtain

\[
\begin{bmatrix}
2 & 1 & 0 \\
K_{12} & 2(K_{12} + K_{23}) & K_{23} \\
0 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{bmatrix}
=
\begin{bmatrix}
-M_{12} \\
\frac{-2EK_{12}L_1}{2} \\
0
\end{bmatrix}
\]

(11.34)

Where the fixed end moment can be separately determined.

Once the rotations are determined, we can then determine the moments from the slope deflection equation Eq. 11.30.

The computational requirements of this method are far less than the one involved in the flexibility method (or method of consistent deformation).

11.4.3 Algorithm

Application of the slope deflection method requires the following steps:

1. Sketch the deflected shape.

2. Identify all the unknown support degrees of freedom (rotations and deflections).

3. Write the equilibrium equations at all the supports in terms of the end moments.

4. Express the end moments in terms of the support rotations, deflections and fixed end moments.

5. Substitute the expressions obtained in the previous step in the equilibrium equations.

6. Solve the equilibrium equations to determine the unknown support rotation and/or deflections.

7. Use the slope deflection equations to determine the end moments.

8. Draw the moment diagram, careful about the difference in sign convention between the slope deflection moments and the moment diagram.
11.4.4 Examples

Example 11-1: Propped Cantilever Beam, (Arbabi 1991)

Find the end moments for the beam of Fig. 11.6

![Diagram of a propped cantilever beam with loads and dimensions]

Figure 11.6: Slope Deflection; Propped Cantilever Beam

Solution:

1. The beam is kinematically indeterminate to the third degree (θ_2, Δ_3, θ_3), however by replacing the overhang by a fixed end moment equal to 100 kN.m at support 2, we reduce the degree of kinematic indeterminancy to one (θ_2).

2. The equilibrium relation is

 $$ M_{21} - 100 = 0 \quad (11.35) $$

3. The members end moments in terms of the rotations are (Eq. 11.30 and 11.31)

 $$ M_{12} = 2EK_{12}(2\theta_1 + \theta_2) = \frac{2}{10} EI\theta_2 \quad (11.36-a) $$

 $$ M_{21} = 2EK_{12}(\theta_1 + 2\theta_2) = \frac{4}{10} EI\theta_2 \quad (11.36-b) $$

4. Substituting into the equilibrium equations

 $$ \theta_2 = \frac{10}{4EI} M_{21} = \frac{250}{EI} \quad (11.37) $$

or

 $$ M_{12} = \frac{2}{10} EI\theta_2 = \frac{2}{10} EI \frac{10}{4EI} M_{21} = \frac{(2)EI(50)}{(10)EI} = 50 \text{ kN.m} \quad (11.38) $$

Draw the moment diagram for the two span beam shown in Fig. 11.8 Solution:

1. The unknowns are θ_1, θ_2, and θ_3

2. The equilibrium relations are

 $$ M_{21} + M_{23} = 0 \quad (11.39-a) $$

 $$ M_{32} = 0 \quad (11.39-b) $$
11.4 Slope Deflection; Direct Solution

3. The fixed end moments are given by Eq. 11.23-b and 11.26

\[M_{12}^F = -M_{21}^F = -\frac{wL^2}{12} = -\frac{(-2)(20)^2}{12} = 66.67 \text{ k.ft} \] \hspace{1cm} (11.40-a)
\[M_{23}^F = -M_{32}^F = -\frac{PL}{8} = -\frac{(-5)(30)}{8} = 18.75 \text{ k.ft} \] \hspace{1cm} (11.40-b)

4. The members end moments in terms of the rotations are (Eq. 11.30 and 11.31)

\[M_{12} = 2EK_{12}(\theta_2) + M_{12}^F = \frac{2EI}{L_1} \theta_2 + M_{12} = \frac{EI}{10} \theta_2 + 66.67 \] \hspace{1cm} (11.41-a)
\[M_{21} = 2EK_{12}(2\theta_2) + M_{21}^F = \frac{4EI}{L_1} \theta_2 + M_{21} = \frac{EI}{5} \theta_2 - 66.67 \] \hspace{1cm} (11.41-b)
\[M_{23} = 2EK_{23}(2\theta_2 + \theta_3) + M_{23}^F = \frac{2EI}{L_2}(2\theta_2 + \theta_3) + M_{23}^F \]
\[= \frac{EI}{7.5} \theta_2 + \frac{EI}{15} \theta_3 + 18.75 \] \hspace{1cm} (11.41-c)
\[M_{32} = 2EK_{23}(\theta_2 + 2\theta_3) + M_{32}^F = \frac{2EI}{L_2}(\theta_2 + 2\theta_3) + M_{32}^F \]
\[= \frac{EI}{15} \theta_2 + \frac{EI}{7.5} \theta_3 - 18.75 \] \hspace{1cm} (11.41-d)
\[\left(\begin{array}{c} EI \\ 5 \\ 1 \\ 2 \end{array} \right) \left(\begin{array}{c} \theta_2 \\ \theta_3 \end{array} \right) = \left(\begin{array}{c} 718.8 \\ 281.25 \end{array} \right) \] \hspace{1cm} (11.43)

5. Substituting into the equilibrium equations

\[\frac{EI}{5} \theta_2 - 66.67 + \frac{EI}{7.5} \theta_2 + \frac{EI}{15} \theta_3 + 18.75 = 0 \] \hspace{1cm} (11.42-a)
\[\frac{EI}{15} \theta_2 + \frac{EI}{7.5} \theta_3 - 18.75 = 0 \] \hspace{1cm} (11.42-b)

or

\[\left[\begin{array}{cc} 5 & 1 \\ 1 & 2 \end{array} \right] \left(\begin{array}{c} \theta_2 \\ \theta_3 \end{array} \right) = \left(\begin{array}{c} 718.8 \\ 281.25 \end{array} \right) \]
which will give $EI\theta_2 = 128.48$ and $EI\theta_3 = 76.38$

6. Substituting for the moments

$$
M_{12} = 12.85 + 66.67 = 79.52 \text{ k.ft} \quad (11.44-a)
$$

$$
M_{21} = \frac{128.48}{5} - 66.67 = -40.97 \text{ k.ft} \quad (11.44-b)
$$

$$
M_{23} = \frac{128.48}{7.5} + \frac{76.38}{15} = 18.75 = 40.97 \text{ k.ft} \quad (11.44-c)
$$

$$
M_{32} = \frac{128.48}{15} + \frac{76.38}{7.5} = 0 \text{ k.ft} \quad (11.44-d)
$$

The final moment diagram is also shown in Fig. 11.8. We note that the midspan moment has to be separately computed from the equations of equilibrium in order to complete the diagram.

Determine the end moments for the previous problem if the middle support settles by 6 inches, Fig. 11.8.

![Two Span Beam, Slope Deflection, Moment Diagram](image)

Solution:

1. Since we are performing a linear elastic analysis, we can separately analyze the beam for support settlement, and then add then add the moments to those due to the applied loads.

2. The unknowns are θ_1, θ_2, and θ_3

3. The equilibrium relations are

$$
M_{21} + M_{23} = 0 \quad (11.45-a)
$$

$$
M_{32} = 0 \quad (11.45-b)
$$

4. The members end moments in terms of the rotations are (Eq. 11.30 and 11.31)

$$
M_{12} = 2EK_{12} \left(\theta_2 - 3 \frac{\Delta}{L_{12}} \right) = \frac{EI}{10} \theta_2 + \frac{3EI}{400} \quad (11.46-a)
$$

$$
M_{21} = 2EK_{12} \left(2\theta_2 - 3 \frac{\Delta}{L_{12}} \right) = \frac{EI}{5} \theta_2 + \frac{3EI}{400} \quad (11.46-b)
$$

$$
M_{23} = 2EK_{23} \left(2\theta_2 + \theta_3 - 3 \frac{\Delta}{L_{23}} \right) = \frac{EI}{7.5} \theta_2 + \frac{EI}{15} \theta_3 + \frac{EI}{300} \quad (11.46-c)
$$

$$
M_{32} = 2EK_{23} \left(\theta_2 + 2\theta_3 - 3 \frac{\Delta}{L_{23}} \right) = \frac{EI}{15} \theta_2 + \frac{EI}{7.5} \theta_3 + \frac{EI}{300} \quad (11.46-d)
$$

Victor Saouma

Structural Analysis
11.4 Slope Deflection; Direct Solution

5. Substituting into the equilibrium equations

\[
\begin{align*}
\frac{EI}{5} \theta_2 + \frac{3EI}{400} \theta_3 + \frac{EI}{15} \theta_5 + \frac{EI}{300} &= 0 \quad (11.47-a) \\
\frac{EI}{7.5} \theta_2 + \frac{EI}{15} \theta_3 + \frac{5EI}{300} &= 0 \quad (11.47-b)
\end{align*}
\]

or

\[
EI \left[\begin{array}{ccc}
100 & 20 & 20 \\
20 & 40 & 40
\end{array} \right] \begin{Bmatrix} \theta_2 \\ \theta_3 \end{Bmatrix} = EI \begin{Bmatrix} -\frac{13}{4} \\ -1 \end{Bmatrix} \quad (11.48)
\]

which will give \(\theta_2 = \frac{-0.031}{180} = -0.00017 \) radians and \(\theta_3 = \frac{-1 + \frac{54}{40}}{180} = -0.0097 \) radians

6. Thus the additional moments due to the settlement are

\[
\begin{align*}
M_{12} &= \frac{EI}{10}(-0.031) + \frac{3EI}{400} = 0.0044EI \quad (11.49-a) \\
M_{21} &= \frac{EI}{5}(-0.031) + \frac{3EI}{400} = 0.0013EI \quad (11.49-b) \\
M_{23} &= \frac{EI}{7.5}(-0.031) + \frac{EI}{15}(0.0097) + \frac{EI}{300} = 0.0015EI \quad (11.49-c) \\
M_{32} &= \frac{EI}{15} \theta_2 + \frac{EI}{7.5}(0.0097) + \frac{EI}{300} = 0.1 \sqrt{ } \quad (11.49-d)
\end{align*}
\]

Example 11-4: **dagger Frames, Slope Deflection, (Arbabi 1991)**

Determine the end moments for the frame shown in Fig. 11.9.

![Frame Analysis](image)

Solution:

1. The effect of the 35 cantilever can be included by replacing it with its end moment.

\[
M_3 = -wL = -(3)(6)(3) = -54 \text{ k.ft} \quad (11.50)
\]
2. The unknowns displacements and rotations are

- \(\Delta_2 \) and \(\theta_2 \) at joint 2.
- \(\theta_3 \) and \(\theta_4 \) at joints 3 and 4.

We observe that due to the lack of symmetry, there will be a lateral displacement in the frame, and neglecting axial deformations, \(\Delta_2 = \Delta_3 \).

3. The equilibrium relations are

\[
\begin{align*}
M_{21} + M_{23} & = 0 \quad (11.51-a) \\
M_{32} + M_{34} & = -54 \quad (11.51-b) \\
M_{43} & = 0 \quad (11.51-c) \\
V_{12} + V_{43} - 10 & = 0 \quad (11.51-d)
\end{align*}
\]

Thus we have four unknown displacements and four equations. However, the last two equations are in terms of the shear forces, and we need to have them in term of the end moments, this can be achieved through the following equilibrium relations

\[
\begin{align*}
V_{12} & = \frac{M_{12} + M_{21} + 50}{L_{12}} \quad (11.52-a) \\
V_{43} & = \frac{M_{44} + M_{43}}{L_{34}} \quad (11.52-b)
\end{align*}
\]

Hence, all four equations are now in terms of the moments.

4. The fixed end moments for member 23 are

\[
\begin{align*}
M_{21}^F & = -\frac{PL}{8} = -\frac{-(10)(10)}{8} = 12.5 \text{ k.ft} \quad (11.53-a) \\
M_{23}^F & = -\frac{wL^2}{12} = -\frac{-(3)(20)^2}{12} = 100 \text{ k.ft} \quad (11.53-b)
\end{align*}
\]

5. The members end moments in terms of the rotations are (Eq. 11.30 and 11.31)

\[
\begin{align*}
M_{12} & = 2EK_{12} \left(\theta_2 - 3\frac{\Delta_2}{L_{12}} \right) + M_{12}^F = 0.2EI(\theta_2 - 0.3\Delta_2) + 12.5 \quad (11.54-a) \\
M_{21} & = 2EK_{12} \left(2\theta_2 - 3\frac{\Delta_2}{L_{21}} \right) + M_{21}^F = 0.2EI(2\theta_2 - 0.3\Delta_2) - 12.5 \quad (11.54-b) \\
M_{23} & = 2EK_{23} (2\theta_2 + \theta_3) + M_{23}^F = 0.1EI(2\theta_2 + \theta_3) + 100. \quad (11.54-c) \\
M_{32} & = 2EK_{32} (\theta_2 + 2\theta_3) + M_{32}^F = 0.1EI(\theta_2 + 2\theta_3) - 100. \quad (11.54-d) \\
M_{34} & = 2EK_{34} \left(2\theta_3 + \theta_4 - 3\frac{\Delta_2}{L_{34}} \right) = 0.2EI(2\theta_3 + \theta_4 - 0.3\Delta_2) \quad (11.54-e) \\
M_{43} & = 2EK_{43} \left(\theta_3 + 2\theta_4 - 3\frac{\Delta_2}{L_{34}} \right) = 0.2EI(\theta_3 + 2\theta_4 - 0.3\Delta_2) \quad (11.54-f)
\end{align*}
\]

6. Substituting into the equilibrium equations and dividing by \(EI \)

\[
\begin{align*}
6\theta_2 + \theta_3 - 0.6\Delta_2 & = -\frac{875}{EI} \quad (11.55-a) \\
\theta_2 + 6\theta_3 + 2\theta_4 - 0.6\Delta_2 & = \frac{460}{EI} \quad (11.55-b) \\
\theta_3 + 2\theta_4 - 0.3\Delta_2 & = 0 \quad (11.55-c)
\end{align*}
\]

and the last equilibrium equation is obtained by substituting \(V_{12} \) and \(V_{43} \) and multiplying by 10/\(EI \):

\[
\theta_2 + \theta_3 + 4\theta_4 - 0.4\Delta_2 = -\frac{83.3}{EI} \quad (11.56)
\]
11.5 Moment Distribution; Indirect Solution

11.5.1 Background

The moment distribution is essentially a variation of the slope deflection method, however rather than solving a system of \(n \) linear equations directly, the solution is achieved iteratively through a successive series of operations.

The method starts by locking all the joints, and then unlock each joint in succession, the internal moments are then “distributed” and balanced until all the joints have rotated to their final (or nearly final) position.

In order to better understand the method, some key terms must first be defined.

11.5.1.1 Sign Convention

The sign convention is the same as the one adopted for the slope deflection method, counter-clockwise moment at element’s end is positive.

11.5.1.2 Fixed-End Moments

Again fixed end moments are the same set of forces defined in the slope deflection method for a beam which is rigidly connected at both ends.

Consistent with the sign convention, the fixed end moments are the moments caused by the applied load at the end of the beam (assuming it is rigidly connected).

11.5.1.3 Stiffness Factor

We define the stiffness factor as the moment required to rotate the end of a beam by a unit angle of one radian, while the other end is fixed. From Eq. 11.10, we set \(\theta_2 = v_1 = v_2 = 0 \), and \(\theta_1 = 1 \), this will
yield

\[K = \frac{4EI}{L} \quad \text{Far End Fixed} \] (11.60)

50. We note that this is slightly different than the definition given in the slope deflection method \((I/L)\).

51. If the far end of the beam is hinged rather than fixed, then we will have a reduced stiffness factor. From Eq. 11.10 and 11.11, with \(M_2 = v_1 = v_2 = 0\), we obtain

\[
M_2 = \frac{2EI}{L} (\theta_1 + 2\theta_2) = 0 \quad (11.61-a)
\]

\[\Rightarrow \theta_2 = -\frac{\theta_1}{2} \quad (11.61-b) \]

Substituting into \(M_1\)

\[
\begin{align*}
\frac{M_1}{\theta_2} &= \frac{2EI}{L} (2\theta_1 + \theta_2) \\
&\Rightarrow M_1 = \frac{3EI\theta_1}{L} \quad \text{Far End Pinned} \quad (11.62)
\end{align*}
\]

52. Comparing this reduced stiffness \(\frac{3EI}{L}\) with the stiffness of a beam, we define the reduced stiffness factor

\[
\text{Reduced Stiffness Factor} = \frac{K_{\text{red}}}{K} = \frac{3}{4} \quad \text{Far End Pinned} \quad (11.63)
\]

11.5.1.4 Distribution Factor (DF)

53. If a member is applied to a fixed-connection joint where there is a total of \(n\) members, then from equilibrium:

\[M = M_1 + M_2 + \cdots + M_n \quad (11.64) \]

However, from Eq. 11.30, and assuming the other end of the member to be fixed, then

\[M = K_1\theta_1 + K_2\theta_2 + \cdots + K_n\theta_n \quad (11.65) \]

or

\[
DF_i = \frac{M_i}{M} = \frac{K_i}{\Sigma K_i} \quad (11.66)
\]

54. Hence if a moment \(M\) is applied at a joint, then the portion of \(M\) carried by a member connected to this joint is proportional to the distribution factor. The stiffer the member, the greater the moment carried.

55. Similarly, \(DF = 0\) for a fixed end, and \(DF = 1\) for a pin support.

11.5.1.5 Carry-Over Factor

56. Again from Eq. 11.30, and 11.31

\[
\begin{align*}
M_1 &= 2EK(2\theta_1 + \theta_2 - 3\psi) + M_F^1 \\
M_2 &= 2EK(\theta_1 + 2\theta_2 - 3\psi) + M_F^2
\end{align*} \quad (11.67-a)
\]

\[
\begin{align*}
M_1 &= 2EK(2\theta_1) \\
M_2 &= 2EK(\theta_1)
\end{align*} \quad \Rightarrow M_2 = \frac{1}{2} M_1 \quad (11.68)
\]

Victor Saouma Structural Analysis
Hence in this case the carry-over factor represents the fraction of M that is “carried over” from the rotating end to the fixed one.

$$CO = \frac{1}{2} \text{ Far End Fixed} \quad (11.69)$$

If the far end is pinned there is no carry over.

11.5.2 Procedure

The general procedure of the Moment Distribution method can be described as follows:

1. Constrain all the rotations and translations.

2. Apply the load, and determine the fixed end moments (which may be caused by element loading, or support translation).

3. At any given joint i equilibrium is not satisfied $M_{\text{left}}^F \neq M_{\text{right}}^F$, and the net moment is M_i

4. We enforce equilibrium by applying at the node $-M_i$, in other words we balance the forces at the node.

5. How much of M_i goes to each of the elements connected to node i depends on the distribution factor.

6. But by applying a portion of $-M_i$ to the end of a beam, while the other is still constrained, from Eq. 11.30, half of that moment must also be carried over to the other end.

7. We then lock node i, and move on to node j where these operations are repeated
 - (a) Sum moments
 - (b) Balance moments
 - (c) Distribute moments (K, DF)
 - (d) Carry over moments (CO)
 - (e) lock node

8. repeat the above operations until all nodes are balanced, then sum all moments.

9. The preceding operations can be easily carried out through a proper tabulation.

If an end node is hinged, then we can use the reduced stiffness factor and we will not carry over moments to it.

Analysis of frame with unsymmetric loading, will result in lateral displacements, and a two step analysis must be performed (see below).

11.5.3 Algorithm

1. Calculate the stiffness ($K = 4EI/L$, however this can often be simplified to I/L) factor for all the members and the distribution factors at all the joints.

2. If a member AB is pinned at B, then $K_{AB}^F = 3EI/L$, and $K_{BA}^F = 4EI/L$. Thus, we must apply the reduced stiffness factor to K_{AB}^F only and not to K_{BA}^F.

3. The carry-over factor is $\frac{1}{2}$ for members with constant cross-section.

4. Find the fixed-end moments for all the members. Note that even if the end of a member is pinned, determine the fixed end moments as if it was fixed.

5. Start out by fixing all the joints, and release them one at a time.
6. If a node is pinned, start by balancing this particular node. If no node is pinned, start from either end of the structure.

7. Distribute the unbalanced moment at the released joint

8. Carry over the moments to the far ends of the members (unless it is pinned).

9. Fix the joint, and release the next one.

10. Continue releasing joints until the distributed moments are insignificant. If the last moments carried over are small and cannot be distributed, it is better to discard them so that the joints remain in equilibrium.

11. Sum up the moments at each end of the members to obtain the final moments.

11.5.4 Examples

Example 11-5: Continuous Beam, (Kinney 1957)

Solve for moments at A and B by moment distribution, using (a) the ordinary method, and (b) the simplified method.

Solution:
11.5 Moment Distribution; Indirect Solution

1. For this example the fixed-end moments are computed as follows:

\[M_{BC}^F = \frac{PL}{8} = \frac{(10)(20)}{8} = +25.0 \text{ k.ft} \] \hspace{1cm} (11.70-a)
\[M_{CB}^F = -25.0 \text{ k.ft} \] \hspace{1cm} (11.70-b)

2. Since the relative stiffness is given in each span, the distribution factors are

\[DF_{AB} = \frac{K_{AB}}{\sum K} = \frac{5}{8} = 0.625, \] \hspace{1cm} (11.71-a)
\[DF_{BA} = \frac{K_{BA}}{\sum K} = \frac{3}{8} = 0.375, \] \hspace{1cm} (11.71-b)
\[DF_{BC} = \frac{K_{BC}}{\sum K} = \frac{3}{3} = 1. \] \hspace{1cm} (11.71-c)
\[DF_{CB} = \frac{K_{CB}}{\sum K} = \frac{3}{3} = 1. \] \hspace{1cm} (11.71-d)

3. The balancing computations are shown below.

<table>
<thead>
<tr>
<th>Joint</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Balance CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
<td>AB</td>
<td>BA</td>
<td>BC</td>
<td>CB</td>
</tr>
<tr>
<td>K</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DF</td>
<td>0</td>
<td>0.625</td>
<td>0.375</td>
<td>1</td>
</tr>
<tr>
<td>FEM</td>
<td>-11.7</td>
<td>-23.4</td>
<td>-14.1</td>
<td>-7.0</td>
</tr>
<tr>
<td></td>
<td>-1.1</td>
<td>-2.2</td>
<td>-1.3</td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Total</td>
<td>-12.9</td>
<td>-25.8</td>
<td>+25.8</td>
<td>0</td>
</tr>
</tbody>
</table>

4. The above solution is that referred to as the *ordinary method*, so named to designate the manner of handling the balancing at the simple support at C. It is known, of course, that the final moment must be zero at this support because it is simple.

5. Consequently, the first step is to balance the fixed-end moment at C to zero. The carry-over is then made immediately to B. When B is balanced, however, a carry-over must be made back to C simply because the relative stiffness of BC is based on end C of this span being fixed. It is apparent, however, that the moment carried back to C (in this case, -7.0) cannot exist at this joint. Accordingly, it is immediately balanced out, and a carry-over is again made to B, this carry-over being considerably smaller than the first. Now B is again balanced, and the process continues until the numbers involved become too small to have any practical value.

6. Alternatively, we can use the *simplified method*. It was previously shown that if the support at C is simple and a moment is applied at B, then the resistance of the span BC to this moment is reduced to three-fourths of the value it would have had with C fixed. Consequently, if the relative stiffness of span BC is reduced to three-fourths of the value given, it will not be necessary to carry over to C.
7. From the standpoint of work involved, the advantage of the simplified method is obvious. It should always be used when the external (terminal) end of a member rests on a simple support, but it does not apply when a structure is continuous at a simple support. Attention is called to the fact that when the opposite end of the member is simply supported, the reduction factor for stiffness is always $\frac{3}{4}$ for a prismatic member but a variable quantity for nonprismatic members.

8. One valuable feature of the tabular arrangement is that of dropping down one line for each balancing operation and making the carry-over on the same line. This practice clearly indicates the order of balancing the joints, which in turn makes it possible to check back in the event of error. Moreover, the placing of the carry-over on the same line with the balancing moments definitely decreases the chance of omitting a carry-over.

9. The correctness of the answers may in a sense be checked by verifying that $\sum M = 0$ at each joint. However, even though the final answers satisfy this equation at every joint, this in no way a check on the initial fixed-end moments. These fixed-end moments, therefore, should be checked with great care before beginning the balancing operation. Moreover, it occasionally happens that compensating errors are made in the balancing, and these errors will not be apparent when checking $\sum M = 0$ at each joint.

10. To draw the final shear and moment diagram, we start by drawing the free body diagram of each beam segment with the computed moments, and then solve from statics for the reactions:

$$12.9 + 25.8 - 12V_A = 0 \quad \Rightarrow \quad V_A = R_A = 3.22 \text{ k}$$

$$V_A + V_B^L = 0 \quad \Rightarrow \quad V_B^L = 3.22 \text{ k}$$

$$25.8 + (10)(10) - 20V_B^R = 0 \quad \Rightarrow \quad V_B^R = 6.29 \text{ k}$$

$$6.29 + V_C - 10 = 0 \quad \Rightarrow \quad V_C = R_C = 3.71 \text{ k}$$

$$-V_B^L - V_B^R + R_B = 0 \quad \Rightarrow \quad R_B = 9.51 \text{ k}$$

Check: $R_A + R_B + R_C - 10 = -3.22 + 9.51 + 3.71 - 10 = 0$

$M_{BC} = (3.71)(10) = 37.1 \text{ k.ft}$

Example 11-6: Continuous Beam, Simplified Method, (Kinney 1957)

Using the simplified method of moment distribution, find the moments in the following continuous beam. The values of I as indicated by the various values of K, are different for the various spans. Determine the values of reactions, draw the shear and bending moment diagrams, and sketch the deflected structure.

Solution:

1. Fixed-end moments:

$$M_{AO}^F = -(0.5)(10) = -5.0 \text{ k.ft}$$

For the 1 k load:

$$M_{AB}^F = \frac{Poa^2}{L^2} = \frac{(1)(5)(15^2)}{20^2} = +2.8 \text{ k.ft}$$

$$M_{BA}^F = \frac{Poa^2}{L^2} = \frac{(1)(5^2)(15)}{20^2} = -0.9 \text{ k.ft}$$

Victor Saouma
Structural Analysis
For the 4 k load:

\[M_{AB}^F = \frac{PL}{8} = \frac{(4)(20)}{8} = +10.0 \text{ k.ft} \]
\[M_{BA}^F = -10.0 \text{ k.ft} \]

For the uniform load:

\[M_{CD}^F = \frac{wL^2}{12} = \frac{(0.2)(15^2)}{12} = +3.8 \text{ k.ft} \]
\[M_{DC}^F = -3.8 \text{ k.ft} \]

2. The balancing operation is shown below

<table>
<thead>
<tr>
<th>Joint</th>
<th>Member</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Balance</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AO</td>
<td>AB</td>
<td>BA</td>
<td>BC</td>
<td>CB</td>
<td>CD</td>
<td>DC</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>20</td>
<td>4(20) = 15</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>DF</td>
<td>0</td>
<td>1</td>
<td>0.2</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>FEM</td>
<td>-5.0</td>
<td>+12.8</td>
<td>-10.9</td>
<td>+3.8</td>
<td>-3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+2.9</td>
<td>+11.9</td>
<td>+11.2</td>
<td>-5.9</td>
<td>+3.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.6</td>
<td>+2.3</td>
<td>+1.1</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.1</td>
<td>+0.2</td>
</tr>
</tbody>
</table>

3. The only new point in this example is the method of handling the overhanging end. It is obvious that the final internal moment at A must be 5.0 k.ft and, accordingly, the first step is to balance out 7.8 k.ft of the fixed-end moment at AB, leaving the required 5.0 k.ft for the internal moment at AB. Since the relative stiffness of BA has been reduced to three-fourths of its original value, to permit considering the support at A as simple in the balancing, no carry-over from B to A is required.

4. The easiest way to determine the reactions is to consider each span as a free body. End shears are first determined as caused by the loads alone on each span and, following this, the end shears caused by the end moments are computed. These two shears are added algebraically to obtain the net end shear for each span. An algebraic summation of the end shears at any support will give the total reaction.
Example 11-7: Continuous Beam, Initial Settlement, (Kinney 1957)

For the following beam find the moments at \(A, B, \) and \(C \) by moment distribution. The support at \(C \) settles by 0.1 in. Use \(E = 30,000 \) k/in\(^2\).

Solution:

1. Fixed-end moments: Uniform load:

\[
M_{AB}^F = \frac{wL^2}{12} = \frac{(5)(20)^2}{12} = +167 \text{ k.ft} \quad (11.77-a)
\]

\[
M_{BA}^F = -167 \text{ k.ft} \quad (11.77-b)
\]

Concentrated load:

\[
M_{CD}^F = \frac{PL}{8} = \frac{(10)(30)}{8} = +37.5 \text{ k.ft} \quad (11.78-a)
\]

\[
M_{DC}^F = -37.5 \text{ k.ft} \quad (11.78-b)
\]
Moments caused by deflection:

\[
M_{BC}^F = \frac{6EI\Delta}{L^2} = \frac{6(30,000)(1,200)(0.1)}{(120)^2} = +1,500 \text{ k.in} = +125 \text{ k.ft} \quad (11.79-a)
\]

\[
M_{CB}^F = +125 \text{ k.ft} \quad (11.79-b)
\]

\[
M_{CD}^F = \frac{6EI\Delta}{L^2} = \frac{(6)(30,000)(7,200)(0.1)}{(360)^2} = 1,000 \text{ k.in} = -83 \text{ k.ft} \quad (11.79-c)
\]

\[
M_{DC}^F = -83 \text{ k.ft} \quad (11.79-d)
\]

2. Moment distribution

<table>
<thead>
<tr>
<th>Joint</th>
<th>Member</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(AB)</td>
<td>(BA)</td>
<td>(BC)</td>
<td>(CB)</td>
</tr>
<tr>
<td>(K)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>(\frac{4}{2}(20) = 15)</td>
</tr>
<tr>
<td>(DF)</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>FEM Load</td>
<td>+167</td>
<td>-167</td>
<td>+125</td>
<td>+125</td>
<td>+38</td>
</tr>
<tr>
<td>FEM (\Delta)</td>
<td>+17</td>
<td>+35</td>
<td>-35</td>
<td>-35</td>
<td>+17</td>
</tr>
<tr>
<td></td>
<td>+1</td>
<td>+2</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>+185</td>
<td>-130</td>
<td>+130</td>
<td>+79</td>
<td>-79</td>
</tr>
</tbody>
</table>

The fixed-end moments caused by a settlement of supports have the same sign at both ends of each span adjacent to the settling support. The above computations have been carried to the nearest \(\text{k.ft} \), which for moments of the magnitudes involved, would be sufficiently close for purposes of design.

Example 11-8: Frame, (Kinney 1957)

Find all moments by moment distribution for the following frame. Draw the bending moment diagram and the deflected structure.

Solution:
1. The first step is to perform the usual moment distribution. The reader should fully understand that this balancing operation adjusts the internal moments at the ends of the members by a series of corrections as the joints are considered to rotate, until \(\Sigma M = 0 \) at each joint. The reader should also realize that during this balancing operation no translation of any joint is permitted.

2. The fixed-end moments are

\[
M_{BC}^F = \frac{(18)(12)(6^2)}{18^2} = +24 \text{ k.ft} \quad (11.80-a)
\]

\[
M_{CB}^F = \frac{(18)(6)(12^2)}{18^2} = -48 \text{ k.ft} \quad (11.80-b)
\]

3. Moment distribution

<table>
<thead>
<tr>
<th>Joint</th>
<th>Member</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>Balance</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>AB</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>DF</td>
<td>0</td>
<td>0.333</td>
<td>0.333</td>
<td>0.571</td>
<td>0.429</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEM</td>
<td>+24.0</td>
<td>-12.6</td>
<td>+13.7</td>
<td>-12.5</td>
<td>+7.1</td>
<td>+5.4</td>
<td>+0.7</td>
</tr>
<tr>
<td></td>
<td>-0.6</td>
<td>-1.2</td>
<td>-2.4</td>
<td>-1.2</td>
<td>+0.3</td>
<td>+0.5</td>
<td>+0.02</td>
</tr>
<tr>
<td>Total</td>
<td>-6.9</td>
<td>-13.9</td>
<td>+13.9</td>
<td>-26.5</td>
<td>+26.5</td>
<td>+13.2</td>
<td></td>
</tr>
</tbody>
</table>

4. The final moments listed in the table are correct only if there is no translation of any joint. It is therefore necessary to determine whether or not, with the above moments existing, there is any tendency for side lurch of the top of the frame.

5. If the frame is divided into three free bodies, the result will be as shown below.

![Diagram](image)

Inspection of this sketch indicates that if the moments of the first balance exist in the frame, there is a net force of \(1.53 - 0.80 = 0.73 \) k tending to sway the frame to the left. In order to prevent side-sway, and thus allow these moments to exist (temporarily, for the purpose of the analysis), it is necessary that an imaginary horizontal force be considered to act to the right at \(B \) or \(C \). This force is designated as the \textit{artificial joint restraint} (abbreviated as AJR) and is shown below.

![Diagram](image)

6. This illustration now shows the complete load system which would have to act on the structure if the final moments of the first balance are to be correct. The AJR, however, cannot be permitted to remain,
7. Although it is not possible to make a direct solution for the moments resulting from this force, they may be determined indirectly. Assume that some unknown force \(P \) acts on the frame, as shown below:

\[
\Delta = \frac{M_{AB}}{6EK_m} = \frac{M_{DC}}{6EK_m} \quad (11.81-a)
\]

\[
\Rightarrow \frac{M_{AB}^F}{M_{DC}^F} = \frac{K_{AB}^m}{K_{DC}^m} = \frac{10}{15} \quad (11.81-b)
\]

These fixed-end moments could, for example, have the values of \(-10\) and \(-15\) k.ft or \(-20\) and \(-30\), or \(-30\) and \(-45\), or any other combination so long as the above ratio is maintained. The proper procedure is to choose values for these fixed-end moments of approximately the same order of magnitude as the original fixed-end moments due to the real loads. This will result in the same accuracy for the results of the balance for the side-sway correction that was realized in the first balance for the real loads. Accordingly, it will be assumed that \(P \), and the resulting \(\Delta \), are of such magnitudes as to result in the fixed-end moments shown below:

8. Obviously, \(\Sigma M = 0 \) is not satisfied for joints B and C in this deflected frame. Therefore these joints must rotate until equilibrium is reached. The effect of this rotation is determined in the distribution below.
9. During the rotation of joints B and C, as represented by the above distribution, the value of Δ has remained constant, with P varying in magnitude as required to maintain Δ.

10. It is now possible to determine the final value of P simply by adding the shears in the columns. The shear in any member, without external loads applied along its length, is obtained by adding the end moments algebraically and dividing by the length of the member. The final value of P is the force necessary to maintain the deflection of the frame after the joints have rotated. In other words, it is the force which will be consistent with the displacement and internal moments of the structure as determined by the second balancing operation. Hence this final value of P will be called the consistent joint force (abbreviated as CJF).

11. The consistent joint force is given by

\[
CJF = \frac{-27.0 + 23.8}{26} + \frac{28.4 + 36.7}{26} = 1.95 + 2.50 = 4.45 \text{ k} \tag{11.82}
\]

and inspection clearly indicates that the CJF must act to the left.

12. Obviously, then, the results of the last balance above are moments which will exist in the frame when a force of 4.45 k acts to the left at the top level. It is necessary, however, to determine the moments resulting from a force of 0.73 k acting to the left at the top level, and some as yet unknown factor “z” times 4.45 will be used to represent this force acting to the left.

13. The free body for the member BC is shown above. \(\sum H = 0 \) must be satisfied for this figure, and if forces to the left are considered as positive, the result is

\[
4.45z - 0.73 = 0, \tag{11.83}
\]

If this factor \(z = +0.164 \) is applied to the moments obtained from the second balance, the result will be the moments caused by a force of 0.73 k acting to the left at the top level. If these moments are then added to the moments obtained from the first balance, the result will be the final moments for the frame, the effect of the AJR having been cancelled. This combination of moments is shown below.

14. If the final moments are correct, the shears in the two columns of the frame should be equal and opposite to satisfy \(\sum H = 0 \) for the entire frame. This check is expressed as

\[
\frac{+11.3 + 17.8}{26} + \frac{-21.8 - 7.2}{26} = 0, \tag{11.84}
\]

and

\[
+1.12 - 1.11 = 0 \text{(nearly)} \tag{11.85}
\]
The signs of all moments taken from the previous table have been reversed to give the correct signs for the end moments external to the columns. It will be remembered that the moments considered in moment distribution are always internal for each member. However, the above check actually considers each column as a free body and so external moments must be used.

15. The moment under the 18 k load is obtained by treating BC as a free body:

$$M_{18} = (5.77)(12) - 17.8 = +51.5 \text{ k.ft}$$

16. The direction of side-lurch may be determined from the obvious fact that the frame will always lurch in a direction opposite to the AJR. If required, the magnitude of this side lurch may be found. The procedure which follows will apply.

A force P of sufficient magnitude to result in the indicated column moments and the lurch Δ was applied to the frame. During the second balance this value of Δ was held constant as the joints B and C rotated, and the value of P was considered to vary as necessary. The final value of P was found to be 4.45 k. Since Δ was held constant, however, its magnitude may be determined from the equation $M = 6EI\Delta/L^2$, where M is the fixed-end moment for either column, I is the moment of inertia of that column, and L is the length. This Δ will be the lurch for 4.45 k acting at the top level. For any other force acting horizontally, Δ would vary proportionally and thus the final lurch of the frame would be the factor z multiplied by the Δ determined above.

Example 11-9: Frame with Side Load, (Kinney 1957)

Find by moment distribution the moments in the following frame.
Solution:

The first balance will give the results shown

<table>
<thead>
<tr>
<th>AB</th>
<th>BA</th>
<th>BC</th>
<th>CB</th>
<th>CD</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.2</td>
<td>-14.6</td>
<td>+14.6</td>
<td>-22.5</td>
<td>-22.5</td>
<td>0</td>
</tr>
</tbody>
</table>

A check of the member BC as a free body for \(\Sigma H = 0 \) will indicate that an AJR is necessary as follows:

\[
AJR + 0.84 - 0.87 - 5.0 = 0 \quad (11.87)
\]

from which

\[
AJR = +5.03 \quad \text{in the direction assumed} \quad (11.88)
\]

The values of \(K_M \) for the two columns are shown, with \(K_M \) for column CD being \(K/2L \) because of the pin at the bottom. The horizontal displacement \(\Delta \) of the top of the frame is

assumed to cause the fixed-end moments shown there. These moments are proportional to the values of \(K_M \) and of approximately the same order of magnitude as the original fixed-end moments due to the real loads. The results of balancing out these moments are

<table>
<thead>
<tr>
<th>AB</th>
<th>BA</th>
<th>BC</th>
<th>CB</th>
<th>CD</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-34.4</td>
<td>-28.4</td>
<td>+28.4</td>
<td>+23.6</td>
<td>-23.6</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
CJF = \frac{+34.4 + 28.4 + 23.6}{26} = 3.32 \text{ k} \quad (11.89)
\]

and

\[
5.03 - z(3.32) = 0, \quad (11.90)
\]

from which

\[
z = +1.52. \quad (11.91)
\]

The final results are
11.5 Moment Distribution; Indirect Solution

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>BA</th>
<th>BC</th>
<th>CB</th>
<th>CD</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M from 1st balance</td>
<td>-7.2</td>
<td>-14.6</td>
<td>+14.6</td>
<td>-22.5</td>
<td>+22.5</td>
<td>0</td>
</tr>
<tr>
<td>$z \times M$ 2nd balance</td>
<td>-52.1</td>
<td>-43.0</td>
<td>+43.0</td>
<td>+35.8</td>
<td>-35.8</td>
<td>0</td>
</tr>
<tr>
<td>Final moments</td>
<td>-59.3</td>
<td>-57.6</td>
<td>+57.6</td>
<td>+13.3</td>
<td>-13.3</td>
<td>0</td>
</tr>
</tbody>
</table>

If these final moments are correct, the sum of the column shears will be 5.0 k: Sum of column shears:

$$\Sigma V = \frac{59.3 + 57.6 + 13.3}{26} = 5.01 \text{ k}$$

(11.92)

The 5 k horizontal load acting at C enters into the problem only in connection with the determination of the AJR. If this load had been applied to the column CD between the ends, it would have resulted in initial fixed-end moments in CD and these would be computed in the usual way. In addition, such a load would have entered into the determination of the AJR, since the horizontal reaction of CD against the right end of BC would have been computed by treating CD as a free body.

Example 11-10: Moment Distribution on a Spread-Sheet

Analyse the following frame

```
\begin{center}
\begin{tikzpicture}
\draw[->] (0,0) -- (12,0) node[midway, above] {12'};
\draw[->] (12,0) -- (20,8) node[midway, above] {8'};
\draw[->] (0,0) -- (0,-15) node[midway, left] {15'};
\draw[->] (0,-15) -- (0,-10) node[midway, left] {10'};
\draw[->] (0,0) -- (12,-15) node[midway, left] {12'};
\draw[->] (12,0) -- (12,-10) node[midway, left] {10'};
\draw[->] (0,0) -- (0,20) node[midway, above] {20 k};
\draw[->] (12,0) -- (12,20) node[midway, above] {20 k};
\draw[->] (0,0) -- (-15,0) node[midway, left] {I = cst};
\draw[->] (12,0) -- (25,0) node[midway, left] {I = cst};
\end{tikzpicture}
\end{center}
```

Solution:
Artificially Restricted Structure

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>BA</th>
<th>BC</th>
<th>CB</th>
<th>CD</th>
<th>DC</th>
<th>Balance CO</th>
<th>EI</th>
<th>K</th>
<th>DF</th>
<th>FEM</th>
<th>Final Moments</th>
<th>Final Horizontal Displacement Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>arbitrary*</td>
<td>30</td>
<td>2.0</td>
<td>2.0</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>M</td>
<td>2.84</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>6.82</td>
<td>0.90</td>
<td>-6.0</td>
<td>-6.0</td>
<td>-6.0</td>
<td>-6.0</td>
<td>-6.0</td>
</tr>
</tbody>
</table>

Delta to the left, will cause -ve M^F.

Delta away to the right.

\[
V_6EI/L^2 = M^F
\]

\[
\begin{align*}
\text{Frame sway to the right} & : K = 2.0 \quad \text{EI} = 30 \quad \text{DF} = 1.0 \\
\text{Frame sway to the left} & : K = 1.5 \quad \text{EI} = 30 \quad \text{DF} = 0.7
\end{align*}
\]
Chapter 12

DIRECT STIFFNESS METHOD

12.1 Introduction

12.1.1 Structural Idealization

Prior to analysis, a structure must be idealized for a suitable mathematical representation. Since it is practically impossible (and most often unnecessary) to model every single detail, assumptions must be made. Hence, structural idealization is as much an art as a science. Some of the questions confronting the analyst include:

1. Two dimensional versus three dimensional; Should we model a single bay of a building, or the entire structure?

2. Frame or truss, can we neglect flexural stiffness?

3. Rigid or semi-rigid connections (most important in steel structures)

4. Rigid supports or elastic foundations (are the foundations over solid rock, or over clay which may consolidate over time)

5. Include or not secondary members (such as diagonal braces in a three dimensional analysis).

6. Include or not axial deformation (can we neglect the axial stiffness of a beam in a building?)

7. Cross sectional properties (what is the moment of inertia of a reinforced concrete beam?)

8. Neglect or not haunches (those are usually present in zones of high negative moments)

9. Linear or nonlinear analysis (linear analysis can not predict the peak or failure load, and will underestimate the deformations).

10. Small or large deformations (In the analysis of a high rise building subjected to wind load, the moments should be amplified by the product of the axial load times the lateral deformation, \(P - \Delta \) effects).

11. Time dependent effects (such as creep, which is extremely important in prestressed concrete, or cable stayed concrete bridges).

12. Partial collapse or local yielding (would the failure of a single element trigger the failure of the entire structure?).

13. Load static or dynamic (when should a dynamic analysis be performed?).

14. Wind load (the lateral drift of a high rise building subjected to wind load, is often the major limitation to higher structures).

15. Thermal load (can induce large displacements, specially when a thermal gradient is present.).

12.1.2 Structural Discretization

Once a structure has been idealized, it must be discretized to lend itself for a mathematical representation which will be analyzed by a computer program. This discretization should uniquely define each node, and member.

The node is characterized by its nodal id (node number), coordinates, boundary conditions, and load (this one is often defined separately), Table 12.1. Note that in this case we have two nodal coordinates,

<table>
<thead>
<tr>
<th>Node No.</th>
<th>Coor.</th>
<th>B. C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>25.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 12.1: Example of Nodal Definition

and three degrees of freedom (to be defined later) per node. Furthermore, a 0 and a 1 indicate unknown or known displacement. Known displacements can be zero (restrained) or non-zero (as caused by foundation settlement).

The element is characterized by the nodes which it connects, and its group number, Table 12.2.

<table>
<thead>
<tr>
<th>Element No.</th>
<th>From Node</th>
<th>To Node</th>
<th>Group Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 12.2: Example of Element Definition

Group number will then define both element type, and elastic/geometric properties. The last one is a pointer to a separate array, Table 12.3. In this example element 1 has element code 1 (such as beam element), while element 2 has a code 2 (such as a truss element). Material group 1 would have different elastic/geometric properties than material group 2.

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Element Type</th>
<th>Material Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 12.3: Example of Group Number

From the analysis, we first obtain the nodal displacements, and then the element internal forces. Those internal forces vary according to the element type. For a two dimensional frame, those are the axial and shear forces, and moment at each node.

Hence, the need to define two coordinate systems (one for the entire structure, and one for each element), and a sign convention become apparent.

12.1.3 Coordinate Systems

We should differentiate between 2 coordinate systems:
Global: to describe the structure nodal coordinates. This system can be arbitrarily selected provided it is a Right Hand Side (RHS) one, and we will associate with it upper case axis labels, \(X, Y, Z\), Fig. 12.1 or 1,2,3 (running indeces within a computer program).

![Global Coordinate System](image)

Figure 12.1: Global Coordinate System

Local: system is associated with each element and is used to describe the element internal forces. We will associate with it lower case axis labels, \(x, y, z\) (or 1,2,3), Fig. 12.2.

9 The \(x\)-axis is assumed to be along the member, and the direction is chosen such that it points from the 1st node to the 2nd node, Fig. 12.2.

10 Two dimensional structures will be defined in the X-Y plane.

12.1.4 Sign Convention

11 The sign convention in structural analysis is completely different than the one previously adopted in structural analysis/design, Fig. 12.3 (where we focused mostly on flexure and defined a positive moment as one causing “tension below”. This would be awkward to program!).

12 In matrix structural analysis the sign convention adopted is consistent with the prevailing coordinate system. Hence, we define a positive moment as one which is counter-clockwise, Fig. 12.3

13 Fig. 12.4 illustrates the sign convention associated with each type of element.

14 Fig. 12.4 also shows the geometric (upper left) and elastic material (upper right) properties associated with each type of element.

12.1.5 Degrees of Freedom

15 A degree of freedom (d.o.f.) is an independent generalized nodal displacement of a node.

16 The displacements must be linearly independent and thus not related to each other. For example, a roller support on an inclined plane would have three displacements (rotation \(\theta\), and two translations \(u\) and \(v\))...
Figure 12.2: Local Coordinate Systems

Figure 12.3: Sign Convention, Design and Analysis

Figure 12.4: Total Degrees of Freedom for various Type of Elements
and \(v \), however since the two displacements are kinematically constrained, we only have two independent displacements, Fig. 12.5.

We note that we have been referring to \textit{generalized} displacements, because we want this term to include translations as well as rotations. Depending on the type of structure, there may be none, one or more than one such displacement. It is unfortunate that in most introductory courses in structural analysis, too much emphasis has been placed on two dimensional structures, and not enough on either three dimensional ones, or two dimensional ones with torsion.

In most cases, there is the same number of d.o.f in local coordinates as in the global coordinate system. One notable exception is the truss element. In local coordinate we can only have one axial deformation, whereas in global coordinates there are two or three translations in 2D and 3D respectively for each node.

Hence, it is essential that we understand the degrees of freedom which can be associated with the various types of structures made up of one dimensional rod elements, Table 12.4.

This table shows the degree of freedoms and the corresponding generalized forces.

We should distinguish between local and global d.o.f.‘s. The numbering scheme follows the following simple rules:

\textbf{Local}: d.o.f. for a given element: Start with the first node, number the local d.o.f. in the same order as the subscripts of the relevant local coordinate system, and repeat for the second node.

\textbf{Global}: d.o.f. for the entire structure: Starting with the 1st node, number all the unrestrained global d.o.f.’s, and then move to the next one until all global d.o.f have been numbered, Fig. 12.6.

\section{12.2 Stiffness Matrices}

\subsection{12.2.1 Truss Element}

From strength of materials, the force/displacement relation in axial members is

\[
\sigma = \frac{AE}{L} \epsilon
\]

(12.1)

Hence, for a unit displacement, the applied force should be equal to \(\frac{AE}{L} \). From statics, the force at the other end must be equal and opposite.

The truss element (whether in 2D or 3D) has only one degree of freedom associated with each node.
Figure 12.6: Examples of Active Global Degrees of Freedom
12.2 Stiffness Matrices

<table>
<thead>
<tr>
<th>Type</th>
<th>Node 1</th>
<th>Node 2</th>
<th>[k] (Local)</th>
<th>[K] (Global)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam</td>
<td>Fy1, Mz2</td>
<td>Fy3, Mz4</td>
<td>4 x 4</td>
<td>4 x 4</td>
</tr>
<tr>
<td></td>
<td>v1, θ2</td>
<td>v3, θ4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truss</td>
<td>Fx1</td>
<td>Fx2</td>
<td>2 x 2</td>
<td>4 x 4</td>
</tr>
<tr>
<td></td>
<td>u1</td>
<td>u2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>Fx1, Fy2, Mz3</td>
<td>Fx4, Fy5, Mz6</td>
<td>6 x 6</td>
<td>6 x 6</td>
</tr>
<tr>
<td></td>
<td>u1, v2, θ3</td>
<td>u4, v5, θ6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid</td>
<td>Tx1, Fy2, Mz3</td>
<td>Tx4, Fy5, Mz6</td>
<td>6 x 6</td>
<td>6 x 6</td>
</tr>
<tr>
<td></td>
<td>θ1, v2, θ3</td>
<td>θ4, v5, θ6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truss</td>
<td>Fx1, Fy2, Fy3, Fx7, Fy8, Fy9, Tx4 Mz5, Mz6</td>
<td></td>
<td>2 x 2</td>
<td>6 x 6</td>
</tr>
<tr>
<td></td>
<td>u1, u2,</td>
<td>v3, θ3,</td>
<td>u7, v8, θ9, θ10, θ11 θ12</td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12.4: Degrees of Freedom of Different Structure Types Systems

Hence, from Eq. 12.1, we have

\[
[k'] = \frac{AE}{L} \begin{bmatrix} p_1 & u_1 & u_2 \\ p_2 & -1 & -1 \end{bmatrix}
\] (12.2)

12.2.2 Beam Element

Using Equations 11.10, 11.11, 11.13 and 11.14 we can determine the forces associated with each unit displacement.

\[
[k'] = \begin{bmatrix} v_1 & \theta_1 & v_2 & \theta_2 \\ v_1 & \theta_1 & v_2 & \theta_2 \\ v_1 & \theta_1 & v_2 & \theta_2 \\ v_1 & \theta_1 & v_2 & \theta_2 \end{bmatrix}
\] (12.3)

The stiffness matrix of the beam element (neglecting shear and axial deformation) will thus be

\[
[k'] = \begin{bmatrix} \frac{12EI}{L^2} & \frac{6EI}{L} & \frac{6EI}{L} & \frac{12EI}{L} \\ \frac{6EI}{L} & \frac{4EI}{L} & -\frac{6EI}{L} & \frac{2EI}{L} \\ \frac{6EI}{L} & -\frac{6EI}{L} & \frac{12EI}{L} & -\frac{6EI}{L} \\ \frac{12EI}{L^2} & \frac{6EI}{L} & -\frac{6EI}{L} & \frac{4EI}{L} \end{bmatrix}
\] (12.4)
Symmetry: All matrices are symmetric due to Maxwell-Betti’s reciprocal theorem, and the stiffness method. As a “vehicle” for the introduction to the stiffness method let us consider the problem in Fig 12.7-a.

12.2.3 2D Frame Element

The stiffness matrix of the two dimensional frame element is composed of terms from the truss and beam elements where \(k^b \) and \(k^t \) refer to the beam and truss element stiffness matrices respectively.

\[
[k_{2dfr}] = \begin{bmatrix}
 u_1 & v_1 & \theta_1 & u_2 & v_2 & \theta_2 \\
 P_1 \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\
 V_1 & 0 & \frac{12EI}{L} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L} & \frac{6EI}{L^2} \\
 M_1 & 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\
 P_2 & 0 & \frac{12EI}{L^2} & \frac{6EI}{L^4} & 0 & -\frac{12EI}{L^2} & \frac{6EI}{L^4} \\
 V_2 & 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\
 M_2 & 0 & \frac{12EI}{L^2} & \frac{6EI}{L^4} & 0 & -\frac{12EI}{L^2} & \frac{6EI}{L^4}
\end{bmatrix}
\] (12.7)

Thus, we have:

\[
[k_{2dfr}] = \begin{bmatrix}
 v_1 & \theta_1 & v_2 & \theta_2 \\
 V_1 & \frac{12EI}{L} & \frac{6EI}{L^2} & -\frac{12EI}{L} & \frac{6EI}{L^2} \\
 M_1 & \frac{6EI}{L^2} & \frac{2EI}{L} & -\frac{6EI}{L^2} & \frac{2EI}{L} \\
 \end{bmatrix}
\]

12.2.4 Remarks on Element Stiffness Matrices

Singularity: All the derived stiffness matrices are singular, that is there is at least one row and one column which is a linear combination of others. For example in the beam element, row 4 = row 1; and L times row 2 is equal to the sum of row 3 and 6. This singularity (not present in the flexibility matrix) is caused by the linear relations introduced by the equilibrium equations which are embedded in the formulation.

Symmetry: All matrices are symmetric due to Maxwell-Betti’s reciprocal theorem, and the stiffness flexibility relation.

More about the stiffness matrix properties later.

12.3 Direct Stiffness Method

12.3.1 Orthogonal Structures

As a “vehicle” for the introduction to the stiffness method let us consider the problem in Fig 12.7-a, and recognize that there are only two unknown displacements, or more precisely, two global d.o.f: \(\theta_1 \) and \(\theta_2 \).

If we were to analyse this problem by the force (or flexibility) method, then
Figure 12.7: Problem with 2 Global d.o.f. \(\theta_1 \) and \(\theta_2 \)
1. We make the structure statically determinate by removing arbitrarily two reactions (as long as the structure remains stable), and the beam is now statically determinate.

2. Assuming that we remove the two roller supports, then we determine the corresponding deflections due to the actual load (Δ_B and Δ_C).

3. Apply a unit load at point B, and then C, and compute the deflections f_{ij} at note i due to a unit force at node j.

4. Write the compatibility of displacement equation

$$\begin{bmatrix} f_{BB} & f_{BC} \\ f_{CB} & f_{CC} \end{bmatrix} \begin{bmatrix} R_B \\ R_C \end{bmatrix} - \begin{bmatrix} \Delta_1 \\ \Delta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(12.8)

5. Invert the matrix, and solve for the reactions

We will analyze this simple problem by the stiffness method.

1. The first step consists in making it kinematically determinate (as opposed to statically determinate in the flexibility method). Kinematically determinate in this case simply means restraining all the d.o.f. and thus prevent joint rotation, Fig 12.7-b.

2. We then determine the fixed end actions caused by the element load, and sum them for each d.o.f., Fig 12.7-c: Σ_{FEM_1} and Σ_{FEM_2}.

3. In the third step, we will apply a unit displacement (rotation in this case) at each degree of freedom at a time, and in each case we shall determine the reaction forces, K_{11}, K_{21}, and K_{12}, K_{22} respectively. Note that we use $[K]$, rather than k since those are forces in the global coordinate system, Fig 12.7-d. Again note that we are focusing only on the reaction forces corresponding to a global degree of freedom. Hence, we are not attempting to determine the reaction at node A.

4. Finally, we write the equation of equilibrium at each node:

$$\begin{bmatrix} M_1 \\ M_2 \end{bmatrix} = \begin{bmatrix} \Sigma_{FEM_1} \\ \Sigma_{FEM_2} \end{bmatrix} + \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

(12.9)

Note that the FEM being on the right hand side, they are determined as the reactions to the applied load. Strictly speaking, it is a load which should appear on the left hand side of the equation, and are the nodal equivalent loads to the element load (more about this later).

As with the element stiffness matrix, each entry in the global stiffness matrix K_{ij}, corresponds to the internal force along d.o.f. i due to a unit displacement (generalized) along d.o.f. j (both in global coordinate systems).

Example 12-1: Beam

Considering the previous problem, Fig. 12.7-a, let $P_1 = 2P$, $M = PL$, $P_2 = P$, and $P_3 = P$, Solve for the displacements.

Solution:

1. Using the previously defined sign convention:

$$\Sigma_{FEM_1} = -\frac{P_1L}{8} + \frac{P_2L}{8} = -\frac{2PL}{8} + \frac{PL}{8} = -\frac{PL}{8}$$

(12.10)

$$\Sigma_{FEM_2} = -\frac{PL}{8}$$

(12.11)
12.3 Direct Stiffness Method

2. If it takes $\frac{4EI}{L} (k_{11}^{AB})$ to rotate AB (Eq. 12.4) and $\frac{4EI}{L} (k_{22}^{BC})$ to rotate BC, it will take a total force of $\frac{8EI}{L}$ to simultaneously rotate AB and BC, (Note that a rigid joint is assumed).

3. Hence, K_{11} which is the sum of the rotational stiffnesses at global d.o.f. 1. will be equal to $K_{11} = \frac{8EI}{L}$; similarly, $K_{21} = \frac{2EI}{L} (k_{22}^{BC})$.

4. If we now rotate dof 2 by a unit angle, then we will have $K_{22} = \frac{4EI}{L} (k_{22}^{BC})$ and $K_{12} = \frac{2EI}{L} (k_{42}^{BC})$.

5. The equilibrium relation can thus be written as:

\[
\{ \begin{array}{c}
PL \\
0
\end{array} \} = \left[\begin{array}{cc}
-\frac{PL}{8} & 8EI \\
-\frac{PL}{8} & 2EI
\end{array} \right] \{ \begin{array}{c}
\theta_1 \\
\theta_2
\end{array} \} + \left[\begin{array}{cc}
8EI & 2EI \\
2EI & 4EI
\end{array} \right] \{ \begin{array}{c}
\Delta
\end{array} \} \] (12.12)

or

\[
\{ \begin{array}{c}
PL + \frac{PL}{8} \\
\frac{PL}{8}
\end{array} \} = \left[\begin{array}{cc}
8EI & 2EI \\
2EI & 4EI
\end{array} \right] \{ \begin{array}{c}
\theta_1 \\
\theta_2
\end{array} \} \] (12.13)

We note that this matrix corresponds to the structure’s stiffness matrix, and not the augmented one.

6. The two by two matrix is next inverted

\[
\{ \begin{array}{c}
\theta_1 \\
\theta_2
\end{array} \} = \left[\begin{array}{cc}
8EI & 2EI \\
2EI & 4EI
\end{array} \right]^{-1} \{ \begin{array}{c}
PL + \frac{PL}{8} \\
\frac{PL}{8}
\end{array} \} = \left[\begin{array}{c}
\frac{17PL^2}{112EI} \\
-\frac{2PL^2}{EI}
\end{array} \right] \] (12.14)

7. Next we need to determine both the reactions and the internal forces.

8. Recall that for each element $\{p\} = [k] \{\delta\}$, and in this case $\{p\} = \{P\}$ and $\{\delta\} = \{\Delta\}$ for element AB. The element stiffness matrix has been previously derived, Eq. 12.4, and in this case the global and local d.o.f. are the same.

9. Hence, the equilibrium equation for element AB, at the element level, can be written as:

\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
12EI & 6EI & -12EI & 6EI \\
6EI & 6EI & -6EI & 6EI \\
-12EI & -6EI & 12EI & 6EI \\
6EI & -6EI & -6EI & 6EI
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
0 \\
\frac{17PL^2}{112EI}
\end{bmatrix} + \begin{bmatrix}
\frac{2P}{2PL} \\
\frac{3P}{2PL} \\
\frac{17PL^2}{112EI} \\
-\frac{2PL^2}{EI}
\end{bmatrix} \] (12.15)

solving

\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
107P & 31PL & 5P & 5PL
\end{bmatrix} \] (12.16)

10. Similarly, for element BC:

\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
12EI & 6EI & -12EI & 6EI \\
6EI & 6EI & -6EI & 6EI \\
-12EI & -6EI & 12EI & 6EI \\
6EI & -6EI & -6EI & 6EI
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
0 \\
\frac{17PL^2}{112EI}
\end{bmatrix} + \begin{bmatrix}
\frac{P}{2PL} \\
\frac{3P}{2PL} \\
\frac{17PL^2}{112EI} \\
-\frac{2PL^2}{EI}
\end{bmatrix} \] (12.17)

or

\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix} = \begin{bmatrix}
\frac{7P}{2} \\
\frac{9P}{2} \\
-\frac{P}{2}
\end{bmatrix} \] (12.18)

11. This simple example calls for the following observations:

1. Node A has contributions from element AB only, while node B has contributions from both AB and BC.

2. We observe that $p_3^{AB} \neq p_3^{BC}$ even though they both correspond to a shear force at node B, the difference between them is equal to the reaction at B. Similarly, $p_4^{AB} \neq p_4^{BC}$ due to the externally applied moment at node B.

2. From this analysis, we can draw the complete free body diagram, Fig. 12.7-e and then the shear and moment diagrams which is what the Engineer is most interested in for design purposes.
In the previous section, in which we focused on orthogonal structures, the assembly of the structure’s stiffness matrix \([K^{(e)}]\) in terms of the element stiffness matrices was relatively straight-forward.

The determination of the element stiffness matrix in global coordinates, from the element stiffness matrix in local coordinates requires the introduction of a transformation.

This section will examine the 2D transformation required to obtain an element stiffness matrix in global coordinate system prior to assembly (as discussed in the next section).

Recalling that
\[
\begin{align*}
\{p\} &= [k^{(e)}]\{\delta\} \quad (12.19) \\
\{P\} &= [K^{(e)}]\{\Delta\} \quad (12.20)
\end{align*}
\]

Let us define a transformation matrix \([\Gamma^{(e)}]\) such that:
\[
\begin{align*}
\{\delta\} &= [\Gamma^{(e)}]\{\Delta\} \quad (12.21) \\
\{p\} &= [\Gamma^{(e)}]\{P\} \quad (12.22)
\end{align*}
\]

Note that we use the same matrix \([\Gamma^{(e)}]\) since both \([\delta]\) and \([p]\) are vector quantities (or tensors of order one).

Substituting Eqn. 12.21 and Eqn. 12.22 into Eqn. 12.19 we obtain
\[
[\Gamma^{(e)}]\{P\} = [k^{(e)}][\Gamma^{(e)}]\{\Delta\} \quad (12.23)
\]

premultiplying by \([\Gamma^{(e)}]^{-1}\)
\[
\{P\} = [\Gamma^{(e)}]^{-1}[k^{(e)}][\Gamma^{(e)}]\{\Delta\} \quad (12.24)
\]

But since the rotation matrix is orthogonal, we have \([\Gamma^{(e)}]^{-1} = [\Gamma^{(e)}]^T\) and
\[
\{P\} = [\Gamma^{(e)}]^T[k^{(e)}][\Gamma^{(e)}]\{\Delta\} \quad (12.25)
\]

which is the general relationship between element stiffness matrix in local and global coordinates.

12.3.2.1 2D Frame

The vector rotation matrix is defined in terms of 9 direction cosines of 9 different angles. However for the 2D case, Fig. 12.8, we will note that four angles are interrelated \((l_x X, l_y Y, l_y X, l_y Y)\) and can all be expressed in terms of a single one \(\alpha\), where \(\alpha\) is the direction of the local \(x\) axis (along the member from the first to the second node) with respect to the global \(X\) axis. The remaining 5 terms are related to another angle, \(\beta\), which is between the \(Z\) axis and the \(x-y\) plane. This angle is zero because we select an orthogonal right handed coordinate system. Thus, the rotation matrix can be written as:
\[
[\gamma] = \begin{bmatrix} l_x X & l_y Y & l_z Z \\
l_y X & l_y Y & l_y Z \\
l_z X & l_z Y & l_z Z \end{bmatrix} = \begin{bmatrix} \cos \alpha & \cos (\frac{\pi}{2} - \alpha) & 0 \\
\cos (\frac{\pi}{2} + \alpha) & \cos \alpha & 0 \\
0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1 \end{bmatrix} \quad (12.27)
\]

and we observe that the angles are defined from the second subscript to the first, and that counterclockwise angles are positive.
The element rotation matrix $[\Gamma^{(e)}]$ will then be given by

$$
\begin{bmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 p_4 \\
 p_5 \\
 p_6 \\
\end{bmatrix}
=
\begin{bmatrix}
 \cos \alpha & \sin \alpha & 0 & 0 & 0 \\
 -\sin \alpha & \cos \alpha & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & \cos \alpha & \sin \alpha \\
 0 & 0 & 0 & -\sin \alpha & \cos \alpha \\
 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 P_1 \\
 P_2 \\
 P_3 \\
 P_4 \\
 P_5 \\
 P_6 \\
\end{bmatrix}
$$

(12.28)

12.3.3 Global Stiffness Matrix

The physical interpretation of the global stiffness matrix K is analogous to the one of the element, i.e. if all degrees of freedom are restrained, then K_{ij} corresponds to the force along global degree of freedom i due to a unit positive displacement (or rotation) along global degree of freedom j.

For instance, with reference to Fig. 12.9, we have three global degrees of freedom, $\Delta_1, \Delta_2, \text{and } \theta_3$, and the global (restrained or structure’s) stiffness matrix is

$$
K =
\begin{bmatrix}
 K_{11} & K_{12} & K_{13} \\
 K_{21} & K_{22} & K_{23} \\
 K_{31} & K_{32} & K_{33} \\
\end{bmatrix}
$$

(12.29)

and the first column corresponds to all the internal forces in the unrestrained d.o.f. when a unit displacement along global d.o.f. 1 is applied.

12.3.3.1 Structural Stiffness Matrix

The structural stiffness matrix is assembled only for those active degrees of freedom which are active (i.e unrestrained). It is the one which will be inverted (or rather decomposed) to determine the nodal displacements.

12.3.3.2 Augmented Stiffness Matrix

The augmented stiffness matrix is expressed in terms of all the dof. However, it is partitioned into two groups with respective subscript ‘u’ where the displacements are known (zero otherwise), and t where the loads are known.

$$
\begin{bmatrix}
 \Delta_t \\
 \Delta_u \\
\end{bmatrix}
=
\begin{bmatrix}
 K_{tt} & K_{tu} \\
 K_{ut} & K_{uu} \\
\end{bmatrix}
\begin{bmatrix}
 P_t \\
 P_u \\
\end{bmatrix}
$$

(12.30)
We note that K_{tt} corresponds to the structural stiffness matrix.

47 The first equation enables the calculation of the unknown displacements.

$$
\Delta_t = K_{tt}^{-1} (P_t - K_{tu} \Delta_u)
$$

(12.31)

48 The second equation enables the calculation of the reactions

$$
R_u = K_{ut} \Delta_t + K_{uu} \Delta_u
$$

(12.32)

49 For internal book-keeping purpose, since we are assembling the augmented stiffness matrix, we proceed in two stages:

1. First number all the global unrestrained degrees of freedom

2. Then number all the global restrained degrees of freedom (i.e. those with known displacements, zero or otherwise) and multiply by -11.

12.3.4 Internal Forces

50 The element internal forces (axia and shear forces, and moment at each end of the member) are determined from

$$
p^{(c)}_{int} = k^{(c)} \delta^{(c)}
$$

(12.33)

1 An alternative scheme is to separately number the restrained dof, but assign a negative number. This will enable us later on to distinguish the restrained from unrestrained dof.
at the element level where $p_{int}^{(e)}$ is the six by six array of internal forces, $k^{(e)}$ the element stiffness matrix in local coordinate systems, and $\delta^{(e)}$ is the vector of nodal displacements in local coordinate system. Note that this last array is obtained by first identifying the displacements in global coordinate system, and then premultiplying it by the transformation matrix to obtain the displacements in local coordinate system.

12.3.5 Boundary Conditions, [ID] Matrix

1. Because of the boundary condition restraints, the total structure number of active degrees of freedom (i.e, unconstrained) will be less than the number of nodes times the number of degrees of freedom per node.

2. To obtain the global degree of freedom for a given node, we need to define an [ID] matrix such that:

 - ID has dimensions $l \times k$ where l is the number of degree of freedom per node, and k is the number of nodes.

 - ID matrix is initialized to zero.

 1. At input stage read $ID(idof,inod)$ of each degree of freedom for every node such that:

$$\begin{align*}
ID(idof,inod) &= \begin{cases} 0 & \text{if unrestrained d.o.f.} \\
1 & \text{if restrained d.o.f.} \end{cases}
\end{align*} \quad (12.34)
$$

2. After all the node boundary conditions have been read, assign incrementally equation numbers

 (a) First to all the active dof

 (b) Then to the other (restrained) dof.

 (c) Multiply by -1 all the passive dof.

 Note that the total number of dof will be equal to the number of nodes times the number of dof/node $NEQA$.

3. The largest positive global degree of freedom number will be equal to NEQ (Number Of Equations), which is the size of the square matrix which will have to be decomposed.

3. For example, for the frame shown in Fig. 12.10:

 1. The input data file may contain:

$$\begin{align*}
\text{Node No.} & \quad [ID]^T \\
1 & \quad 0 \quad 0 \quad 0 \\
2 & \quad 1 \quad 1 \quad 0 \\
3 & \quad 0 \quad 0 \quad 0 \\
4 & \quad 1 \quad 0 \quad 0 \\
\end{align*}$$

2. At this stage, the [ID] matrix is equal to:

$$ID = \begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \quad (12.35)$$

3. After we determined the equation numbers, we would have:

$$ID = \begin{bmatrix}
1 & -1 & 5 & -3 \\
2 & -2 & 6 & 8 \\
3 & 4 & 7 & 9
\end{bmatrix} \quad (12.36)$$
12.3.6 LM Vector

The LM vector of a given element gives the global degree of freedom of each one of the element degree of freedom’s. For the structure shown in Fig. 12.10, we would have:

\[
\begin{bmatrix}
0 & -1 & -2 & 4 & 5 & 6 & 7
\end{bmatrix}
\] element 1 (2 → 3)

\[
\begin{bmatrix}
5 & 6 & 7 & 1 & 2 & 3
\end{bmatrix}
\] element 2 (3 → 1)

\[
\begin{bmatrix}
1 & 2 & 3 & -3 & 8 & 9
\end{bmatrix}
\] element 3 (1 → 4)

12.3.7 Assembly of Global Stiffness Matrix

As for the element stiffness matrix, the global stiffness matrix \([K]\) is such that \(K_{ij}\) is the force in degree of freedom \(i\) caused by a unit displacement at degree of freedom \(j\).

Whereas this relationship was derived from basic analysis at the element level, at the structure level, this term can be obtained from the contribution of the element stiffness matrices \([K^{(c)}]\) (written in global coordinate system).

For each \(K_{ij}\) term, we shall add the contribution of all the elements which can connect degree of freedom \(i\) to degree of freedom \(j\), assuming that those forces are readily available from the individual element stiffness matrices written in global coordinate system.

\(K_{ij}\) is non-zero if and only if degree of freedom \(i\) and degree of freedom \(j\) are connected by an element or share a node.

There are usually more than one element connected to a dof. Hence, individual element stiffness matrices terms must be added up.

Because each term of all the element stiffness matrices must find its position inside the global stiffness matrix \([K]\), it is found computationally most effective to initialize the global stiffness matrix \([K]_{(N\times N)}\) to zero, and then loop through all the elements, and then through each entry of the respective element stiffness matrix \(K_{ij}^{(c)}\).

The assignment of the element stiffness matrix term \(K_{ij}^{(c)}\) (note that \(e\), \(i\), and \(j\) are all known since we are looping on \(e\) from 1 to the number of elements, and then looping on the rows and columns of the
element stiffness matrix \(i, j \) into the global stiffness matrix \(K^S_{kl} \) is made through the LM vector (note that it is \(k \) and \(l \) which must be determined).

Since the global stiffness matrix is also symmetric, we would need to only assemble one side of it, usually the upper one.

Contrarily to the previous method, we will assemble the full augmented stiffness matrix.

Example 12-2: Assembly of the Global Stiffness Matrix

As an example, let us consider the frame shown in Fig. 12.11.

![Frame Diagram](image)

The ID matrix is initially set to:

\[
[ID] = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad (12.37)
\]

We then modify it to generate the global degrees of freedom of each node:

\[
[ID] = \begin{bmatrix} -4 & 1 & -7 \\ -5 & 2 & -8 \\ -6 & 3 & -9 \end{bmatrix} \quad (12.38)
\]

Finally the LM vectors for the two elements (assuming that Element 1 is defined from node 1 to node 2, and element 2 from node 2 to node 3):

\[
[LM] = \begin{bmatrix} -4 & -5 & -6 & 1 & 2 & 3 \\ 1 & 2 & 3 & -7 & -8 & -9 \end{bmatrix} \quad (12.39)
\]

Let us simplify the operation by designating the element stiffness matrices in global coordinates as follows:

\[
K^{(1)} = \begin{bmatrix} -4 & A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} \\ -5 & A_{21} & A_{22} & A_{23} & A_{24} & A_{25} & A_{26} \\ -6 & A_{31} & A_{32} & A_{33} & A_{34} & A_{35} & A_{36} \\ 1 & A_{41} & A_{42} & A_{43} & A_{44} & A_{45} & A_{46} \\ 2 & A_{51} & A_{52} & A_{53} & A_{54} & A_{55} & A_{56} \\ 3 & A_{61} & A_{62} & A_{63} & A_{64} & A_{65} & A_{66} \end{bmatrix} \quad (12.40-a)
\]

\[
K^{(2)} = \begin{bmatrix} 1 & B_{11} & B_{12} & B_{13} & B_{14} & B_{15} & B_{16} \\ 2 & B_{21} & B_{22} & B_{23} & B_{24} & B_{25} & B_{26} \\ 3 & B_{31} & B_{32} & B_{33} & B_{34} & B_{35} & B_{36} \\ -7 & B_{41} & B_{42} & B_{43} & B_{44} & B_{45} & B_{46} \\ -8 & B_{51} & B_{52} & B_{53} & B_{54} & B_{55} & B_{56} \\ -9 & B_{61} & B_{62} & B_{63} & B_{64} & B_{65} & B_{66} \end{bmatrix} \quad (12.40-b)
\]
We note that for each element we have shown the corresponding \(\text{LM} \) vector.

Now, we assemble the global stiffness matrix

\[
K = \begin{bmatrix}
A_{44} + B_{11} & A_{45} + B_{12} & A_{46} + B_{13} & A_{41} & A_{42} & A_{43} & B_{14} & B_{15} & B_{16} \\
A_{54} + B_{21} & A_{55} + B_{22} & A_{56} + B_{23} & A_{51} & A_{52} & A_{53} & B_{24} & B_{25} & B_{26} \\
A_{64} + B_{31} & A_{65} + B_{32} & A_{66} + B_{33} & A_{61} & A_{62} & A_{63} & B_{34} & B_{35} & B_{36}
\end{bmatrix}
\]

(12.41)

We note that some terms are equal to zero because we do not have a connection between the corresponding degrees of freedom (i.e., node 1 is not connected to node 3).

12.3.8 Algorithm

The direct stiffness method can be summarized as follows:

Preliminaries: First we shall

1. Identify type of structure (beam, truss, grid or frame) and determine the
 (a) Number of spatial coordinates (1D, 2D, or 3D)
 (b) Number of degree of freedom per node (local and global)
 (c) Number of cross-sectional and material properties
2. Determine the global unrestrained and restrained degree of freedom equation numbers for each node, Update the \([\mathbf{ID}]\) matrix (which included only 0’s and 1’s in the input data file).

Analysis:

1. For each element, determine
 (a) Vector \(\text{LM} \) relating local to global degree of freedoms.
 (b) Element stiffness matrix \([\mathbf{k}^{(e)}] \)
 (c) Angle \(\alpha \) between the local and global \(x \) axes.
 (d) Rotation matrix \([\Gamma^{(e)}] \)
 (e) Element stiffness matrix in global coordinates \([\mathbf{K}^{(e)}] = [\Gamma^{(e)}]^T [\mathbf{k}^{(e)}] [\Gamma^{(e)}] \)
2. Assemble the augmented stiffness matrix \([\mathbf{K}^{(S)}] \) of unconstrained and constrained degree of freedom’s.
3. Extract \([\mathbf{K}_{tt}] \) from \([\mathbf{K}^{(S)}] \) and invert (or decompose into into \([\mathbf{K}_{tt}] = [\mathbf{L}]^T [\mathbf{L}] \)) where \([\mathbf{L}] \) is a lower triangle matrix.
4. Assemble load vector \(\{\mathbf{P}\} \) in terms of nodal load and fixed end actions.
5. Backsubstitute and obtain nodal displacements in global coordinate system.
6. Solve for the reactions.
7. For each element, transform its nodal displacement from global to local coordinates \(\{\delta\} = [\Gamma^{(e)}] \{\Delta\} \), and determine the internal forces \([\mathbf{p}] = [\mathbf{k}] \{\delta\} \).

Some of the prescribed steps are further discussed in the next sections.

Example 12-3: Direct Stiffness Analysis of a Truss
Figure 12.12:

Using the direct stiffness method, analyse the truss shown in Fig. 12.12.

Solution:

1. Determine the structure ID matrix

<table>
<thead>
<tr>
<th>Node #</th>
<th>Bound. Cond.</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
ID = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & \end{bmatrix}
\]

\[
Node = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 4 \\ 6 \\ -1 \\ 3 \\ -3 \\ 5 \\ 7 \end{bmatrix}
\] (12.42-a)

2. The \(LM \) vector of each element is evaluated next

\[
[LM]_1 = [1 \ -1 \ 4 \ 5]
\]

\[
[LM]_2 = [1 \ -1 \ 2 \ 3] (12.43-a)
\]

\[
[LM]_3 = [2 \ 3 \ 4 \ 5] (12.43-b)
\]

\[
[LM]_4 = [4 \ 5 \ 6 \ 7] (12.43-c)
\]

\[
[LM]_5 = [-2 \ -3 \ 4 \ 5] (12.43-d)
\]

\[
[LM]_6 = [2 \ 3 \ 6 \ 7] (12.43-e)
\]

\[
[LM]_7 = [2 \ 3 \ 0 \ 0] (12.43-f)
\]

\[
[LM]_8 = [-2 \ -3 \ 6 \ 7] (12.43-g)
\]

3. Determine the element stiffness matrix of each element in the global coordinate system noting that for a 2D truss element we have

\[
[K^{(e)}] = [\Gamma^{(e)}]^T[k^{(e)}]\Gamma^{(e)} (12.44-a)
\]

\[
= \frac{EA}{L} \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \\ -cs & -s^2 & cs & s^2 \end{bmatrix} (12.44-b)
\]
where \(c = \cos \alpha = \frac{x_2 - x_1}{L} \); \(s = \sin \alpha = \frac{y_2 - y_1}{L} \).

Element 1 \(L = 20' \), \(c = \frac{16-0}{20} = 0.8 \), \(s = \frac{12-0}{20} = 0.6 \), \(\frac{E_A}{L} = \frac{30,000 \text{ ksi}}{10 \text{ in}^2} \) = 15,000 k/ft.

\[
\begin{bmatrix}
1 & -1 & 4 & 5 \\
1 & 9600 & 7200 & -9600 & -7200 \\
4 & -9600 & -7200 & 9600 & 7200 \\
5 & -7200 & -5400 & 7200 & 5400
\end{bmatrix}
\]

(12.45)

Element 2 \(L = 16' \), \(c = 1 \), \(s = 0 \), \(\frac{E_A}{L} = 18,750 \text{ k/ft} \).

\[
\begin{bmatrix}
1 & -1 & 2 & 3 \\
1 & 18,750 & 0 & -18,750 & 0 \\
2 & 0 & 0 & 0 & 0 \\
3 & -18,750 & 0 & 18,750 & 0 \\
3 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(12.46)

Element 3 \(L = 12' \), \(c = 0 \), \(s = 1 \), \(\frac{E_A}{L} = 25,000 \text{ k/ft} \).

\[
\begin{bmatrix}
2 & 3 & 4 & 5 \\
2 & 0 & 0 & 0 & 0 \\
3 & 0 & 25,000 & 0 & -25,000 \\
4 & 0 & 0 & 0 & 0 \\
5 & 0 & -25,000 & 0 & 25,000
\end{bmatrix}
\]

(12.47)

Element 4 \(L = 16' \), \(c = 1 \), \(s = 0 \), \(\frac{E_A}{L} = 18,750 \text{ k/ft} \).

\[
\begin{bmatrix}
4 & 5 & 6 & 7 \\
4 & 18,750 & 0 & -18,750 & 0 \\
5 & 0 & 0 & 0 & 0 \\
6 & -18,750 & 0 & 18,750 & 0 \\
7 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(12.48)

Element 5 \(L = 20' \), \(c = \frac{16-0}{20} = -0.8 \), \(s = 0.6 \), \(\frac{E_A}{L} = 15,000 \text{ k/ft} \).

\[
\begin{bmatrix}
-2 & -3 & 4 & 5 \\
-2 & 9600 & -7200 & -9600 & 7200 \\
4 & -9600 & 7200 & 9600 & -7200 \\
5 & 7200 & -5400 & -7200 & 5400
\end{bmatrix}
\]

(12.49)

Element 6 \(L = 20' \), \(c = 0.8 \), \(s = 0.6 \), \(\frac{E_A}{L} = 15,000 \text{ k/ft} \).

\[
\begin{bmatrix}
2 & 3 & 6 & 7 \\
2 & 9600 & 7200 & -9600 & -7200 \\
3 & 7200 & 5400 & -7200 & -5400 \\
6 & -9600 & -7200 & 9600 & 7200 \\
7 & -7200 & -5400 & 7200 & 5400
\end{bmatrix}
\]

(12.50)

Element 7 \(L = 16' \), \(c = 1 \), \(s = 0 \), \(\frac{E_A}{L} = 18,750 \text{ k/ft} \).

\[
\begin{bmatrix}
2 & 3 & 0 & 0 \\
2 & 18,750 & 0 & -18,750 & 0 \\
3 & 0 & 0 & 0 & 0 \\
0 & -18,750 & 0 & 18,750 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(12.51)
12.3 Direct Stiffness Method

Element 8 \(L = 12' \), \(c = 0 \), \(s = 1 \), \(\frac{E_A}{L} = 25,000 \text{ k/ft} \).

\[
[K_8] = \begin{bmatrix}
-2 & -3 & 6 & 7 \\
0 & 0 & 0 & 0 \\
-3 & 0 & 25,000 & 0 & -25,000 \\
6 & 0 & 0 & 0 & 0 \\
7 & 0 & -25,000 & 0 & 25,000 \\
\end{bmatrix}
\] (12.52)

4. Assemble the global stiffness matrix in k/ft. Note that we are not assembling the augmented stiffness matrix \([K_{ul}]\).

\[
\begin{bmatrix}
0 \\
-100k \\
0 \\
50k \\
0
\end{bmatrix} = \begin{bmatrix}
9600 + 18,750 \\
9600 + (2)18,750 \\
5400 + 25,000 \\
18,750 + 2(9600) \\
25,000 + 5400(2)
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
18,750 + 9600 \\
25,000 + 5400
\end{bmatrix}
\begin{bmatrix}
u_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5 \\
\end{bmatrix}
\] (12.53)

5. Convert to k/in and simplify

\[
\begin{bmatrix}
0 \\
-100 \\
0 \\
50 \\
0
\end{bmatrix} = \begin{bmatrix}
2362.5 \\
3925.0 \\
2533.33 \\
3162.5 \\
2362.5
\end{bmatrix}
\begin{bmatrix}
U_1 \\
U_2 \\
U_3 \\
U_4 \\
U_5
\end{bmatrix} = \begin{bmatrix}
-0.0223 \text{ in} \\
0.00433 \text{ in} \\
-0.116 \text{ in} \\
-0.0102 \text{ in} \\
-0.00919 \text{ in}
\end{bmatrix}
\] (12.54)

6. Invert stiffness matrix and solve for displacements

\[
\begin{bmatrix}
U_1 \\
U_2 \\
V_3 \\
U_4 \\
V_5 \\
U_6 \\
V_7
\end{bmatrix} = \begin{bmatrix}
-0.0223 \\
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174
\end{bmatrix}
\] (12.55)

7. Solve for member internal forces (in this case axial forces) in local coordinate systems

\[
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} = \begin{bmatrix}
c & s \\
-s & c
\end{bmatrix} \begin{bmatrix}
U_1 \\
V_1 \\
U_2 \\
V_2
\end{bmatrix}
\] (12.56)

Element 1

\[
\begin{bmatrix}
p_1 \\
p_2
\end{bmatrix}^1 = (15,000 \text{ k/ft})(\frac{1 \text{ ft}}{12 \text{ in}}) \begin{bmatrix}
0.8 & 0.6 & -0.8 & -0.6 \\
-0.8 & -0.6 & 0.8 & 0.6
\end{bmatrix} \begin{bmatrix}
-0.0223 \\
0 \\
-0.0102 \\
-0.0856
\end{bmatrix}
\] (12.57-a)

\[
= \begin{bmatrix}
52.1 \text{ k} \\
-52.1 \text{ k}
\end{bmatrix} \text{ Compression}
\] (12.57-b)

Element 2

\[
\begin{bmatrix}
p_1 \\
p_2
\end{bmatrix}^2 = 18,750 \text{ k/ft}(\frac{1 \text{ ft}}{12 \text{ in}}) \begin{bmatrix}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
-0.0233 \\
0 \\
0.00433 \\
-0.116
\end{bmatrix}
\] (12.58-a)
= \begin{pmatrix} -43.2 \text{ k } \\ 43.2 \text{ k } \end{pmatrix} \text{ Tension} \quad (12.58-b)

Element 3

\begin{equation}
\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}^3 = 25,000 \text{ k/ft} \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{pmatrix} 0.00433 \\ -0.116 \\ -0.0102 \\ -0.0856 \end{pmatrix}
\end{equation}

= \begin{pmatrix} -63.3 \text{ k } \\ 63.3 \text{ k } \end{pmatrix} \text{ Tension} \quad (12.59-b)

Element 4

\begin{equation}
\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}^4 = 18,750 \text{ k/ft} \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) \begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} -0.0102 \\ -0.0856 \\ -0.00919 \\ -0.0174 \end{pmatrix}
\end{equation}

= \begin{pmatrix} -1.58 \text{ k } \\ 1.58 \text{ k } \end{pmatrix} \text{ Tension} \quad (12.60-b)

Element 5

\begin{equation}
\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}^5 = 15,000 \text{ k/ft} \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) \begin{bmatrix} -0.8 & 0.6 & 0.8 & -0.6 \\ 0.8 & -0.6 & -0.8 & 0.6 \end{bmatrix} \begin{pmatrix} -0.0102 \\ -0.0856 \end{pmatrix}
\end{equation}

= \begin{pmatrix} 54.0 \text{ k } \\ -54.0 \text{ k } \end{pmatrix} \text{ Compression} \quad (12.61-b)

Element 6

\begin{equation}
\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}^6 = 15,000 \text{ k/ft} \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) \begin{bmatrix} 0.8 & 0.6 & -0.8 & -0.6 \\ -0.8 & -0.6 & 0.8 & 0.6 \end{bmatrix} \begin{pmatrix} -0.116 \\ -0.00919 \\ -0.0174 \end{pmatrix}
\end{equation}

= \begin{pmatrix} -60.43 \text{ k } \\ 60.43 \text{ k } \end{pmatrix} \text{ Tension} \quad (12.62-b)

Element 7

\begin{equation}
\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}^7 = 18,750 \text{ k/ft} \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) \begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} -0.116 \\ 0 \\ 0 \end{pmatrix}
\end{equation}

= \begin{pmatrix} 6.72 \text{ k } \\ -6.72 \text{ k } \end{pmatrix} \text{ Compression} \quad (12.63-b)

Element 8

\begin{equation}
\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}^8 = 25,000 \text{ k/ft} \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ -0.00919 \\ -0.0174 \end{pmatrix}
\end{equation}

= \begin{pmatrix} 36.3 \text{ k } \\ -36.3 \text{ k } \end{pmatrix} \text{ Compression} \quad (12.64-b)
8. Determine the structure's MAXA vector

$$[\mathbf{K}] = \begin{bmatrix}
1 & 3 & 9 & 14 \\
2 & 5 & 8 & 13 & 19 & 25 \\
4 & 7 & 12 & 18 & 24 \\
6 & 11 & 17 & 23 \\
10 & 16 & 22 \\
15 & 21 \\
20
\end{bmatrix} \quad \text{MAXA} = \begin{bmatrix}
1 \\
2 \\
4 \\
6 \\
10 \\
15 \\
20
\end{bmatrix}$$

Thus, 25 terms would have to be stored.

Example 12-4: Analysis of a Frame with MATLAB

The simple frame shown in Fig. 12.13 is to be analysed by the direct stiffness method. Assume: $E = 200,000$ MPa, $A = 6,000$ mm2, and $I = 200 \times 10^6$ mm4. The complete MATLAB solution is shown below along with the results.

![Figure 12.13: Simple Frame Analyzed with the MATLAB Code](image)

```matlab
% zero the matrices
k=zeros(6,6,2);
K=zeros(6,6,2);
Gamma=zeros(6,6,2);
% Structural properties units: mm^2, mm^4, and MPa(10^6 N/m)
A=6000;II=200*10^6;EE=200000;
% Convert units to meter and kN
A=A/10^6;II=II/10^12;EE=EE*1000;
% Element 1
i=[0,0];j=[7.416,3];
[k(:,:,1),K(:,:,1),Gamma(:,:,1)]=stiff(EE,II,A,i,j);
% Element 2
i=j;j=[15.416,3];
[k(:,:,2),K(:,:,2),Gamma(:,:,2)]=stiff(EE,II,A,i,j);
% Define ID matrix
ID=[
    -4 1 -7;
    -5 2 -8;
    -6 3 -9];
% Determine the LM matrix
LM=[
    -4 -5 -6 1 2 3;
    1 2 3 -7 -8 -9];
% Assemble augmented stiffness matrix
Kaug=zeros(9);
```

Victor Saouma Structural Analysis
Draft

12-24

DIRECT STIFFNESS METHOD

for elem=1:2
for r=1:6
 lr=abs(LM(elem,r));
 for c=1:6
 lc=abs(LM(elem,c));
 Kaug(lr,lc)=Kaug(lr,lc)+K(r,c,elem);
 end
end

% Extract the structures Stiffness Matrix
Ktt=Kaug(1:3,1:3);

% Determine the fixed end actions in local coordinate system
fea(1:6,1)=0;
fea(1:6,2)=[0,8*4/2,4*8^2/12,0,8*4/2,-4*8^2/12]';

% Determine the fixed end actions in global coordinate system
FEA(1:6,1)=Gamma(:,:,1)*fea(1:6,1);
FEA(1:6,2)=Gamma(:,:,2)*fea(1:6,2);

% FEA_Rest for all the restrained nodes
FEA_Rest=[0,0,0,FEA(4:6,2)'];

% Assemble the load vector for the unrestrained node
P(1)=50*3/8;P(2)=-50*7.416/8-fea(2,2);P(3)=-fea(3,2);

% Solve for the Displacements in meters and radians
Displacements=inv(Ktt)*P';
% Extract Kut
Kut=Kaug(4:9,1:3);

% Compute the Reactions and do not forget to add fixed end actions
Reactions=Kut*Displacements+FEA_Rest';

% Solve for the internal forces and do not forget to include the fixed end actions
dis_global(:,:,1)=[0,0,0,Displacements(1:3)'];
dis_global(:,:,2)=[Displacements(1:3)',0,0,0];
for elem=1:2
 dis_local=Gamma(:,:,elem)*dis_global(:,:,elem)';
 int_forces=k(:,:,elem)*dis_local+fea(1:6,elem)
end

function [k,K,Gamma]=stiff(EE,II,A,i,j)

% Determine the length
L=sqrt((j(2)-i(2))^2+(j(1)-i(1))^2);
% Compute the angle theta (carefull with vertical members!)
if(j(1)-i(1))~=0
 alpha=atan((j(2)-i(2))/(j(1)-i(1)));
else
 alpha=-pi/2;
end

% form rotation matrix Gamma
Gamma=[
 cos(alpha) sin(alpha) 0 0 0 0;
 -sin(alpha) cos(alpha) 0 0 0 0;
 0 0 1 0 0 0;
 0 0 0 cos(alpha) sin(alpha) 0;
 0 0 0 -sin(alpha) cos(alpha) 0;
 0 0 0 0 0 1];

% form element stiffness matrix in local coordinate system
EI=EE*II;
EA=EE*A;
k=[EA/L, 0, 0, -EA/L, 0, 0;
 0, 12*EI/L^3, 6*EI/L^2, 0, -12*EI/L^3, 6*EI/L^2;];
0, 6*EI/L^2, 4*EI/L, 0, -6*EI/L^2, 2*EI/L;
-EA/L, 0, 0, EA/L, 0, 0;
0, -12*EI/L^3, -6*EI/L^2, 0, 12*EI/L^3, -6*EI/L^2;
0, 6*EI/L^2, 2*EI/L, 0, -6*EI/L^2, 4*EI/L];

% Element stiffness matrix in global coordinate system
K=Gamma'*k*Gamma;

This simple program will produce the following results:

Displacements =

- 0.0010
- 0.0050
- 0.0005

Reactions =

130.4973
55.6766
13.3742
-149.2473
22.6734
-45.3557

int_forces =

141.8530 149.2473
2.6758 9.3266
13.3742 -8.0315
-141.8530 -149.2473
-2.6758 22.6734
8.0315 -45.3557

We note that the internal forces are consistent with the reactions (specially for the second node of element 2), and amongst themselves, i.e. the moment at node 2 is the same for both elements (8.0315).

Example 12-5: Analysis of a simple Beam with Initial Displacements

The full stiffness matrix of a beam element is given by

\[
[K] = \begin{bmatrix}
V_1 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 & 6EI/L^2 \\
M_1 & 6EI/L^2 & 4EI/L & -6EI/L^2 & 2EI/L \\
V_2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3 & -6EI/L^2 \\
M_2 & 6EI/L^2 & 2EI/L & -6EI/L^2 & 4EI/L
\end{bmatrix}
\] (12.66)

This matrix is singular, it has a rank 2 and order 4 (as it embodies also 2 rigid body motions).

We shall consider 3 different cases, Fig. 12.14

Cantilevered Beam/Point Load

1. The element stiffness matrix is

\[
k = \begin{bmatrix}
-3 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 & 6EI/L^2 \\
-4 & 6EI/L^2 & 4EI/L & -6EI/L^2 & 2EI/L \\
1 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3 & -6EI/L^2 \\
2 & 6EI/L^2 & 2EI/L & -6EI/L^2 & 4EI/L
\end{bmatrix}
\]
2. The structure stiffness matrix is assembled

\[
K = \begin{bmatrix}
1 & 12EI/L^2 & -6EI/L^2 & -12EI/L^3 & -6EI/L^2 \\
12EI/L^2 & -6EI/L^2 & 4EI/L & 6EI/L^2 & 2EI/L \\
-6EI/L^2 & 4EI/L & 6EI/L^2 & 6EI/L^2 & 4EI/L \\
-12EI/L^3 & 6EI/L^2 & 6EI/L^2 & 6EI/L^2 & 4EI/L \\
-12EI/L^3 & 6EI/L^2 & 6EI/L^2 & 6EI/L^2 & 4EI/L
\end{bmatrix}
\]

3. The global matrix can be rewritten as

\[
\begin{bmatrix}
\Delta_1 \\
\theta_2 \\
\theta_3 \\
\theta_4
\end{bmatrix}
= \begin{bmatrix}
12EI/L^2 & -6EI/L^2 & -12EI/L^3 & -6EI/L^2 \\
-6EI/L^2 & 4EI/L & 6EI/L^2 & 4EI/L \\
-12EI/L^3 & 6EI/L^2 & 6EI/L^2 & 4EI/L \\
-12EI/L^3 & 6EI/L^2 & 6EI/L^2 & 4EI/L
\end{bmatrix}^{-1}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{bmatrix}
\]

4. \(K_{tt} \) is inverted (or actually decomposed) and stored in the same global matrix

5. Next we compute the equivalent load, \(P'_t = P_t - K_{tt} \Delta_u \), and overwrite \(P_t \) by \(P'_t \)

\[
P_t - K_{tt} \Delta_u = \begin{bmatrix}
-P_1 \\
0 \\
0 \\
0
\end{bmatrix}
- \begin{bmatrix}
L^3/3EI & L^2/2EI \\
L^2/2EI & L/EI \\
-12EI/L^3 & 6EI/L^2 \\
-6EI/L^2 & 4EI/L
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{bmatrix}
\]

6. Now we solve for the displacement \(\Delta_{t} = K_{tt}^{-1} P'_{t} \), and overwrite \(P_t \) by \(\Delta_{t} \)

\[
\begin{bmatrix}
\Delta_1 \\
\theta_2 \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
L^3/3EI & L^2/2EI & -12EI/L^3 & -6EI/L^2 \\
L^2/2EI & L/EI & 6EI/L^2 & 2EI/L \\
-12EI/L^3 & 6EI/L^2 & 6EI/L^2 & 4EI/L \\
-12EI/L^3 & 6EI/L^2 & 6EI/L^2 & 4EI/L
\end{bmatrix}^{-1}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{bmatrix}
\]

\[
= \begin{bmatrix}
-P_1 \\
0 \\
0 \\
0
\end{bmatrix}
- \begin{bmatrix}
-P_L^3/3EI \\
-P_L^2/2EI \\
0 \\
0
\end{bmatrix}
\]
7. Finally, we solve for the reactions, $R_u = K_{uu} \Delta_u + K_{uu} \Delta_u$, and overwrite Δ_u by R_u

$$\begin{bmatrix} -PL^3/3EI \\ -PL^2/2EI \end{bmatrix} = \begin{bmatrix} L^3/3EI & L^2/2EI \\ L^2/2EI & L/EI \end{bmatrix} \begin{bmatrix} -12EI/L^3 \\ -12EI/L^2 \end{bmatrix} + \begin{bmatrix} K_{uu} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta_u \end{bmatrix}$$

Simply Supported Beam/End Moment

1. The element stiffness matrix is

$$k = \begin{bmatrix} 1 & 2 & -3 & -4 \\ 2 & 4E1/L & 2E1/L & 6EI/L^2 & -6EI/L^2 \\ -3 & 6EI/L^2 & 6EI/L^2 & -6EI/L^2 \\ -4 & -6EI/L^2 & -6EI/L^2 & -12EI/L^3 & 12EI/L^3 \end{bmatrix}$$

2. The structure stiffness matrix is assembled

$$K = \begin{bmatrix} 0 \sqrt{M} \\ \sqrt{M} \end{bmatrix} = \begin{bmatrix} 4E1/L & 2E1/L & 6EI/L^2 & -6EI/L^2 \\ 2E1/L & 4E1/L & 6EI/L^2 & -6EI/L^2 \\ 6EI/L^2 & 6EI/L^2 & 12EI/L^3 & -12EI/L^3 \\ -6EI/L^2 & -6EI/L^2 & -12EI/L^3 & 12EI/L^3 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \Delta_3 \sqrt{M} \end{bmatrix}$$

4. K_{tt} is inverted

$$K_{tt}^{-1} = \begin{bmatrix} L^3/3EI & -L/6EI & 6EI/L^2 & -6EI/L^2 \\ -L/6EI & L/3EI & 6EI/L^2 & -6EI/L^2 \\ 6EI/L^2 & 6EI/L^2 & 12EI/L^3 & -12EI/L^3 \\ -6EI/L^2 & -6EI/L^2 & -12EI/L^3 & 12EI/L^3 \end{bmatrix}$$

5. We compute the equivalent load, $P'_t = P_t - K_{tt} \Delta_u$, and overwrite P_t by P'_t

$${P_t - K_{tt} \Delta_u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta_3 \sqrt{M} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

6. Solve for the displacements, $\Delta_t = K_{tt}^{-1} P'_t$, and overwrite P_t by Δ_t

$$\begin{bmatrix} \theta_1 \\ \theta_2 \\ 0 \end{bmatrix} = \begin{bmatrix} L^3/3EI & -L/6EI & 6EI/L^2 & -6EI/L^2 \\ -L/6EI & L/3EI & 6EI/L^2 & -6EI/L^2 \\ 6EI/L^2 & 6EI/L^2 & 12EI/L^3 & -12EI/L^3 \\ -6EI/L^2 & -6EI/L^2 & -12EI/L^3 & 12EI/L^3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
7. Solve for the reactions, \(R_t = K_{u1} \Delta_{tt} + K_{u2} \Delta_u \), and overwrite \(\Delta_u \) by \(R_u \)

\[
\begin{bmatrix}
-ML/6EI \\
ML/3EI
\end{bmatrix}
\begin{bmatrix}
R_1 \\
R_2
\end{bmatrix} =
\begin{bmatrix}
L^3/3EI & -L/6EI & 6EI/L^2 & -6EI/L^2 \\
-L/6EI & L/3EI & -6EI/L^2 & 6EI/L^2 \\
6EI/L^2 & 6EI/L^2 & 12EI/L^3 & -12EI/L^3 \\
-6EI/L^2 & -6EI/L^2 & -12EI/L^3 & 12EI/L^3
\end{bmatrix}
\begin{bmatrix}
-ML/6EI \\
ML/3EI
\end{bmatrix}
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

Cantilevered Beam/Initial Displacement and Concentrated Moment

1. The \textit{element} stiffness matrix is

\[
k = \begin{bmatrix}
-2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 & 6EI/L^2 \\
-3 & 6EI/L^2 & 4EI/L & -6EI/L^2 & 2EI/L \\
-4 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3 & -6EI/L^2 \\
1 & 6EI/L^2 & 2EI/L & -6EI/L^2 & 4EI/L
\end{bmatrix}
\]

2. The \textit{structure} stiffness matrix is assembled

\[
K = \begin{bmatrix}
1 & -2 & -3 & -4 & 1 \\
-2 & 4EI/L & 6EI/L^2 & 2EI/L & -6EI/L^2 \\
-3 & 6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
-4 & -6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\]

3. The global matrix can be rewritten as

\[
\begin{bmatrix}
M \\
R_2 \\
R_3 \\
R_4
\end{bmatrix} =
\begin{bmatrix}
4EI/L & 6EI/L^2 & 2EI/L & -6EI/L^2 \\
6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
2EI/L & 6EI/L^2 & 4EI/L & -6EI/L^2 \\
-6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\Delta_2 \\
\theta_3 \\
\Delta_4
\end{bmatrix}
\]

4. \(K_{tt} \) is inverted (or actually decomposed) and stored in the same global matrix

\[
\begin{bmatrix}
L/4EI & 6EI/L^2 & 2EI/L & -6EI/L^2 \\
6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
2EI/L & 6EI/L^2 & 4EI/L & -6EI/L^2 \\
-6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\Delta_2 \\
\theta_3 \\
\Delta_4
\end{bmatrix}
\]

5. Next we compute the equivalent load, \(\mathbf{P}_t' = \mathbf{P}_t - K_{tu} \Delta_u \), and overwrite \(\mathbf{P}_t \) by \(\mathbf{P}_t' \)

\[
\mathbf{P}_t - K_{tu} \Delta_u =
\begin{bmatrix}
M \\
0 \\
0 & \Delta^0
\end{bmatrix} -
\begin{bmatrix}
L/4EI & 6EI/L^2 & 2EI/L & -6EI/L^2 \\
6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
2EI/L & 6EI/L^2 & 4EI/L & -6EI/L^2 \\
-6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
0 \\
0 & \Delta^0
\end{bmatrix}
\]

6. Now we solve for the displacements, \(\Delta_t = K_{tt}^{-1} \mathbf{P}_t' \), and overwrite \(\mathbf{P}_t \) by \(\Delta_t \)

\[
\begin{bmatrix}
\theta_1 \\
0 \\
0 & \Delta^0
\end{bmatrix} =
\begin{bmatrix}
L/4EI & 6EI/L^2 & 2EI/L & -6EI/L^2 \\
6EI/L^2 & 12EI/L^3 & 6EI/L^2 & -12EI/L^3 \\
2EI/L & 6EI/L^2 & 4EI/L & -6EI/L^2 \\
-6EI/L^2 & -12EI/L^3 & -6EI/L^2 & 12EI/L^3
\end{bmatrix}
\begin{bmatrix}
M + 6EI \Delta^0/L^2 \\
0 \\
0 & \Delta^0
\end{bmatrix}
\]

\[
\begin{bmatrix}
\theta_1 \\
0 \\
0 & \Delta^0
\end{bmatrix} =
\begin{bmatrix}
ML/4EI + 3\Delta^0/2L \\
0 \\
0 & \Delta^0
\end{bmatrix}
\]
7. Finally, we solve for the reactions, \(R_t = K_{tt} \Delta_{tt} + K_{uu} \Delta_u \), and overwrite \(\Delta_u \) by \(R_u \)

\[
\begin{pmatrix}
\frac{ML}{4EI} + 3\Delta^0/2L \\
R_2 \\
R_3 \\
R_4
\end{pmatrix}
= \begin{pmatrix}
\frac{L}{4EI} & 6E1/L^2 & 2E1/L & -6E1/L^2 \\
6E1/L^2 & 12E1/L^3 & 6E1/L^2 & -12E1/L^3 \\
2E1/L & 6E1/L^2 & 4E1/L & -6E1/L^2 \\
-6E1/L^2 & -12E1/L^3 & -6E1/L^2 & 12E1/L^3 \\
\end{pmatrix}
\begin{pmatrix}
ML/4EI + 3\Delta^0/2L \\
0 \\
0 \\
\Delta^0
\end{pmatrix}
= \begin{pmatrix}
\frac{ML}{4EI} + 3\Delta^0/2L \\
3M/2L - 3E1\Delta^0/L^3 \\
M/2 - 3E1\Delta^0/L^2 \\
-3M/2L + 3E1\Delta^0/L^3
\end{pmatrix}
\]

12.4 Computer Program Organization

The main program should,

1. Read
 (a) title card
 (b) control card which should include:
 i. Number of nodes
 ii. Number of elements
 iii. Type of structure: beam, grid, truss, or frame; (2D or 3D)
 iv. Number of different element properties
 v. Number of load cases

2. Determine:
 (a) Number of spatial coordinates for the structure
 (b) Number of local and global degrees of freedom per node

3. For each node read:
 (a) Node number
 (b) Boundary conditions of each global degree of freedom \([ID]\)
 (c) Spatial coordinates

Note that all the above are usually written on the same “data card”

4. For each element, read:
 (a) Element number
 (b) First and second node
 (c) Element Property number

5. For each element property group read the associated elastic and cross sectional characteristics.
 Note these variables will depend on the structure type.

6. Determine the vector \(\Delta_u \) which stores the initial displacements.

7. Loop over all the elements and for each one:
(a) Retrieve its properties
(b) Determine the length
(c) Call the appropriate subroutines which will determine:
 i. The stiffness matrix in local coordinate systems \([k^{(e)}]\).
 ii. The angle \(\alpha\) and the transformation matrix \([\Gamma^{(e)}]\).

8. Assembly of the global stiffness matrix

(a) Initialize the global stiffness matrix to zero
(b) Loop through each element, \(e\), and for each element:
 i. Retrieve its stiffness matrix (in local coordinates) \([k^{(e)}]\) and transformation matrix \([\Gamma^{(e)}]\).
 ii. Compute the element stiffness matrix in global coordinates from \([K^{(e)}] = [\Gamma^{(e)}]^T[k^{(e)}][\Gamma^{(e)}]\).
 iii. Define the \([LM]\) array of the element
 iv. Loop through each row \(i\) and column \(j\) of the element stiffness matrix, and for those
degree of freedom not equal to zero, add the contributions of the element to the structure’s
stiffness matrix \(K^{S}[LM(i), LM(j)] = K^{S}[LM(i), LM(j)] + K^{(e)}[i,j]\)

9. Extract the structure’s stiffness matrix \([K_{tt}]\) from the augmented stiffness matrix.

10. Invert the structure’s stiffness matrix (or decompose it).

11. For each load case:

(a) Determine the nodal equivalent loads (fixed end actions), if any.
(b) Assemble the load vector
(c) Load assembly (once for each load case) once the stiffness matrix has been decomposed, than
the main program should loop through each load case and,
 i. Initialize the load vector (of length NEQ) to zero.
 ii. Read number of loaded nodes. For each loaded node store the non-zero values inside the
load vector (using the \([ID]\) matrix for determining storage location).
 iii. Loop on all loaded elements:
 A. Read element number, and load value
 B. Compute the fixed end actions and rotate them from local to global coordinates.
 C. Using the \([LM]\) vector, add the fixed end actions to the nodal load vector (unless the
 corresponding equation number is zero, i.e. restrained degree of freedom).
 D. Store the fixed end actions for future use.
(d) Apply Eq. 12.31 to determine the nodal displacements \(\Delta_t = K_{tt}^{-1}(P_t - K_{tu}\Delta_u)\)
(e) Apply Eq. 12.32 to determine the nodal reactions \(R_t = K_{ut}\Delta_t + K_{uu}\Delta_u\)
(f) Determine the internal forces (axial, shear and moment)
 i. For each element retrieve:
 A. nodal coordinates
 B. rotation matrix \([\Gamma^{(e)}]\).
 C. element stiffness matrix \([k^{(e)}]\).
 ii. Compute nodal displacements in local coordinate system from \(\{\delta^{(e)}\} = [\Gamma^{(e)}]\{\Delta\}\)
 iii. Compute element internal forces from \(\{p\} = [k^{(e)}]\{\delta^{(e)}\}\)
 iv. If the element is loaded, add corresponding fixed end actions
 v. print the interior forces
12.5 Computer Implementation with MATLAB

You will be required, as part of your term project, to write a simple MATLAB (or whatever other language you choose) program for the analysis of two dimensional frames with nodal load and initial displacement, as well as element load.

To facilitate the task, your instructor has taken the liberty of taking a program written by Mr. Dean Frank (as part of his term project with this instructor in the Advanced Structural Analysis course, Fall 1995), modified it with the aid of Mr. Pawel Smolarki, and is making available most, but not all of it to you. Hence, you will be expected to first familiarize yourself with the code made available to you, and then complete it by essentially filling up the missing parts.

12.5.1 Program Input

From Dean Frank's User's Manual

It is essential that the structure be idealized such that it can be discretized. This discretization should define each node and element uniquely. In order to decrease the required amount of computer storage and computation it is best to number the nodes in a manner that minimizes the numerical separation of the node numbers on each element. For instance, an element connecting nodes 1 and 4, could be better defined by nodes 1 and 2, and so on. As it was noted previously, the user is required to have a decent understanding of structural analysis and structural mechanics. As such, it will be necessary for the user to generate or modify an input file input.m using the following directions. Open the file called input.m and set the existing variables in the file to the appropriate values. The input file has additional helpful directions given as comments for each variable. After setting the variables to the correct values, be sure to save the file. Please note that the program is case-sensitive.

In order for the program to be run, the user must supply the required data by setting certain variables in the file called indat.m equal to the appropriate values. All the user has to do is open the text file called indat.txt, fill in the required values and save the file as indat.m in a directory within MATLAB's path. There are helpful hints within this file. It is especially important that the user keep track of units for all of the variables in the input data file. All of the units MUST be consistent. It is suggested that one always use the same units for all problems. For example, always use kips and inches, or kilo-newtons and millimeters.

12.5.1.1 Input Variable Descriptions

A brief description of each of the variables to be used in the input file is given below:

- npoin This variable should be set equal to the number of nodes that comprise the structure. A node is defined as any point where two or more elements are joined.
- nelem This variable should be set equal to the number of elements in the structure. Elements are the members which span between nodes.
- istrp This variable should be set equal to the type of structure. There are six types of structures which this program will analyze: beams, 2-D trusses, 2-D frames, grids, 3-D trusses, and 3-D frames. Set this to 1 for beams, 2 for 2D-trusses, 3 for 2D-frames, 4 for grids, 5 for 3D-trusses, and 6 for 3D-frames. An error will occur if it is not set to a number between 1 and 6. Note only istrp=3 was kept.
- nload This variable should be set equal to the number of different load cases to be analyzed. A load case is a specific manner in which the structure is loaded.
- ID (matrix) The ID matrix contains information concerning the boundary conditions for each node. The number of rows in the matrix correspond with the number of nodes in the structure and the number of columns corresponds with the number of degrees of freedom for each node for that type of structure type. The matrix is composed of ones and zeros. A one indicates that the degree of freedom is restrained and a zero means it is unrestrained.
- nodecoor (matrix) This matrix contains the coordinates (in the global coordinate system) of the nodes in the structure. The rows correspond with the node number and the columns correspond with the global coordinates x, y, and z, respectively. It is important to always include all three coordinates for each node even if the structure is only two-dimensional. In the case of a two-dimensional structure, the z-coordinate would be equal to zero.
\textbf{12–32 DIRECT STIFFNESS METHOD}

\textbf{lnods (matrix)} This matrix contains the nodal connectivity information. The rows correspond with the element number and the columns correspond with the node numbers which the element is connected from and to, respectively.

\textbf{E,A,Iy (arrays)} These are the material and cross-sectional properties for the elements. They are arrays with the number of terms equal to the number of elements in the structure. The index number of each term corresponds with the element number. For example, the value of A(3) is the area of element 3, and so on. \textit{E} is the modulus of elasticity, \textit{A} is the cross-sectional area, \textit{Iy} is the moment of inertia about the y axes.

\textbf{Pnods} This is an array of nodal loads in global degrees of freedom. Only put in the loads in the global degrees of freedom and if there is no load in a particular degree of freedom, then put a zero in its place. The index number corresponds with the global degree of freedom.

\textbf{Pelem} This an array of element loads, or loads which are applied between nodes. Only one load between elements can be analyzed. If there are more than one element loads on the structure, the equivalent nodal load can be added to the nodal loads. The index number corresponds with the element number. If there is not a load on a particular member, put a zero in its place. These should be in local coordinates.

\textbf{a} This is an array of distances from the left end of an element to the element load. The index number corresponds to the element number. If there is not a load on a particular member, put a zero in its place. This should be in local coordinates.

\textbf{w} This is an array of distributed loads on the structure. The index number corresponds with the element number. If there is not a load on a particular member, put a zero in its place. This should be in local coordinates.

\textbf{dispflag} Set this variable to 1 if there are initial displacements and 0 if there are none.

\textbf{initial displ} This is an array of initial displacements in all structural degrees of freedom. This means that you must enter in values for all structure degrees of freedom, not just those restrained. For example, if the structure is a 2D truss with 3 members and 3 node, there would be 6 structural degrees of freedom, etc. If there are no initial displacements, then set the values equal to zero.

\textbf{angle} This is an array of angles which the x-axis has possibly been rotated. This angle is taken as positive if the element has been rotated towards the z-axis. The index number corresponds to the element number.

\textbf{drawflag} Set this variable equal to 1 if you want the program to draw the structure and 0 if you do not.

\subsection*{12.5.1.2 Sample Input Data File}

The contents of the input.m file which the user is to fill out is given below:

```matlab
%********************************************************************************************
% Scriptfile name: indat.m (EXAMPLE 2D-FRAME INPUT DATA)
% % Main Program: casap.m
% % This is the main data input file for the computer aided structural analysis program CASAP. The user must supply % the required numeric values for the variables found in % this file (see user's manual for instructions). % % By Dean A. Frank % CVEN 5525 - Term Project % Fall 1995 % % Edited by Pawel Smolarkiewicz, 3/16/99 % Simplified for 2D Frame Case only % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% HELPFUL INSTRUCTION COMMENTS IN ALL CAPITALS
% SET NPOIN EQUAL TO THE NUMBER OF NODES IN THE STRUCTURE
npoint=3;
% SET NELEM EQUAL TO THE NUMBER OF ELEMENTS IN THE STRUCTURE
```
nelem=2;

\% SET NLOAD EQUAL TO THE NUMBER OF LOAD CASES

nload=1;

\% INPUT THE ID MATRIX CONTAINING THE NODAL BOUNDARY CONDITIONS (ROW # = NODE #)

ID=[1 1 1; 0 0 0; 1 1 1];

\% INPUT THE NODE COORDINATE (X,Y) MATRIX, NODECOOR (ROW # = NODE #)

nodecoor=[
 0 0;
 7416 3000;
 15416 3000
];

\% INPUT THE ELEMENT CONNECTIVITY MATRIX, LNODS (ROW # = ELEMENT #)

lnods=[
 1 2;
 2 3
];

\% INPUT THE MATERIAL PROPERTIES ASSOCIATED WITH THIS TYPE OF STRUCTURE
\% PUT INTO ARRAYS WHERE THE INDEX NUMBER IS EQUAL TO THE CORRESPONDING ELEMENT NUMBER.
\% COMMENT OUT VARIABLES THAT WILL NOT BE USED

E=[200 200];
A=[6000 6000];
Iz=[200000000 200000000];

\% INPUT THE LOAD DATA. NODAL LOADS, PNODS SHOULD BE IN MATRIX FORM. THE COLUMNS CORRESPOND
\% TO THE GLOBAL DEGREE OF FREEDOM IN WHICH THE LOAD IS ACTING AND THE THE ROW NUMBER CORRESPONDS
\% WITH THE LOAD CASE NUMBER. PELEM IS THE ELEMENT LOAD, GIVEN IN A MATRIX, WITH COLUMNS
\% CORRESPONDING TO THE ELEMENT NUMBER AND ROW THE LOAD CASE. ARRAY "A" IS THE DISTANCE FROM
\% THE LEFT END OF THE ELEMENT TO THE LOAD, IN ARRAY FORM. THE DISTRIBUTED LOAD, W SHOULD BE
\% IN MATRIX FORM ALSO WITH COLUMNS = ELEMENT NUMBER UPON WHICH W IS ACTING AND ROWS = LOAD CASE.
\% ZEROS SHOULD BE USED IN THE MATRICES WHEN THERE IS NO LOAD PRESENT. NODAL LOADS SHOULD
\% BE GIVEN IN GLOBAL COORDINATES, WHEREAS THE ELEMENT LOADS AND DISTRIBUTED LOADS SHOULD BE
\% GIVEN IN LOCAL COORDINATES.

Pnods=[18.75 -46.35 0];
Pelem=[0 0];
a=[0 0];
w=[0 4/1000];

\% IF YOU WANT THE PROGRAM TO DRAW THE STRUCTURE SET DRAWFLAG=1, IF NOT SET IT EQUAL TO 0.
\% THIS IS USEFUL FOR CHECKING THE INPUT DATA.

drawflag=1;

\% END OF INPUT DATA FILE

12.5.1.3 Program Implementation

In order to "run" the program, open a new MATLAB Notebook. On the first line, type the name of the main program CASAP and evaluate that line by typing ctrl-enter. At this point, the main program reads the input file you have just created and calls the appropriate subroutines to analyze your structure. In doing so, your input data is echoed into your MATLAB notebook and the program results are also displayed. As a note, the program can also be executed directly from the MATLAB workspace window, without Microsoft Word.
12.5.2 Program Listing

12.5.2.1 Main Program

%**
%Main Program: casap.m
%
% This is the main program, Computer Aided Structural Analysis Program
% CASAP. This program primarily contains logic for calling scriptfiles and does not
% perform calculations.
%
% All variables are global, but are defined in the scriptfiles in which they are used.
%
% Associated scriptfiles:
%
% (for all structures)
% indat.m (input data file)
% idrasmbl.m
% elmcoord.m
% draw.m
%
% (3 - for 2D-frames)
% length3.m
% stiffl3.m
% trans3.m
% assembl3.m
% loads3.m
% disp3.m
% react3.m
%
% By Dean A. Frank
% CVEN 5525
% Advanced Structural Analysis - Term Project
% Fall 1995
%
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
%%

% COMMENT CARDS ARE IN ALL CAPITALS

% SET NUMERIC FORMAT

format short e

% CLEAR MEMORY OF ALL VARIABLES

clear

% INITIALIZE OUTPUT FILE
fid = fopen('casap.out', 'wt');

% SET ISTRTP EQUAL TO THE NUMBER CORRESPONDING TO THE TYPE OF STRUCTURE:
% 3 = 2DFRAME

istrtp=3;

% READ INPUT DATA SUPPLIED BY THE USER

indat

% REASSEMBLE THE ID MATRIX AND CALCULATE THE LM VECTORS
% CALL SCRIPTFILE IDRASMBL

idrasmbl

% ASSEMBLE THE ELEMENT COORDINATE MATRIX

elmcoord

% 2DFRAME CALCULATIONS

Victor Saouma

Structural Analysis
% CALCULATE THE LENGTH AND ORIENTATION ANGLE, ALPHA FOR EACH ELEMENT
% CALL SCRIPTFILE LENGTH3.M
length3

% CALCULATE THE 2DFRAME ELEMENT STIFFNESS MATRIX IN LOCAL COORDINATES
% CALL SCRIPTFILE STIFFL3.M
stiffl3

% CALCULATE THE 2DFRAME ELEMENT STIFFNESS MATRIX IN GLOBAL COORDINATES
% CALL SCRIPTFILE TRANS3.M
trans3

% ASSEMBLE THE GLOBAL STRUCTURAL STIFFNESS MATRIX
% CALL SCRIPTFILE ASSEMBL3.M
assembl3

% PRINT STRUCTURAL INFO
print_general_info

% LOOP TO PERFORM ANALYSIS FOR EACH LOAD CASE
for iload=1:nload
 print_loads
 % DETERMINE THE LOAD VECTOR IN GLOBAL COORDINATES
 % CALL SCRIPTFILE LOADS3.M
 loads3
 % CALCULATE THE DISPLACEMENTS
 % CALL SCRIPTFILE DISP3.M
 disp3
 % CALCULATE THE REACTIONS AT THE RESTRAINED DEGREES OF FREEDOM
 % CALL SCRIPTFILE REACT3.M
 react3
 % CALCULATE THE INTERNAL FORCES FOR EACH ELEMENT
 intern3
end

% DRAW THE STRUCTURE, IF USER HAS REQUESTED (DRAWFLAG=1)
% CALL SCRIPTFILE DRAW.M
draw
st=fclose('all');
% END OF MAIN PROGRAM (CASAP.M)
disp('Program completed! - See "casap.out" for complete output');

12.5.2.2 Assembly of ID Matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%SCRIPTFILE NAME: IDRASMBL.M
%
%MAIN FILE : CASAP
%
%Description : This file re-assembles the ID matrix such that the restrained
% degrees of freedom are given negative values and the unrestrained
% degrees of freedom are given incremental values beginning with one
% and ending with the total number of unrestrained degrees of freedom.
%
% By Dean A. Frank
% CVEN 5525
% Advanced Structural Analysis - Term Project
% Fall 1995
%
% Edited by Pavel Smolarkievicz, 3/16/99
% Simplified for 2D Frame Case only
%
%%

% TAKE CARE OF SOME INITIAL BUSINESS: TRANPOSE THE PNODS ARRAY

Pnods=Pnods.;

% SET THE COUNTER TO ZERO

count=1;
negcount=-1;

% REASSEMBLE THE ID MATRIX

if istrtp==3
 ndofpn=3;
 nterm=6;
else
 error('Incorrect structure type specified')
end

% SET THE ORIGINAL ID MATRIX TO TEMP MATRIX

orig_ID=ID;

% REASSEMBLE THE ID MATRIX, SUBSTITUTING RESTRAINED DEGREES OF FREEDOM WITH NEGATIVES,
% AND NUMBERING GLOBAL DEGREES OF FREEDOM

for inode=1:npoi
 for icoord=1:ndofpn
 if ID(inode,icoord)==0
 ID(inode,icoord)=count;
 count=count+1;
 elseif ID(inode,icoord)==1
 ID(inode,icoord)=negcount;
 negcount=negcount-1;
 else
 error('ID input matrix incorrect')
 end
 end
end

% CREATE THE LM VECTORS FOR EACH ELEMENT

for ielem=1:nelem
 LM(ielem,1:ndofpn)=ID(lnods(ielem,1),1:ndofpn);
 LM(ielem,(ndofpn+1):(2*ndofpn))=ID(lnods(ielem,2),1:ndofpn);
end

% END OF IDRASMBL.M SCRIPTFILE

12.5.2.3 Element Nodal Coordinates

%%

%SCRIPTFILE NAME: ELEMCOORD.M
%
%MAIN FILE : CASAP
%
%Description : This file assembles a matrix, elemdooor which contains the coordinates
% of the first and second nodes on each element, respectively.
%
 Victor Saouma Structural Analysis
% By Dean A. Frank
% CVEN 5525
% Advanced Structural Analysis - Term Project
% Fall 1995
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
%**

% ASSEMBLE THE ELEMENT COORDINATE MATRIX, ELEMCOORD FROM NODECOORD AND LNODS

for ielem=1:nelem

elemcoor(ielem,1)=nodecoor(lnods(ielem,1),1);
elemcoor(ielem,2)=nodecoor(lnods(ielem,1),2);
elemcoor(ielem,3)=nodecoor(lnods(ielem,2),1);
elemcoor(ielem,4)=nodecoor(lnods(ielem,2),2);
end
% END OF ELMCOORD.M SCRIPTFILE

12.5.2.4 Element Lengths

%**
% Scriptfile name : length3.m (for 2d-frame structures)
% Main program : casap.m
% When this file is called, it computes the length of each element and the
% angle alpha between the local and global x-axes. This file can be used
% for 2-dimensional elements such as 2-D truss, 2-D frame, and grid elements.
% This information will be useful for transformation between local and global
% variables.
% Variable descriptions: (in the order in which they appear)
% nelem = number of elements in the structure
% ielem = counter for loop
% L(ielem) = length of element ielem
% elemcoor(ielem,1) = xi-coordinate of element ielem
% elemcoor(ielem,2) = yi-coordinate of element ielem
% elemcoor(ielem,4) = xj-coordinate of element ielem
% elemcoor(ielem,5) = yj-coordinate of element ielem
% alpha(ielem) = angle between local and global x-axes
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%**

% COMPUTE THE LENGTH AND ANGLE BETWEEN LOCAL AND GLOBAL X-AXES FOR EACH ELEMENT

for ielem=1:nelem

L(ielem)=
XXXXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
alpha(ielem)=
XXXXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

% END OF LENGTH3.M SCRIPTFILE

12.5.2.5 Element Stiffness Matrices

%**
% Scriptfile name: stiffl3.m (for 2d-frame structures)
%
% Main program: casap.m
% When this file is called, it computes the element stiffness matrix
% of a 2-D frame element in local coordinates. The element stiffness
% matrix is calculated for each element in the structure.
% The matrices are stored in a single matrix of dimensions 6x6*i and
% can be recalled individually later in the program.
% Variable descriptions: (in the order in which they appear)
% ielem = counter for loop
% nelem = number of element in the structure
% k(ielem,6,6)= element stiffness matrix in local coordinates
% E(ielem) = modulus of elasticity of element ielem
% A(ielem) = cross-sectional area of element ielem
% L(ielem) = length of element ielem
% Ix(ielem) = moment of inertia with respect to the local z-axis of element ielem

for ielem=1:nelem
 ktemp=k(1:6,1:6,ielem);
 ktemp=complete ktemp;
end

12.5.2.6 Transformation Matrices

% Scriptfile name : trans3.m (for 2d-frame structures)
% Main program : casap.m
% This file calculates the rotation matrix and the element stiffness
% matrices for each element in a 2D frame.
% Variable descriptions: (in the order in which they appear)
% ielem = counter for the loop
% nelem = number of elements in the structure
% rotation = rotation matrix containing all elements info
% Rot = rotational matrix for 2d-frame element
% alpha(ielem) = angle between local and global x-axes
% K = element stiffness matrix in global coordinates
% k = element stiffness matrix in local coordinates

% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
%
% CALCULATE THE ELEMENT STIFFNESS MATRIX IN GLOBAL COORDINATES
% FOR EACH ELEMENT IN THE STRUCTURE

for ielem=1:nelem
 ktemp=rotation(1:6,1:6,ielem);
 ktemp=complete ktemp;
 ktemp=ktemp*rotation(1:6,1:6,ielem);
end
12.5 Computer Implementation with MATLAB

12.5.2.7 Assembly of the Augmented Stiffness Matrix

%**
% Scriptfile name : assembl3.m (for 2d-frame structures)
% % Main program : casap.m
% % This file assembles the global structural stiffness matrix from the
% % element stiffness matrices in global coordinates using the LM vectors.
% % In addition, this file assembles the augmented stiffness matrix.
% % Variable Descriptions (in order of appearance):
% % ielem = Row counter for element number
% % nelem = Number of elements in the structure
% % iterm = Counter for term number in LM matrix
% % LM(a,b) = LM matrix
% % jterm = Column counter for element number
% % temp1 = Temporary variable
% % temp2 = Temporary variable
% % temp3 = Temporary variable
% % temp4 = Temporary variable
% % number_gdofs = Number of global dofs
% % new_LM = LM matrix used in assembling the augmented stiffness matrix
% % aug_total_dofs = Total number of structure dofs
% % K_aug = Augmented structural stiffness matrix
% % Ktt = Structural Stiffness Matrix (Upper left part of Augmented structural stiffness matrix)
% % Ktu = Upper right part of Augmented structural stiffness matrix
% % Kut = Lower left part of Augmented structural stiffness matrix
% % Kuu = Lower right part of Augmented structural stiffness matrix
% % By Dean A. Frank
% % CVEN 5525 - Term Project
% % Fall 1995
% % Edited by Pawel Smolarkiewicz, 3/16/99
% % Simplified for 2D Frame Case only
% %**

% RENUMBER DOF INCLUDE ALL DOF, FREE DOF FIRST, RESTRAINED NEXT
new_LM=LM;
number_gdofs=max(LM(:));
new_LM(find(LM<0))=number_gdofs-LM(find(LM<0));
aug_total_dofs=max(new_LM(:));

% ASSEMBLE THE AUGMENTED STRUCTURAL STIFFNESS MATRIX
K_aug=zeros(aug_total_dofs);
for ielem=1:nelem

% SET UP SUBMATRICES FROM THE AUGMENTED STRUCTURAL STIFFNESS MATRIX
Ktt=
Ktu=
Kut=
Kuu=

% END OF ASSEMBL3.M SCRIPTFILE
12.5.2.8 Print General Information

%**
% Scriptfile name : print_general_info.m
% Main program : casap.m
% Prints the general structure info to the output file
% By Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%**

fprintf(fid,'Number of Nodes: %d
',npoin);
fprintf(fid,'Number of Elements: %d
',nelem);
fprintf(fid,'Number of Load Cases: %d
',nload);
fprintf(fid,'Number of Restrained dofs: %d
',abs(min(LM(:)));
fprintf(fid,'Number of Free dofs: %d
',max(LM(:)));

for inode=1:npoin
 fprintf(fid,' Node %d (%d,%d)
',inode,nodecoor(inode,1),nodecoor(inode,2));
 freedof=' ';
 if(ID(inode,1))>0
 freedof=strcat(freedof,' X ');
 end
 if(ID(inode,2))>0
 freedof=strcat(freedof,' Y ');
 end
 if(ID(inode,3))>0
 freedof=strcat(freedof,' Rot');
 end
 if freedof==' '
 freedof=' none; node is fixed';
 end
 fprintf(fid,' Free dofs:%s
',freedof);
end

fprintf(fid,'Element Info:
');
for ielem=1:nelem
 fprintf(fid,' Element %d (%d->%d',ielem,lnods(ielem,1),lnods(ielem,2));
 fprintf(fid,' E=%d A=%d Iz=%d
',E(ielem),A(ielem),Iz(ielem));
end

12.5.2.9 Print Load

%**
% Scriptfile name : print_loads.m
% Main program : casap.m
% Prints the current load case data to the output file
% By Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%**

Load_case=iload
if iload==1
 fprintf(fid,'___

');
end
fprintf(fid,'Load Case: %d

',iload);
fprintf(fid,' Nodal Loads:
');
for k=1:max(LM(:))
 %WORK BACKWARDS WITH LM MATRIX TO FIND NODE# AND DOF
 LM_spot=find(LM']==k);
 elem=fix(LM_spot(1)/(nterm+1))+1;
 dof=mod(LM_spot(1)-1,nterm)+1;
 node=lnods(elem,fix(dof/4)+1);
 fprintf(fid,' Node %d (%d,%d)
',nodecoor(node,1),nodecoor(node,2));
 fprintf(fid,' Nodal Loads:
');
 if(ID(inode,1))>0
 freedof=strcat(freedof,' X ');
 end
 if(ID(inode,2))>0
 freedof=strcat(freedof,' Y ');
 end
 if(ID(inode,3))>0
 freedof=strcat(freedof,' Rot');
 end
 if freedof==' '
 freedof=' none; node is fixed';
 end
 fprintf(fid,' Free dofs:%s
',freedof);
end

fprintf(fid,'Element Info:
');
for ielem=1:nelem
 fprintf(fid,' Element %d (%d->%d',ielem,lnods(ielem,1),lnods(ielem,2));
 fprintf(fid,' E=%d A=%d Iz=%d
',E(ielem),A(ielem),Iz(ielem));
end

Victor Saouma Structural Analysis
switch(dof)
 case {1,4}, dof='Fx';
 case {2,5}, dof='Fy';
 otherwise, dof=' M';
end

%PRINT THE DISPLACEMENTS
if Pnods(k)~=0
 fprintf(fid,' Node: %2d %s = %14d
',node, dof, Pnods(k));
end
end

fprintf(fid,'
 Elemental Loads:
');
for k=1:nelem
 fprintf(fid,' Element: %d Point load = %d at %d from left\n',k,Pelem(k),a(k));
 fprintf(fid,' Distributed load = %d\n',w(k));
end
fprintf(fid,'
');

12.5.2.10 Load Vector

%**
% Scriptfile name: loads3.m (for 2d-frame structures)
% Main program: casap.m
% When this file is called, it computes the fixed end actions for elements which carry distributed loads for a 2-D frame.
% Variable descriptions: (in the order in which they appear)
% ielem = counter for loop
% nelem = number of elements in the structure
% b(ielem) = distance from the right end of the element to the point load
% L(ielem) = length of the element
% a(ielem) = distance from the left end of the element to the point load
% Ffl = fixed end force (reaction) at the left end due to the point load
% w(ielem) = distributed load on element ielem
% L(ielem) = length of element ielem
% Pelem(ielem) = element point load on element ielem
% Mfl = fixed end moment (reaction) at the left end due to the point load
% Ffr = fixed end force (reaction) at the right end due to the point load
% Mfr = fixed end moment (reaction) at the right end due to the point load
% feamatrix_local = matrix containing resulting fixed end actions in local coordinates
% feamatrix_global = matrix containing resulting fixed end actions in global coordinates
% fea_vector = vector of fea's in global dofs, used to calc displacements
% fea_vector_abs = vector of fea's in every structure dof
% dispflag = flag indicating initial displacements
% Ffl = fixed force on left end of element due to initial disp
% Mfl = fixed moment on left end of element due to initial disp
% Ffr = fixed force on right end of element due to initial disp
% Mfr = fixed moment on right end of element due to initial disp
% fea_vector_disp = vector of fea's due to initial disp, used to calc displacements
% fea_vector_react = vector of fea's due to initial disp, used to calc reactions
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
%**

% CALCULATE THE FIXED END ACTIONS AND INSERT INTO A MATRIX IN WHICH THE ROWS CORRESPOND WITH THE ELEMENT NUMBER AND THE COLUMNS CORRESPOND WITH THE ELEMENT LOCAL DEGREES OF FREEDOM
for ielem=1:nelem
 b(ielem)=L(ielem)-a(ielem);
 Ffl=((w(ielem)*L(ielem))/2)+((Pelem(ielem)*(b(ielem))^2))/(L(ielem))^3)*(3*a(ielem)+b(ielem));
 Mfl=((w(ielem)*(L(ielem))^2))/12+((Pelem(ielem)*a(ielem)*(b(ielem))^2))/(L(ielem))^2;
 Ffr=((w(ielem)*L(ielem))/2)+((Pelem(ielem)*(a(ielem))^2))/(L(ielem))^3)*(a(ielem)+3*b(ielem));

 fprintf(fid,' Element: %d Point load = %d at %d from left\n',k,Pelem(k),a(k));
 fprintf(fid,' Distributed load = %d\n',w(k));
end
fprintf(fid,'
');
Mfr=-(w(ielem)*(L(ielem))^2))/12+(Pelem(ielem)*a(ielem)*b(ielem))^2)/(L(ielem))^2;

feamatrix_local(ielem,1:6)=[0 Ffl Mfl 0 Ffr Mfr];

% ROTATE THE LOCAL FEA MATRIX TO GLOBAL

feamatrix_global=...
XXXXXXXXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
end

% CREATE A LOAD VECTOR USING THE LM MATRIX

% INITIALIZE FEA VECTOR TO ALL ZEROS

for idofpn=1:ndofpn
 fea_vector(idofpn,1)=0;
end

for ielem=1:nelem
 for idof=1:6
 if ielem==1
 if LM(ielem,idof)>0
 fea_vector(LM(ielem,idof),1)=feamatrix_global(idof,ielem);
 end
 elseif ielem>1
 if LM(ielem,idof)>0
 fea_vector(LM(ielem,1))=feamatrix_global(idof,ielem);
 end
 end
 end
end

for ielem=1:nelem
 for iterm=1:nterm
 if feamatrix_global(iterm,ielem)==0
 else
 if new_LM(ielem,iterm)>number_gdofs
 fea_vector_react(iterm,1)=feamatrix_global(iterm,ielem);
 end
 end
 end
 end
end

% END OF LOADS3.M SCRIPTFILE

12.5.2.11 Nodal Displacements

%**
% Scriptfile name : disp3.m (for 2d-frame structures)
% % Main program : casap.m
% % When this file is called, it computes the displacements in the global
% % degrees of freedom.
% % Variable descriptions: (in the order in which they appear)
% % Ksinv = inverse of the structural stiffness matrix
% % Ktt = structural stiffness matrix
% % Delta = vector of displacements for the global degrees of freedom
% % Phods = vector of nodal loads in the global degrees of freedom
% % fea_vector = vector of fixed end actions in the global degrees of freedom
% % By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only

Victor Saouma Structural Analysis
12.5 Computer Implementation with MATLAB

% CREATE A TEMPORARY VARIABLE EQUAL TO THE INVERSE OF THE STRUCTURAL STIFFNESS MATRIX
Ksinv=inv(Ktt);

% CALCULATE THE DISPLACEMENTS IN GLOBAL COORDINATES
Delta=

% PRINT DISPLACEMENTS WITH NODE INFO
fprintf(fid,' Displacements:
');
for k=1:size(Delta,1)
 % WORK BACKWARDS WITH LM MATRIX TO FIND NODE# AND DOF
 LM_spot=find(LM'==k);
 elem=fix(LM_spot(1)/(nterm+1))+1;
 dof=mod(LM_spot(1)-1,nterm)+1;
 node=lnods(elem,fix(dof/4)+1);
 switch(dof)
 case {1,4}, dof='delta X';
 case {2,5}, dof='delta Y';
 otherwise, dof='rotate '
 end
 fprintf(fid,' (Node: %2d %s) %14d
',node, dof, Delta(k));
end
fprintf(fid,'
');

% END OF DISP3.M SCRIPTFILE

12.5.2.12 Reactions

% Scriptfile name : react3.m (for 2d-frame structures)
% Main program : casap.m
% When this file is called, it calculates the reactions at the restrained degrees of
% freedom.
% Variable Descriptions:
% Reactions = Reactions at restrained degrees of freedom
% Kut = Upper left part of aug stiffness matrix, normal structure stiff matrix
% Delta = vector of displacements
% fea_vector_react = vector of fea's in restrained dofs
% By Dean A. Frank
% CVEN 5525 - Term Project
% Fall 1995
% Edited by Pawel Smolarkiewicz, 3/16/99
% Simplified for 2D Frame Case only
%
% CALCULATE THE REACTIONS FROM THE AUGMENTED STIFFNESS MATRIX
Reactions=

fprintf(fid,' Reactions:
');
for k=1:size(Reactions,1)
 % WORK BACKWARDS WITH LM MATRIX TO FIND NODE# AND DOF
 LM_spot=find(LM'==-k);
 elem=fix(LM_spot(1)/(nterm+1))+1;
 dof=mod(LM_spot(1)-1,nterm)+1;
 node=lnods(elem,fix(dof/4)+1);
 fprintf(fid,' (Node: %2d %s) %14d
',node, dof, Reactions(k));
end
fprintf(fid,'
');

% END OF DISP3.M SCRIPTFILE
\[\text{dof} = \text{mod}(\text{LM} _\text{spot}(1) - 1, \text{nterm}) + 1; \]
\[
\text{node} = \text{lnods}(\text{elem}, \text{fix}(\text{dof}/4) + 1);
\]
\[
\text{switch(dof)}
\]
\[
\text{case} \{1,4\}, \text{dof} = 'F_x'; \]
\[
\text{case} \{2,5\}, \text{dof} = 'F_y'; \]
\[
\text{otherwise}, \text{dof} = 'M'; \]
\end{switch}
\[
\% \text{PRINT THE REACTIONS}
\]
\[
\text{fprintf(fid,' \ (Node: %2d %s) %14d
'}, \text{node}, \text{dof}, \text{Reactions(k)});
\]
\[
\text{end}
\]
\[
\text{fprintf(fid,}'\n');
\]
\[
\% \text{END OF REACT3.M SCRIPTFILE}
\]

\section*{12.5.2.13 Internal Forces}

\begin{verbatim}
Pglobe=zeros(6,nelem);
Plocal=Pglobe;

fprintf(fid,' Internal Forces:
');
\% LOOP FOR EACH ELEMENT
for ielem=1:nelem
 \% FIND ALL 6 LOCAL DISPLACEMENTS
 elem_delta=zeros(6,1);
 for idof=1:6
 gdof=LM(ielem,idof);
 if gdof<0
 elem_delta(idof)=XXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 else
 elem_delta(idof)=XXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 end
 end

 \% SOLVE FOR ELEMENT FORCES (GLOBAL)
P_globeforce(:,ielem)=K(:,:,ielem)*elem_delta+feamatrix_global(:,ielem);

 \% ROTATE FORCES TO LOCAL COORDINATES
 Plocal(:,ielem)=XXXXXXXXXXXXXXXXXXXXXX COMPLETE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 \% PRINT RESULTS
 fprintf(fid,'
 Element: %2d
',ielem);
 for idof=1:6
 if idof==1
 fprintf(fid,' At Node: %d
',lnods(ielem,1));
 end
 if idof==4
 fprintf(fid,' At Node: %d
',lnods(ielem,2));
 end
 switch(idof)
 case {1,4}, dof='F_x';
 case {2,5}, dof='F_y';
 otherwise, dof='M';
 end
 fprintf(fid,' (Global : %s) %14d',dof, Pglobe(idof,ielem));
 end
\end{verbatim}
fprintf(fid,' (Local : %s) %14d
',dof, Plocal(idof,ielem));

end
end
fprintf(fid,'______________________________

12.5.2.14 Plotting

%**
% SCRIPTFILE NAME : DRAW.M
% MAIN FILE : CASAP
% Description : This file will draw a 2D or 3D structure (1D structures are generally boring to draw).
% Input Variables : nodecoor - nodal coordinates
% ID - connectivity matrix
% drawflag - flag for performing drawing routine
% By Dean A. Frank
% CVEN 5525
% Advanced Structural Analysis - Term Project
% Fall 1995
% (with thanks to Brian Rose for help with this file)
%**
% PERFORM OPERATIONS IN THIS FILE IF DRAWFLAG = 1

if drawflag==1
if istrtp==1
drawtype=2;
elseif istrtp==2
drawtype=2;
elseif istrtp==3
drawtype=2;
elseif istrtp==4
drawtype=3;
elseif istrtp==5
drawtype=3;
elseif istrtp==6
drawtype=3;
else
error('Incorrect structure type in indat.m')
end

ID=orig_ID.';

% DRAW 2D STRUCTURE IF DRAWTYPE=2

if drawtype==2

% RETREIVE NODAL COORDINATES
x=nodecoor(:,1);
y=nodecoor(:,2);

%IF 2D-TRUSS, MODIFY ID MATRIX
if istrtp==2
for ipoin=1:npoint
if ID(1:2,ipoin)==[0;0]
ID(1:3,ipoin)=[0;0;0]
elseif ID(1:2,ipoin)==[0;1]
ID(1:3,ipoin)=[0;1;0]
elseif ID(1:2,ipoin)==[1;1]
ID(1:3,ipoin)=[1;1;0]
end

end

Victor Saouma

Structural Analysis
%if size(ID,1)==2
% ID=[ID;zeros(1,size(ID,2))];
%end

% IF GRID, SET ID=ZEROS
if istrtp==4
 ID=ID*0;
end

% SET UP FIGURE
handle=figure;
margin=max(max(x)-min(x),max(y)-min(y))/10;
axis([min(x)-margin, max(x)+margin, min(y)-margin, max(y)+margin])
axis('equal')
hold on

% CALC NUMBER OF NODES, ETC.
number_nodes=length(x);
number_elements=size(lnods,1);
number_fixities=size(ID,2);
axislimits=axis;
circlesize=max(axislimits(2)-axislimits(1),axislimits(4)-axislimits(3))/40;

% DRAW SUPPORTS
for i=1:number_fixities
 % DRAW HORIZ. ROLLER
 if ID(:,i)==[0 1 0]'
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i),cos(0:0.1:pi*2)*circlesize/2+y(i),'r')
 % DRAW PIN SUPPORT
 elseif ID(:,i)==[1 1 0]'
 plot([x(i),x(i)-circlesize,x(i)+circlesize,x(i)],[y(i),y(i)-circlesize,y(i)-circlesize,y(i)],'r')
 % DRAW HORIZ. ROLLER SUPPORT
 elseif ID(:,i)==[0 1 1]'
 plot([x(i)+circlesize*2,x(i)-circlesize*2],y(i),[y(i),y(i)-circlesize,y(i)-circlesize,y(i)],'r')
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i),cos(0:0.1:pi*2)*circlesize/2-circlesize/2+y(i),'r')
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i)+circlesize,cos(0:0.1:pi*2)*circlesize/2-circlesize/2+y(i),'r')
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i)-circlesize,cos(0:0.1:pi*2)*circlesize/2-circlesize/2+y(i),'r')
 % DRAW VERT. ROLLER SUPPORT
 elseif ID(:,i)==[1 0 0]'
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i)-circlesize*.5,cos(0:0.1:pi*2)*circlesize/2+y(i),'r')
 % DRAW ROLLER SUPPORT WITH NO ROTATION
 elseif ID(:,i)==[1 0 1]'
 plot([x(i),x(i)],y(i)+circlesize*[0 1 0],cos(0:0.1:pi*2)*circlesize/2,-circlesize/2+y(i),'r')
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i)-circlesize*.5,cos(0:0.1:pi*2)*circlesize/2+y(i),'r')
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i)-circlesize*.5,cos(0:0.1:pi*2)*circlesize/2+y(i),'r')
 plot(sin(0:0.1:pi*2)*circlesize/2+x(i)-circlesize*.5,cos(0:0.1:pi*2)*circlesize/2+y(i),'r')
 % DRAW HORIZ. PLATFORM
 elseif min(ID(:,i)==[0 1 0]') | min(ID(:,i)==[1 1 0]') | min(ID(:,i)==[0 1 1]')
 plot([x(i)-circlesize*2,x(i)+circlesize*2],y(i)-circlesize*[0 0 0],cos(0:0.1:pi*2)*circlesize/2,y(i),'r')
 plot([x(i)-circlesize*1.5,x(i)-circlesize*2.5],y(i)-circlesize*[0 0 0],cos(0:0.1:pi*2)*circlesize/2,y(i),'r')
 plot([x(i)-circlesize*2,x(i)-circlesize*2],y(i)-circlesize*[0 0 0],cos(0:0.1:pi*2)*circlesize/2,y(i),'r')
 plot([x(i)-circlesize*1.5,x(i)-circlesize*2.5],y(i)-circlesize*[0 0 0],cos(0:0.1:pi*2)*circlesize/2,y(i),'r')
 plot([x(i)-circlesize*2,x(i)+circlesize*2],y(i)-circlesize*[0 0 0],cos(0:0.1:pi*2)*circlesize/2,y(i),'r')
 plot([x(i)-circlesize*1.5,x(i)-circlesize*2.5],y(i)-circlesize*[0 0 0],cos(0:0.1:pi*2)*circlesize/2,y(i),'r')
end

Victor Saouma Structural Analysis
plot([x(i)+circlesize*0,x(i)-circlesize*1], y(i)-circlesize,y(i)-circlesize*2,'r')
plot([x(i)+circlesize*0.5,x(i)-circlesize*(0.5)], y(i)-circlesize,y(i)-circlesize*2,'r')
plot([x(i)+circlesize*1,x(i)-circlesize*0], y(i)-circlesize,y(i)-circlesize*2,'r')
plot([x(i)+circlesize*1.5,x(i)+circlesize*.5], y(i)-circlesize,y(i)-circlesize*2,'r')
plot([x(i)+circlesize*2,x(i)+circlesize*1], y(i)-circlesize,y(i)-circlesize*2,'r')
plot([x(i)+circlesize*2,x(i)+circlesize*1.5], y(i)-circlesize*1.5,y(i)-circlesize*2,'r')

% DRAW FIXED SUPPORT
else if ID(:,i)==[1 1 1]'
 plot([x(i)-circlesize*2,x(i)+circlesize*2], y(i)-circlesize,y(i)-circlesize+circlesize,'r')
 plot([x(i)-circlesize*1.5,x(i)-circlesize*2], y(i)-circlesize,y(i)-circlesize*1.5+circlesize,'r')
 plot([x(i)-circlesize*1,x(i)-circlesize*2], y(i)-circlesize,y(i)-circlesize*2+circlesize,'r')
 plot([x(i)-circlesize*.5,x(i)-circlesize*1.5], y(i)-circlesize,y(i)-circlesize*2+circlesize,'r')
 plot([x(i)+circlesize*0,x(i)-circlesize*1], y(i)-circlesize,y(i)-circlesize*2+circlesize,'r')
 plot([x(i)+circlesize*.5,x(i)-circlesize*(0.5)], y(i)-circlesize,y(i)-circlesize*2+circlesize,'r')
 plot([x(i)+circlesize*1,x(i)+circlesize*0], y(i)-circlesize,y(i)-circlesize*2+circlesize,'r')
 plot([x(i)+circlesize*1.5,x(i)+circlesize*.5], y(i)-circlesize,y(i)-circlesize*2+circlesize,'r')
 plot([x(i)+circlesize*2,x(i)+circlesize*1], y(i)-circlesize,y(i)-circlesize*2+circlesize,'r')
 plot([x(i)+circlesize*2,x(i)+circlesize*1.5], y(i)-circlesize*1.5,y(i)-circlesize*2+circlesize,'r')
end

% DRAW VERT. PLATFORM
elseif min(ID(:,i)==[1 0 0]') | min(ID(:,i)==[1 0 1]')
 xf=[x(i)-circlesize,x(i)-circlesize*2];
 yf=[y(i),y(i)+circlesize];
 plot(xf,yf,'r');
 plot(xf,yf+circlesize*.5,'r');
 plot(xf,yf+circlesize*1,'r');
 plot(xf,yf+circlesize*1.5,'r');
 plot(xf,yf+circlesize*2,'r');
 plot([x(i)-circlesize*1.5,x(i)-circlesize*2], y(i)+circlesize*2,y(i)+circlesize*1.5,'r');
 plot([xf(1),xf(1)], y(i)+circlesize*2,y(i)-circlesize*2,'r');
end

% DRAW ELEMENTS
for i=1:number_elements
 plot([x(lnods(i,1)),x(lnods(i,2))], [y(lnods(i,1)),y(lnods(i,2))],'b');
if i==1
end
end

% DRAW JOINTS
for i=1:number_nodes
 if ~max(ID(:,i))
 plot(x(i),y(i), 'mo')
 end
end

% DRAW ELEMENT NUMBERS
for i=1:number_elements
 set(handle,'DefaultTextColor','blue')
 text(((x(lnods(i,1))+x(lnods(i,2)))/2+circlesize,(y(lnods(i,1))+y(lnods(i,2)))/2+circlesize,int2str(i))
end

% DRAW JOINT NUMBERS
for i=1:number_nodes
 set(handle,'DefaultTextColor','magenta')
 text(x(i)+circlesize,y(i)+circlesize,int2str(i))
end
if exist('filename')
title('filename')
end
```matlab
hold off
set(handle,'DefaultTextColor','white')

elseif drawtype==3

% SET UP FIGURE
handle=figure;
margin=max([max(x)-min(x),max(y)-min(y),max(z)-min(z)])/10;
axis([min(x)-margin, max(x)+margin, min(y)-margin, max(y)+margin, min(z)-margin, max(z)+margin])
axis('equal')
hold on

% RETRIEVE NUMBER OF NODES, ETC.
number_nodes=length(x);
number_elements=size(lnods,1);
axislimits=axis;
circlesize=max([axislimits(2)-axislimits(1),axislimits(4)-axislimits(3),axislimits(6)-axislimits(5)])/40;

% DRAW ELEMENTS
for i=1:number_elements
    plot3([x(lnods(i,1)),x(lnods(i,2))],[y(lnods(i,1)),y(lnods(i,2))],[z(lnods(i,1)),z(lnods(i,2))],'b');
end

% DRAW JOINTS
for i=1:number_nodes
    plot3(x(i),y(i),z(i),'mo')
end

% DRAW ELEMENT NUMBERS
for i=1:number_elements
    set(handle,'DefaultTextColor','blue')
    text((x(lnods(i,1))+x(lnods(i,2)))/2+circlesize,(y(lnods(i,1))+y(lnods(i,2)))/2+circlesize,(z(lnods(i,1))+z(lnods(i,2)))/2+circlesize,int2str(i))
end

% DRAW JOINT NUMBERS
for i=1:number_nodes
    set(handle,'DefaultTextColor','magenta')
text(x(i)+circlesize,y(i)+circlesize,z(i)+circlesize,int2str(i))
end

if exist('filename')
title(filename)
end

xlabel('x')
ylabel('y')
zlabel('z')

% DRAW GROUND
X=x;
Y=y;
Z=z;
X=axislimits(1)-margin:margin:axislimits(2)+margin;
Y=axislimits(3)-margin:margin:axislimits(4)+margin;
Z=zeros(length(X),length(Y));
mesh(X,Y,Z)
```
12.5 Computer Implementation with MATLAB

```matlab
size(X)
size(Y)
size(Z)

hold off
set(handle,'DefaultTextColor','white')

hAZ=uicontrol('style','slider','position',[.7 .95 .3 .05],'units','normalized','min',0,'max',360,...
'callback','[az,el]=view; az=get(gca,'val'); view(az,el);');

hEL=uicontrol('style','slider','position',[.7 .89 .3 .05],'units','normalized','min',0,'max',180,...
'callback','[az,el]=view; el=get(gca,'val'); view(az,el);');

def=uicontrol('style','pushbutton','callback','view(-37.5, 30)','position',[.88 .83 .12 .05],'units','normalized','String','end')

%set(handle,'units','normalized')
%text(.68,.95,'azimuth')
%text(.68,.89,'elevation')

end
end

% END OF DRAW.M SCRIPTFILE

12.5.2.15 Sample Output File

CASAP will display figure 12.15.

![Structure Plotted with CASAP](image)

**Figure 12.15: Structure Plotted with CASAP**

- Number of Nodes: 3
- Number of Elements: 2
- Number of Load Cases: 1
- Number of Restrained dofs: 6
- Number of Free dofs: 3

**Node Info:**
- Node 1 (0,0)
  - Free dofs: none; node is fixed
- Node 2 (7416,3000)
  - Free dofs: XY Rot
- Node 3 (15416,3000)
  - Free dofs: none; node is fixed

**Element Info:**
- Element 1 (1->2) E=200 A=6000 Iz=200000000
- Element 2 (2->3) E=200 A=6000 Iz=200000000
Load Case: 1

Nodal Loads:
Node: 2 Fx = 1.875000e+001
Node: 2 Fy = -4.635000e+001

Elemental Loads:
Element: 1 Point load = 0 at 0 from left
Distributed load = 0
Element: 2 Point load = 0 at 0 from left
Distributed load = 4.000000e-003

Displacements:
(Node: 2 delta X) 9.949820e-001
(Node: 2 delta Y) -4.981310e+000
(Node: 2 rotate) -5.342485e-004

Reactions:
(Node: 1 Fx) 1.304973e+002
(Node: 1 Fy) 5.567659e+001
(Node: 1 M) 1.337416e+004
(Node: 3 Fx) -1.492473e+002
(Node: 3 Fy) 2.267341e+001
(Node: 3 M) -4.535573e+004

Internal Forces:
Element: 1
At Node: 1
(Global : Fx ) 1.304973e+002 (Local : Fx ) 1.418530e+002
(Global : Fy ) 5.567659e+001 (Local : Fy ) 2.675775e+000
(Global : M ) 1.337416e+004 (Local : M ) 1.337416e+004
At Node: 2
(Global : Fx ) -1.304973e+002 (Local : Fx ) -1.418530e+002
(Global : Fy ) -5.567659e+001 (Local : Fy ) -2.675775e+000
(Global : M ) 8.031549e+003 (Local : M ) 8.031549e+003

Element: 2
At Node: 2
(Global : Fx ) 1.492473e+002 (Local : Fx ) 1.492473e+002
(Global : Fy ) 9.326590e+000 (Local : Fy ) 9.326590e+000
(Global : M ) -8.031549e+003 (Local : M ) -8.031549e+003
At Node: 3
(Global : Fx ) -1.492473e+002 (Local : Fx ) -1.492473e+002
(Global : Fy ) 2.267341e+001 (Local : Fy ) 2.267341e+001
(Global : M ) -4.535573e+004 (Local : M ) -4.535573e+004
An influence line is a diagram whose ordinates are the values of some function of the structure (reaction, shear, moment, etc.) as a unit load moves across the structure.

The shape of the influence line for a function (moment, shear, reaction, etc.) can be obtained by removing the resistance of the structure to that function, at the section where the influence line is desired, and applying an internal force associated with that function at the section so as to produce a unit deformation at the section. The deformed shape that the structure will take represents the shape of the influence line.
Chapter 14

COLUMN STABILITY

14.1 Introduction; Discrete Rigid Bars

14.1.1 Single Bar System

Let us begin by considering a rigid bar connected to the support by a spring and axially loaded at the other end, Fig. 14.1. Taking moments about point A:

\[ \Sigma M_A = P \Delta - k \theta = 0 \]  (14.1-a)

\[ \Delta = L \theta \text{ for small rotation} \]  (14.1-b)

\[ P \theta L - k \theta = 0 \]  (14.1-c)

\[ (P - \frac{k}{L}) = 0 \]  (14.1-d)

hence we have three possibilities:

**Stable Equilibrium:** for \( P < k/L \), \( \theta = 0 \)

**Neutral Equilibrium:** for \( P = k/L \), and \( \theta \) can take any value
Unstable equilibrium: for \( P > k/L, \theta = 0 \)

Thus we introduce a critical load defined by

\[
P_{cr} = \frac{k}{L}
\]  

(14.2)

For large rotation, we would have

\[
\Sigma M_A = P\Delta - k\theta = 0 \tag{14.3-a}
\]

\[
\Delta = L\sin(\theta)P\theta L - k\theta = 0 \tag{14.3-b}
\]

\[
P_{cr} = \frac{k}{L}\frac{\theta \sin(\theta)}{\theta} \tag{14.3-c}
\]

Because there is more than one possible path (\( \theta \)) when \( P = P_{cr} \), we call this point a bifurcation point.

If we now assume that there is an initial imperfection in the column, i.e. the column is initially “crooked”, Fig. 14.2, then

\[
\Sigma M_A = PL\theta - k(\theta - \theta_0) = 0 \tag{14.4-a}
\]

\[
P_{cr} = \frac{k}{L}(1 - \frac{\theta_0}{\theta}) \tag{14.4-b}
\]

![Figure 14.2: Stability of a Rigid Bar with Initial Imperfection](image)

### 14.1.2 Two Bars System

Next we consider the two rigid bar problem illustrated in Fig. 14.3.

\[
\Sigma M_B = PL\theta_2 - k(\theta_2 - \theta_1) = 0 \tag{14.5-a}
\]

\[
\Rightarrow -\theta_1 + \theta_2 = \frac{PL}{k}\theta_2 \tag{14.5-b}
\]

\[
\Sigma M_A = PL\theta_1 + k(\theta_2 - \theta_1) - k\theta_1 = 0 \tag{14.5-c}
\]

\[
\Rightarrow 2\theta_1 - \theta_2 = \frac{PL}{k}\theta_1 \tag{14.5-d}
\]
Those two equations can be cast in matrix form

\[
\begin{bmatrix}
2 & -1 \\
-1 & 1
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}
= \lambda
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}
\] (14.6)

where \( \lambda = PL/k \), this is an \textit{eigenvalue} formulation and can be rewritten as

\[
\begin{bmatrix}
2 - \lambda & -1 \\
-1 & 1 - \lambda
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}
= \lambda
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\] (14.7)

This is a homogeneous system of equation, and it can have a non-zero solution only if its determinant is equal to zero

\[
\left| \begin{array}{cc}
2 - \lambda & -1 \\
-1 & 1 - \lambda
\end{array} \right| = 0 
\] (14.8-a)

\[
2 - \lambda - 2\lambda + \lambda^2 - 1 = 0 
\] (14.8-b)

\[
\lambda^2 - 3\lambda + 1 = 0 
\] (14.8-c)

\[
\lambda_{1,2} = \frac{3 \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2} 
\] (14.8-d)

Hence we now have two critical loads:

\[
P_{cr_1} = \frac{3 - \sqrt{5}}{2} \frac{k}{L} = 0.382 \frac{k}{L} 
\] (14.9)

\[
P_{cr_2} = \frac{3 + \sqrt{5}}{2} \frac{k}{L} = 2.618 \frac{k}{L} 
\] (14.10)

We now seek to determine the deformed shape for each of the first critical loads. It should be noted that since the column will be failing at the critical buckling load, we cannot determine the absolute values of the deformations, but rather the shape of the buckling column.

\[
\lambda_1 = \frac{3 - \sqrt{5}}{2} 
\] (14.11-a)

\[
\begin{bmatrix}
2 - \frac{3 - \sqrt{5}}{2} & -1 \\
-1 & 1 - \frac{3 - \sqrt{5}}{2}
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix} 
\] (14.11-b)
we now arbitrarily set $\theta_1 = 1$, then $\theta_2 = 1/0.618 = 1.618$, thus the first eigenmode is

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1.618 \end{bmatrix} \quad (14.12)$$

Note that we can determine the deformed shape upon buckling but not the geometry.

Finally, we examine the second mode shape loads

$$\lambda_2 = \frac{3 + \sqrt{5}}{2} \quad (14.13-a)$$

$$\begin{bmatrix} 2 - \frac{3 + \sqrt{5}}{2} & -1 \\ -1 & 1 - \frac{3 + \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad (14.13-b)$$

$$\begin{bmatrix} 1 - \frac{3 + \sqrt{5}}{2} & -1 \\ -1 & 1 - \frac{3 + \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad (14.13-c)$$

$$\begin{bmatrix} -0.618 & -1 \\ -1 & -1.618 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad (14.13-d)$$

we now arbitrarily set $\theta_1 = 1$, then $\theta_2 = -1/1.618 = -0.618$, thus the second eigenmode is

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.618 \end{bmatrix} \quad (14.14)$$

14.1.3 ‡Analogy with Free Vibration

The problem just considered bears great resemblance with the vibration of a two degree of freedom mass spring system, Fig. 14.4.

![Figure 14.4: Two DOF Dynamic System](image)

Each mass is subjected to an inertial force equals to the mass times the acceleration, and the spring force:

$$2m\ddot{u}_2 + ku_2 + k(u_2 - u_1) = 0 \quad (14.15-a)$$
14.2 Continuous Linear Elastic Systems

\[ m \ddot{u}_1 + k u_1 + k 9 u_2 - u_10 = 0 \]  \hspace{1cm} (14.15-b)

or in matrix form
\[
\begin{bmatrix}
  m & 0 \\
  0 & 2m \\
\end{bmatrix}
\begin{bmatrix}
  \ddot{u}_1 \\
  \ddot{u}_2 \\
\end{bmatrix}
+ \begin{bmatrix}
  2k & -k \\
  -k & 2k \\
\end{bmatrix}
\begin{bmatrix}
  u_1 \\
  u_2 \\
\end{bmatrix}
= 0
\]  \hspace{1cm} (14.16)

The characteristic equation is \(|K - \lambda M|\) where \(\lambda = \omega^2\), and \(\omega\) is the natural frequency.

\[
\begin{vmatrix}
  2h - \lambda & -h \\
  -h & 2h - 2\lambda \\
\end{vmatrix} = 0
\]  \hspace{1cm} (14.17)

where \(h = k/m\). This reduces to the polynomial

\[ \lambda^2 - 3h\lambda + \frac{3}{2}h^2 = 0 \]  \hspace{1cm} (14.18)

Solving,
\[ \lambda = \frac{3 \pm \sqrt{3}}{2} h \]

or

\[ \omega_1 = 0.796 \sqrt{k/m} \]  \hspace{1cm} (14.19-a)

\[ \omega_1 = 1.538 \sqrt{k/m} \]  \hspace{1cm} (14.19-b)

To find the mode shapes \(\phi_1\) and \(\phi_2\) (relative magnitudes of the DOF) we substitute in the characteristic equation and set the first element equal to 1:

\[ \phi_1 = \begin{bmatrix} 1.000 \\ 1.3660 \end{bmatrix} \]  \hspace{1cm} and \hspace{1cm} \[ \phi_1 = \begin{bmatrix} -0.3660 \\ 1.000 \end{bmatrix} \]  \hspace{1cm} (14.20)

14.2 Continuous Linear Elastic Systems

Column buckling theory originated with Leonhard Euler in 1744.

An initially straight member is concentrically loaded, and all fibers remain elastic until buckling occur.

For buckling to occur, it must be assumed that the column is slightly bent as shown in Fig. 14.5. Note, in reality no column is either perfectly straight, and in all cases a minor imperfection is present.

![Figure 14.5: Euler Column](image)

Two sets of solutions will be presented, in both cases the equation of equilibrium is written for the deformed element.
14.2.1 Lower Order Differential Equation

At any location $x$ along the column, the imperfection in the column compounded by the concentric load $P$, gives rise to a moment

$$M_z = P v \quad (14.21)$$

Note that the value of $y$ is irrelevant.

Recalling that

$$\frac{d^2 v}{dx^2} = \frac{M_z}{EI} \quad (14.22)$$

upon substitution, we obtain the following differential equation

$$\frac{d^2 v}{dx^2} - \frac{P}{EI} v = 0 \quad (14.23)$$

Letting $k^2 = \frac{P}{EI}$, the solution to this second-order linear differential equation is

$$v = -A \sin kx - B \cos kx \quad (14.24)$$

The two constants are determined by applying the boundary conditions

1. $v = 0$ at $x = 0$, thus $B = 0$
2. $v = 0$ at $x = L$, thus

$$A \sin kL = 0 \quad (14.25)$$

This last equation can be satisfied if: 1) $A = 0$, that is there is no deflection; 2) $kL = 0$, that is no applied load; or 3)

$$kL = n\pi \quad (14.26)$$

Thus buckling will occur if $\frac{P_{cr}}{EI} = \left(\frac{n\pi}{L}\right)^2$ or

$$P_{cr} = \frac{n^2 \pi^2 EI}{L^2} \quad (14.27)$$

The fundamental buckling mode, i.e. a single curvature deflection, will occur for $n = 1$; Thus Euler critical load for a pinned column is

$$P_{cr} = \frac{\pi^2 EI}{L^2} \quad (14.28)$$

The corresponding critical stress is

$$\sigma_{cr} = \frac{\pi^2 E}{\left(\frac{L}{r_{min}}\right)^2} \quad (14.29)$$

where $I = Ar_{min}^2$.

Note that buckling will take place with respect to the weakest of the two axis.

14.2.2 Higher Order Differential Equation

14.2.2.1 Derivation

In the preceding approach, the buckling loads were obtained for a column with specified boundary conditions. A second order differential equation, valid specifically for the member being analyzed was used.
In the next approach, we derive a single fourth order equation which will be applicable to any column regardless of the boundary conditions.

Considering a beam-column subjected to axial and shear forces as well as a moment, Fig. 14.6 (note analogy with cable structure, Fig. 4.1), taking the moment about \( i \) for the beam segment and assuming

\[
M - \left( M + \frac{dM}{dx} \right) + \frac{w}{2} (dx)^2 + \left( V + \frac{dV}{dx} \right) - P \left( \frac{dv}{dx} \right) dx = 0
\]

Note that the first underbraced term is identical to the one used in earlier derivation of the beam’s differential equation.

Neglecting the terms in \( dx^2 \) which are small, and then differentiating each term with respect to \( x \), we obtain

\[
\frac{d^2M}{dx^2} - \frac{dV}{dx} - P \frac{d^2v}{dx^2} = 0
\]

However, considering equilibrium in the \( y \) direction gives

\[
\frac{dV}{dx} = -w
\]

From beam theory, neglecting axial and shear deformations, we have

\[
M = -EI \frac{d^2v}{dx^2}
\]

Substituting Eq. 14.31 and 14.32 into 14.30, and assuming a beam of uniform cross section, we obtain

\[
EI \frac{d^4v}{dx^4} - P \frac{d^2v}{dx^2} = w
\]
substituting \( \lambda = \sqrt{\frac{P}{EI}} \), and \( w = 0 \) we finally obtain

\[
\frac{d^4v}{dx^4} + \lambda^2 \frac{d^2v}{dx^2} = 0
\]  

(14.34)

Again, we note that by considering equilibrium in the deformed state we have introduced the second term to what would otherwise be the governing differential equation for flexural members (beams). Finally, we note the analogy between this equation, and the governing differential equation for a cable structure, Eq. 4.12.

The general solution of this fourth order differential equation to any set of boundary conditions is

\[
v = C_1 + C_2 x + C_3 \sin \lambda x + C_4 \cos \lambda x
\]  

(14.35)

The constants \( C's \) are obtained from the boundary conditions. For columns, those are shown in Table ?? The essential boundary conditions are associated with displacement, and slope, the natural ones with shear and moments (through their respective relationships with the displacement).

<table>
<thead>
<tr>
<th>Essential (Dirichlet)</th>
<th>Natural (Neumann)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( v )</td>
<td>( \frac{d^3v}{dx^3} ) (( V ))</td>
</tr>
<tr>
<td>( \frac{dv}{dx} )</td>
<td>( \frac{d^2v}{dx^2} ) (( M ))</td>
</tr>
</tbody>
</table>

Table 14.1: Essential and Natural Boundary Conditions for Columns

We note that at each node, we should have two boundary conditions, all combinations are possible except pairs from the same row (i.e. we can not have known displacement and shear, or known slope and moment).

### 14.2.2.2 Hinged-Hinged Column

If we consider again the stability of a hinged-hinged column, the boundary conditions are displacement (\( v \)) and moment (\( \frac{d^2v}{dx^2} EI \)) equal to zero at both ends\(^1\), or

\[
v = 0, \quad \frac{d^2v}{dx^2} = 0 \quad \text{at} \quad x = 0
\]
\[
v = 0, \quad \frac{d^2v}{dx^2} = 0 \quad \text{at} \quad x = L
\]  

(14.36)

substitution of the two conditions at \( x = 0 \) leads to \( C_1 = C_4 = 0 \). From the remaining conditions, we obtain

\[
C_3 \sin \lambda L + C_2 L = 0
\]  

(14.37-a)

\[
-C_3 k^2 \sin \lambda L = 0
\]  

(14.37-b)

these relations are satisfied either if \( C_2 = C_3 = 0 \) or if \( \sin \lambda L = C_2 = 0 \). The first alternative leads to the trivial solution of equilibrium at all loads, and the second to \( \lambda L = n\pi \) for \( n = 1, 2, 3 \cdots \). The critical load is

\[
P_{cr} = n^2 \pi^2 EI \frac{L^2}{L^2}
\]  

(14.38)

which was derived earlier using the lower order differential equation.

\(^1\)It will be shown in subsequent courses, that the former BC is an essential B.C., and the later a natural B.C.
The shape of the buckled column is
\[ y = C_3 \sin \frac{n\pi x}{L} \]  
(14.39)
and only the shape (but not the geometry) can be determined. In general, we will assume \( C_3 = 1 \) and plot \( y \).

### 14.2.2.3 Fixed-Fixed Column

We now consider a column which is restrained against rotation at both ends, the boundary conditions are given by:

\[
\begin{align*}
v(0) &= 0 = C_1 + C_4 \\
v'(0) &= 0 = C_2 + C_3 \lambda \\
v(L) &= 0 = C_1 + C_2 L + C_3 \sin \lambda L + C_4 \cos \lambda L \\
v'(L) &= 0 = C_2 + C_3 \lambda \cos(\lambda L) - C_4 \sin(\lambda L)
\end{align*}
\]

those equations can be set in matrix form

\[
\begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 1 & \lambda & 0 \\
1 & L & \sin \lambda L & \cos \lambda L \\
0 & 1 & \lambda \cos \lambda L & -\lambda \sin \lambda L \\
1 & 0 & 0 & 1 \\
1 & 1 & \lambda & 0 \\
1 & L & \sin \lambda L & \cos \lambda L \\
0 & 1 & \lambda \cos \lambda L & -\lambda \sin \lambda L
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]
(14.41-a)

The determinant is obtained from

\[
\begin{vmatrix}
1 & \lambda & 0 \\
L & \sin \lambda L & \cos \lambda L \\
1 & \lambda \cos \lambda L & -\lambda \sin \lambda L \\
\sin \lambda L & \cos \lambda L \\
\lambda \cos \lambda L & -\lambda \sin \lambda L \\
\end{vmatrix}
= 0
\]
(14.42-a)

\[
\begin{vmatrix}
1 & \lambda & 0 \\
L & \sin \lambda L & \cos \lambda L \\
1 & \lambda \cos \lambda L & -\lambda \sin \lambda L \\
\sin \lambda L & \cos \lambda L \\
\lambda \cos \lambda L & -\lambda \sin \lambda L \\
\end{vmatrix}
= 0
\]
(14.42-b)

\[
-2\lambda + \lambda^2 L \sin \lambda L + 2\lambda \cos \lambda L = 0
\]
(14.42-c)

The first solution, \( \lambda = 0 \) is a trivial one, and the next one

\[
\begin{align*}
\lambda L \sin \lambda L + 2 \cos \lambda L - 2 &= 0 \\
\lambda L \sin \lambda L &= 2(1 - \cos \lambda L)
\end{align*}
\]
(14.43-a) (14.43-b)

The solution to this transcendental equation is

\[
\begin{align*}
\lambda L &= 2n\pi \\
\sqrt{\frac{P}{EI}} &= \frac{2n\pi}{L}
\end{align*}
\]
(14.44-a) (14.44-b)

thus the critical load and stresses are given by

\[
\begin{align*}
P_{cr} &= \frac{4n^2\pi^2 EI}{L^2} \\
\sigma_{cr} &= \frac{4n^2\pi^2 E}{(L/r)^2}
\end{align*}
\]
(14.45) (14.46)

The deflected shape (or eigenmodes) can be obtained by substituting the value of \( \lambda \) into the \( c' \)s.
14.2.2.4 Fixed-Hinged Column

Next we consider a column with one end fixed (at $x = L$), and one end hinged (at $x = 0$). The boundary conditions are

\[ \begin{aligned}
  v &= 0, \quad \frac{d^2v}{dx^2} = 0 \quad \text{at} \quad x = 0 \\
  v &= 0, \quad \frac{dv}{dx} = 0 \quad \text{at} \quad x = L
\end{aligned} \]  

(14.47)

The first two B.C. yield $C_1 = C_4 = 0$, and the other two

\[ \sin \lambda L - \lambda L \cos \lambda L = 0 \]  

(14.48)

But since $\cos \lambda L$ can not possibly be equal to zero, the preceding equation can be reduced to

\[ \tan \lambda L = \lambda L \]  

(14.49)

which is a transcendental algebraic equation and can only be solved numerically. We are essentially looking at the intersection of $y = x$ and $y = \tan x$, Fig. 14.7 and the smallest positive root is $\lambda L = 4.4934$.

Figure 14.7: Solution of the Transcendental Equation for the Buckling Load of a Fixed-Hinged Column

since $k^2 = \frac{P}{EI}$, the smallest critical load is

\[ P_{cr} = \frac{(4.4934)^2}{L^2}EI = \frac{\pi^2}{(0.699L)^2}EI \]  

(14.50)

Note that if we were to solve for $x$ such that $v_{,xx} = 0$ (i.e. an inflection point), then $x = 0.699L$.

14.2.3 Effective Length Factors $K$

Recall that the Euler buckling load was derived for a pinned column. In many cases, a column will have different boundary conditions. It can be shown that in all cases, the buckling load would be given by

\[ P_{cr} = \frac{\pi^2 EI}{(KL)^2} \]  

(14.51)
where \( K \) is called effective length factor, and \( KL \) is the effective length. and

\[
\sigma_{cr} = \frac{\pi^2 E}{(KL)^2}
\]  

(14.52)

The ratio \( \frac{KL}{r_{min}} \) is termed the slenderness ratio. Note that \( r_{min} \) should be the smallest radius of gyration in the unbraced direction(s).

The effective length, can only be determined by numerical or approximate methods, and is the distance between two adjacent (real or virtual) inflection points, Fig. 14.8, 14.9

\[ KL < L \]

(a) End rotations unrestrained

(b) End rotations fully restrained

(c) One end restrained, other unrestrained

(d) Partially restrained at each end

Figure 14.8: Column Effective Lengths

The most widely used charts for the effective length determination are those produced by the Structural Stability Research Council. The alignment chart, for an individual column, Fig. 14.10 is shown in Fig. 14.11. It should be noted that this chart assumes that all members are still in the elastic range.

The use of the alignment chart involves computing \( G \) at each end of the column using the following formula

\[
G_a = \frac{\sum l_i}{\sum l_i}
\]  

(14.53)

where \( G_a \) is the stiffness at end \( a \) of the column, \( I_c, I_g \) are the moment of inertias of the columns and girders respectively. The summation must include only those members which are rigidly connected to that joint and lying in the plane for which buckling is being considered.

Hence, once \( G_a \) and \( G_b \) are determined, those values are connected by a straight line in the appropriate chart, and \( k \) is the point of intersection of that line with the middle axis.

Alternatively :-)

\[
\frac{G_A G_B}{4} \left( \frac{\pi}{K} \right)^2 + \left( \frac{G_A + G_B}{2} \right) \left( 1 - \frac{\pi / K}{\tan \pi / K} \right) + 2 \tan \frac{\pi / 2K}{K} = 1
\]  

(Ref. McGuire P. 467).
Figure 14.9: Frame Effective Lengths

Figure 14.10: Column Effective Length in a Frame
### Sidesway Inhibited

<table>
<thead>
<tr>
<th>$G_a$</th>
<th>$K$</th>
<th>$G_b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>1.0</td>
<td>∞</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>5.</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>3.</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>1.</td>
</tr>
<tr>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.</td>
<td>0.5</td>
<td>0.</td>
</tr>
</tbody>
</table>

### Sidesway Uninhibited

<table>
<thead>
<tr>
<th>$G_a$</th>
<th>$K$</th>
<th>$G_b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>100.</td>
<td>10.</td>
<td>100.</td>
</tr>
<tr>
<td>50.</td>
<td>5.</td>
<td>50.</td>
</tr>
<tr>
<td>30.</td>
<td>4.</td>
<td>30.</td>
</tr>
<tr>
<td>20.</td>
<td>3.</td>
<td>20.</td>
</tr>
<tr>
<td>10.</td>
<td>5.</td>
<td>10.</td>
</tr>
<tr>
<td>9.</td>
<td>6.</td>
<td>9.</td>
</tr>
<tr>
<td>8.</td>
<td>5.</td>
<td>8.</td>
</tr>
<tr>
<td>7.</td>
<td>4.</td>
<td>7.</td>
</tr>
<tr>
<td>6.</td>
<td>4.</td>
<td>6.</td>
</tr>
<tr>
<td>5.</td>
<td>3.</td>
<td>5.</td>
</tr>
<tr>
<td>4.</td>
<td>2.</td>
<td>4.</td>
</tr>
<tr>
<td>3.</td>
<td>2.</td>
<td>3.</td>
</tr>
<tr>
<td>2.</td>
<td>1.5</td>
<td>2.</td>
</tr>
<tr>
<td>1.</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>0.</td>
<td>0.5</td>
<td>0.</td>
</tr>
</tbody>
</table>

Figure 14.11: Standard Alignment Chart (AISC)
14.3 Inelastic Columns

There are two limiting loads for a column

1. Yielding of the gross section $P_{cr} = F_y A_g$, which occurs in short stiff columns

2. Elastic (Euler) buckling, Eq. 14.51 $P_{cr} = \frac{\pi^2 E I}{(k L)^2}$, in long slender columns.

Those two expression are asymptotic values for actual column buckling. Intermediary failure loads are caused by the presence of residual stresses which in turn give rise to inelastic buckling.

Inelastic buckling occurs when the stresses (average) have not yet reached the yield stress, and is based on the tangent modulus $E_t$ which is lower than the initial modulus $E$.

Residual stresses (caused by uneven cooling) will initiate inelastic buckling, Fig. 14.12.

The inelastic buckling curve has to be asymptotic to both the Euler elastic buckling (for slender columns), and to the yield stress (for stiff columns).

The Structural Stability Research Council (SSRC) has proposed a parabolic curve which provides a transition between elastic buckling and yielding, thus accounting for the presence of residual stresses and the resulting inelastic buckling, Fig. 14.13.

\[
\sigma_{cr} = \sigma_y \left[ 1 - \frac{\sigma_y}{4\pi^2 E \left( \frac{KL}{r_{min}} \right)^2} \right]
\]

($14.55$)
14.3 Inelastic Columns

Figure 14.13: Euler Buckling, and SSRC Column Curve

$F_y = 36$ ksi; $E = 29,000$ ksi

Stress $\sigma$ [ksi]

Slenderness Ratio $KL/r_{min}$

Victor Saouma Structural Analysis
Bibliography


