28 Stress Recovery #### **Stress Recovery** **Processing phase has solved for node displacements from** the (modified) master stiffness equations K u = f Postprocessing phase now starts to get derived quantities. Among them are internal forces and stresses. The process of computing stresses from node displacements is called *stress recovery*. #### **General Comments** Stresses recovered from low order elements (e.g. 3-node triangles and 4-node quads) often display large *interelement jumps*. In-plane bending situations are particularly troublesome Jumps can be eliminated by *interelement averaging at nodes* This usually improves the stress quality at interior nodes, but may not be effective at boundary nodes. Stress recovery over quadrilateral elements can be improved by *extrapolation from Gauss sample points* ## The Berkeley Cantilever ### **Gauss Elements** **Table 29.1** Natural Coordinates of Bilinear Quadrilateral Nodes | Corner node | ξ | η | ξ' | η' | Gauss
node | ξ | η | ξ' | η' | |------------------|----------|------------|---|------------------------|----------------------|----------------------------|--|----------|----------| | 1
2
3
4 | +1
+1 | $-1 \\ +1$ | $ \begin{array}{r} -\sqrt{3} \\ +\sqrt{3} \\ +\sqrt{3} \\ -\sqrt{3} \end{array} $ | $-\sqrt{3} + \sqrt{3}$ | 1'
2'
3'
4' | $+1/\sqrt{3} + 1/\sqrt{3}$ | $-1/\sqrt{3}$
$-1/\sqrt{3}$
$+1/\sqrt{3}$
$+1/\sqrt{3}$ | +1
+1 | -1
+1 | Gauss nodes, and coordinates ξ' and η' are defined in §29.4 and Fig. 29.1 #### **Extrapolation to the Corner Points** Shape functions of "Gauss element" $$\begin{split} N_1^{(e')} &= \frac{1}{4} (1 - \xi') (1 - \eta'), \\ N_2^{(e')} &= \frac{1}{4} (1 + \xi') (1 - \eta'), \\ N_3^{(e')} &= \frac{1}{4} (1 + \xi') (1 + \eta'), \\ N_4^{(e')} &= \frac{1}{4} (1 - \xi') (1 + \eta'). \end{split}$$ To extrapolate, replace the ξ' and η' corner coordinates of the actual element: $$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} 1 + \frac{1}{2}\sqrt{3} & -\frac{1}{2} & 1 - \frac{1}{2}\sqrt{3} & -\frac{1}{2} \\ -\frac{1}{2} & 1 + \frac{1}{2}\sqrt{3} & -\frac{1}{2} & 1 - \frac{1}{2}\sqrt{3} \\ 1 - \frac{1}{2}\sqrt{3} & -\frac{1}{2} & 1 + \frac{1}{2}\sqrt{3} & -\frac{1}{2} \\ -\frac{1}{2} & 1 - \frac{1}{2}\sqrt{3} & -\frac{1}{2} & 1 + \frac{1}{2}\sqrt{3} \end{bmatrix} \begin{bmatrix} w_1' \\ w_2' \\ w_3' \\ w_4' \end{bmatrix}$$ # Other "Gauss Element" Configurations