Stress Recovery

Processing phase has solved for node displacements from the (modified) master stiffness equations

$$
\mathbf{K u}=\mathbf{f}
$$

Postprocessing phase now starts to get derived quantities. Among them are internal forces and stresses.

The process of computing stresses from node displacements is called stress recovery.

General Comments

Stresses recovered from low order elements (e.g. 3-node triangles and 4-node quads) often display large interelement jumps.

In-plane bending situations are particularly troublesome
Jumps can be eliminated by interelement averaging at nodes This usually improves the stress quality at interior nodes, but may not be effective at boundary nodes.

Stress recovery over quadrilateral elements can be improved by extrapolation from Gauss sample points

Nodal Stress Averaging

Gauss Elements

Table 29.1 Natural Coordinates of Bilinear Quadrilateral Nodes

Corner node	ξ	η	ξ^{\prime}	η^{\prime}	Gauss node	ξ	η	ξ^{\prime}	η^{\prime}
1	-1	-1	$-\sqrt{3}$	$-\sqrt{3}$	1^{\prime}	$-1 / \sqrt{3}$	$-1 / \sqrt{3}$	-1	-1
2	+1	-1	$+\sqrt{3}$	$-\sqrt{3}$	2^{\prime}	$+1 / \sqrt{3}$	$-1 / \sqrt{3}$	+1	-1
3	+1	+1	$+\sqrt{3}$	$+\sqrt{3}$	3^{\prime}	$+1 / \sqrt{3}$	$+1 / \sqrt{3}$	+1	+1
4	-1	+1	$-\sqrt{3}$	$+\sqrt{3}$	4^{\prime}	$-1 / \sqrt{3}$	$+1 / \sqrt{3}$	-1	+1

Gauss nodes, and coordinates ξ^{\prime} and η^{\prime} are defined in $\S 29.4$ and Fig. 29.1

Extrapolation to the Corner Points

Shape functions of "Gauss element"

$$
\begin{aligned}
& N_{1}^{\left(e^{\prime}\right)}=\frac{1}{4}\left(1-\xi^{\prime}\right)\left(1-\eta^{\prime}\right) \\
& N_{2}^{\left(e^{\prime}\right)}=\frac{1}{4}\left(1+\xi^{\prime}\right)\left(1-\eta^{\prime}\right) \\
& N_{3}^{\left(e^{\prime}\right)}=\frac{1}{4}\left(1+\xi^{\prime}\right)\left(1+\eta^{\prime}\right) \\
& N_{4}^{\left(e^{\prime}\right)}=\frac{1}{4}\left(1-\xi^{\prime}\right)\left(1+\eta^{\prime}\right)
\end{aligned}
$$

To extrapolate, replace the ξ^{\prime} and η^{\prime} corner coordinates of the actual element:
$\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3} \\ w_{4}\end{array}\right]=\left[\begin{array}{cccc}1+\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1-\frac{1}{2} \sqrt{3} & -\frac{1}{2} \\ -\frac{1}{2} & 1+\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1-\frac{1}{2} \sqrt{3} \\ 1-\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1+\frac{1}{2} \sqrt{3} & -\frac{1}{2} \\ -\frac{1}{2} & 1-\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1+\frac{1}{2} \sqrt{3}\end{array}\right]\left[\begin{array}{l}w_{1}^{\prime} \\ w_{2}^{\prime} \\ w_{3}^{\prime} \\ w_{4}^{\prime}\end{array}\right]$

Other 'Gauss Element" Configurations

