19

FEM Convergence Requirements

Convergence Requirements for Finite Element Discretization

Convergence: discrete (FEM) solution approaches the analytical (math model) solution in some sense

Convergence = Consistency + Stability

(Lax-Wendroff)

Further Breakdown of Convergence Requirements

Consistency

Completeness individual elements

Compatibility *element patches*

Stability

Rank Sufficiency individual elements

Positive Jacobian individual elements

The Variational Index m

Bar

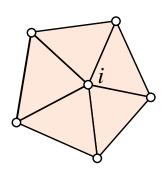
$$\Pi[u] = \int_0^L \left(\frac{1}{2} u' E A u' - q u\right) dx \qquad m = 1$$

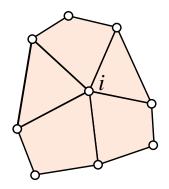
Beam

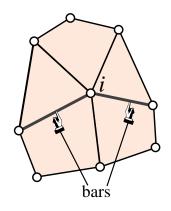
$$\Pi[v] = \int_0^L \left(\frac{1}{2} v'' E I v'' - q v\right) dx \qquad m = 2$$

Element Patches

A *patch* is the set of all elements attached to a given node:







A finite element *patch trial function* is the union of shape functions activated by setting a degree of freedom at that node to unity, while all other freedoms are zero. A patch trial function "propagates" only over the patch, and is zero beyond it.

Completeness & Compatibility in Terms of *m*

Completeness

The *element shape functions* must represent exactly all polynomial terms of order $\leq m$ in the Cartesian coordinates. A set of shape functions that satisfies this condition is call m-complete

Compatibility

The *patch trial functions* must be $C^{(m-1)}$ continuous between elements, and C^m piecewise differentiable inside each element

Plane Stress: m = 1 in **Two Dimensions**

Completeness

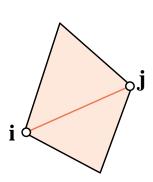
The *element shape functions* must represent exactly all polynomial terms of order ≤ 1 in the Cartesian coordinates. That means any *linear polynomial* in x, y with a *constant* as special case

Compatibility

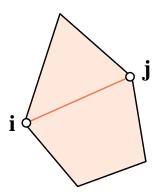
The *patch trial functions* must be C^0 continuous between elements, and C^1 piecewise differentiable inside each element

Interelement Continuity is the Toughest to Meet

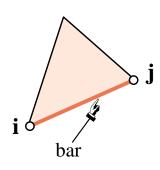
Simplification: for *matching meshes* (defined in Notes) it is sufficient to check a *pair of adjacent elements*:



Two 3-node linear triangles



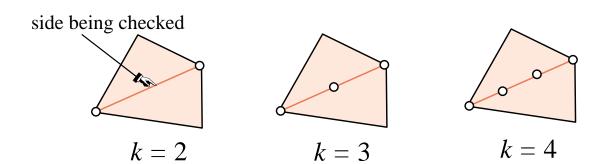
One 3-node linear triangle and one 4-node bilinear quad



One 3-node linear triangle and one 2-node bar

Side Continuity Check for Plane Stress Elements with Polynomial Shape Functions in Natural Coordinates

Let k be the number of nodes on a side:



The variation of each element shape function along the side must be of polynomial order k-1 If *more*, *continuity is violated* If *less*, *nodal configuration is wrong* (too many nodes)

Stability

Rank Sufficiency

The discrete model must possess the same solution uniqueness attributes of the mathematical model For displacement finite elements:

the rigid body modes (RBMs) must be preserved no zero-energy modes other than RBMs

Can be tested by the rank of the stiffness matrix

Positive Jacobian Determinant

The determinant of the Jacobian matrix that relates Cartesian and natural coordinates must be everywhere *positive* within the element

Rank Sufficiency

The element stiffness matrix must not possess any zero-energy kinematic modes other than rigid body modes

This can be checked by verifing that the element stiffness matrix has the *proper rank*

A stiffness matrix that has proper rank is called rank sufficient

Rank Sufficiency for Numerically Integrated Finite Elements

General case

rank deficiency
$$d = (n_F - n_R) - r$$

rank of
$$\mathbf{K}$$
 $r = \min(n_F - n_R, n_E n_G)$

Plane Stress, n nodes

$$n_F = 2n$$
 $n_R = 3$ $n_E = 3$

Rank Sufficiency for Some Plane Stress iso-P Elements

Element	n	n_F	$n_F - 3$	$\operatorname{Min} n_G$	Recommended rule
3-node triangle	3	6	3	1	centroid*
6-node triangle	6	12	9	3	3-midpoint rule*
10-node triangle	10	20	17	6	7-point rule*
4-node quadrilateral	4	8	5	2	2 x 2
8-node quadrilateral	8	16	13	5	3 x 3
9-node quadrilateral	9	18	15	5	3 x 3
16-node quadrilateral	16	32	29	10	4 x 4

^{*} Gauss rules for triangles are introduced in Chapter 24.

Positive Jacobian Requirement

Displacing a Corner Node of 4-Node Quad

