Shape Function Magic

'Magic' Means Direct

Do in 15 minutes what took smart people several months (and less gifted, several years)

But ... it looks like magic to the uninitiated

Shape Function Requirements

(A) Interpolation
(B) Local Support
(C) Continuity (Intra- \& Inter-Element)
(D) Completeness

See Sec 18.1 for more detailed statement of (A) through (D). Implications of the last two requirements as regards convergence are discussed in Chapter 19.

Direct Construction of Shape Functions: Are Conditions Automatically Satisfied?

(A) Interpolation Yes: by construction except scale factor
(B) Local Support Often yes, but not always possible
(C) Continuity No: a posteriori check necessary
(D) Completeness Satisfied if (B,C) are met and the sum of shape functions is identically one. Sec 16.6 of Notes (advanced material) provides details for curious readers

Direct Construction of Shape Functions as "Line Products"

$$
N_{i}^{(e)} \stackrel{\text { guess }}{=} c_{i} L_{1} L_{2} \ldots L_{m}
$$

where $L_{k}=0$ are equations of "lines" expressed in natural coordinates, that cross all nodes except i

The Three Node Linear Triangle

$$
N_{1} \stackrel{\text { guess }}{=} c_{1} L_{1}=c_{1} L_{2-3}
$$

At node $1, N_{1}=1$ whence $c_{1}=1$ and $N_{1}=\zeta_{1} \quad$ Likewise for N_{2} and N_{3}

Three Node Triangle Shape Function Plot

The Six Node Triangle - Corner Node

$N_{1}^{(e)} \stackrel{\text { guess }}{=}$
$c_{1} L_{2-3} L_{4-6}$
For rest of derivation, see Notes

The Six Node Triangle - Midside Node

$N_{1}^{(e)} \stackrel{\text { guess }}{=} c_{1} L_{2-3} L_{4-6}$
For rest of derivation, see Notes

The Six Node Triangle: Shape Function Plots

$N_{1}^{(e)}=\zeta_{1}\left(2 \zeta_{1}-1\right)$

$$
N_{4}^{(e)}=4 \zeta_{1} \zeta_{2}
$$

IFEM Ch 18 - Slide 10

The Four Node Bilinear Quad

$N_{1}^{(e)} \stackrel{\text { guess }}{=} c_{1} L_{2-3} L_{3-4}$

For rest of derivation, see Notes

The Four Node Bilinear Quad: Shape Function Plot

$$
N_{1}^{(e)}=\frac{1}{4}(1-\xi)(1-\eta)
$$

IFEM Ch 18 - Slide 12

The Nine Node Biquadratic Quad Corner Node Shape Function

$$
N_{1}^{(e)} \stackrel{\text { guess }}{=} c_{1} L_{2-3} L_{3-4} L_{5-7} L_{6-8}=c_{1}(\xi-1)(\eta-1) \xi \eta
$$

For rest of derivation, see Notes

The Nine-Node Biquadratic Quad: Shape Function Plots

$$
N_{1}^{(e)}=\frac{1}{4}(\xi-1)(\eta-1) \xi \eta
$$

$N_{5}^{(e)}=\frac{1}{2}\left(1-\xi^{2}\right) \eta(\eta-1) \quad($ back view $)$

$$
N_{5}^{(e)}=\frac{1}{2}\left(1-\xi^{2}\right) \eta(\eta-1)
$$

$N_{9}^{(e)}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)$

The Eight-Node 'Serendipity' Quad Corner Node Shape Function

$$
N_{1}^{(e)}=c_{1} L_{2-3} L_{3-4} L_{5-8}=c_{1}(\xi-1)(\eta-1)(1+\xi+\eta)
$$

For rest of derivation, see Notes

Can the Magic Wand Fail? Yes

Also method needs additional steps for transition elements. These tougher cases are discussed in Section 18.6

Transition Element Example

For N_{1} try the magic wand: product of side 2-3 $\left(\zeta_{1}=0\right)$ and median 3-4 $\left(\zeta_{1}=\zeta_{2}\right)$:

$$
\begin{equation*}
N_{1}^{(e)} \stackrel{\text { guess }}{=} c_{1} \zeta_{1}\left(\zeta_{1}-\zeta_{2}\right), \quad N_{1}(1,0,0)=1=c_{1} \quad \text { fails } \tag{C}
\end{equation*}
$$

Next, try the shape function of the linear 3-node triangle plus a correction:

$$
N_{1}^{(e)} \stackrel{\text { guess }}{=} \zeta_{1}+c_{1} \zeta_{1} \zeta_{2}
$$

Coefficient c_{1} is determined by requiring this shape function vanish at midside node 4: $N_{1}^{(e)}\left(\frac{1}{2}, \frac{1}{2}, 0\right)=\frac{1}{2}+c_{1} \frac{1}{4}=0$, whence $c_{1}=-2$ and

$$
N_{1}^{(e)}=\zeta_{1}-2 \zeta_{1} \zeta_{2} \quad \text { works }
$$

