14

The Plane Stress Problem

Plate in Plane Stress

Universe dimension or transverse dimension or transvers

Plane Stress Physical Assumptions

Plate is flat and has a symmetry plane (the midplane)

All loads and support conditions are midplane symmetric

Thickness dimension is much smaller than inplane dimensions

Inplane displacements, strains and stresses uniform through thickness

Transverse stresses σ_{zz} , σ_{xz} and σ_{yz} negligible

Unessential but used in this course:

Plate fabricated of homogeneous material through thickness

Notation for stresses, strains, forces, displacements

In-plane internal forces

In-plane stresses

In-plane stresses

In-plane stresses

In-plane displacements

In-plane displacements

Mathematical Idealization as a Two Dimensional Problem

Midplane

Plate

Plate

Inplane Forces are Obtained by Stress Integration Through Thickness

Inplane stresses

Inplane stresses $\frac{1}{h}$ $\frac{h}{7}$ $\frac{1}{p_{xx}}$ $\frac{1}{p_{xy}}$ $\frac{1}{p_{yy}}$ $\frac{1}{p_{xy}}$ Inplane internal forces (also called membrane forces)

Plane Stress Boundary Conditions

The Plane Stress Problem

Given:

geometry
material properties
wall fabrication (thickness only for homogeneous plates)
applied body forces
boundary conditions:
 prescribed boundary forces or tractions
 prescribed displacements

Find:

inplane displacements inplane strains inplane stresses and/or internal forces

Matrix Notation for Internal Fields

$$\mathbf{u}(x, y) = \begin{bmatrix} u_x(x, y) \\ u_y(x, y) \end{bmatrix}$$
 displacements

$$\mathbf{u}(x, y) = \begin{bmatrix} u_x(x, y) \\ u_y(x, y) \end{bmatrix} \qquad \textbf{displacements}$$

$$\mathbf{e}(x, y) = \begin{bmatrix} e_{xx}(x, y) \\ e_{yy}(x, y) \\ 2e_{xy}(x, y) \end{bmatrix} \qquad \textbf{strains}$$

$$\begin{bmatrix} \sigma_{xx}(x, y) \end{bmatrix}$$

$$\boldsymbol{\sigma}(x,y) = \begin{bmatrix} \sigma_{xx}(x,y) \\ \sigma_{yy}(x,y) \\ \sigma_{xy}(x,y) \end{bmatrix}$$
 stresses

Governing Plane Stress Elasticity Equations in Matrix Form

$$\begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix} = \begin{bmatrix} \partial/\partial x & 0 \\ 0 & \partial/\partial y \\ \partial/\partial y & \partial/\partial x \end{bmatrix} \begin{bmatrix} u_x \\ u_y \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} E_{11} & E_{12} & E_{13} \\ E_{12} & E_{22} & E_{23} \\ E_{13} & E_{23} & E_{33} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$e = Du$$
 $\sigma = Ee$ $D^T \sigma + b = 0$

Introduction to FEM **Strong Form Tonti Diagram of Plane Stress Governing Equations** Displacement Prescribed Body forces **BCs** Displacements displacements $\mathbf{u} = \hat{\mathbf{u}}$ û on $\Gamma_{\rm u}$ $\mathbf{D} \, \sigma + \mathbf{b} = \mathbf{0}$ e = D uKinematic **Equilibrium** in Ω in Ω $\sigma = \mathbf{E} \mathbf{e}$ Prescribed in Ω Force BCs Strains Stresses tractions te Constitutive $\sigma^{T} \mathbf{n} = \hat{\mathbf{t}}$ or forces q or $\mathbf{p}^{\mathrm{T}}\mathbf{n} = \hat{\mathbf{q}}$ on Γ_{t}

Total Potential Energy of Plate in Plane Stress

$$\Pi = U - W$$

$$U = \frac{1}{2} \int_{\Omega} h \, \boldsymbol{\sigma}^T \mathbf{e} \, d\Omega = \frac{1}{2} \int_{\Omega} h \, \mathbf{e}^T \mathbf{E} \mathbf{e} \, d\Omega$$

$$W = \int_{\Omega} h \, \mathbf{u}^T \mathbf{b} \, d\Omega + \int_{\Gamma_t} h \, \mathbf{u}^T \hat{\mathbf{t}} \, d\Gamma$$

Discretization into Plane Stress Finite Elements

Plane Stress Element Geometries and Node Configurations

Total Potential Energy of Plane Stress Element

Constructing a Displacement Assumed Element

n nodes, n=4 in figure

Node displacement vector:

$$\mathbf{u}^{(e)} = \begin{bmatrix} u_{x1} & u_{y1} & u_{x2} & \dots & u_{xn} & u_{yn} \end{bmatrix}^T$$

Displacement interpolation

$$\mathbf{u}(x,y) = \begin{bmatrix} u_x(x,y) \\ u_y(x,y) \end{bmatrix} = \begin{bmatrix} N_1^{(e)} & 0 & N_2^{(e)} & 0 & \dots & N_n^{(e)} & 0 \\ 0 & N_1^{(e)} & 0 & N_2^{(e)} & \dots & 0 & N_n^{(e)} \end{bmatrix} \mathbf{u}^{(e)}$$

$$= \mathbf{N} \mathbf{u}^{(e)}$$

N is called the shape function matrix

Element Construction (cont'd)

Differentiate the displacement interpolation wrt x,y to get the strain-displacement relation

$$\mathbf{e}(x,y) = \begin{bmatrix} \frac{\partial N_1^{(e)}}{\partial x} & 0 & \frac{\partial N_2^{(e)}}{\partial x} & 0 & \dots & \frac{\partial N_n^{(e)}}{\partial x} & 0 \\ 0 & \frac{\partial N_1^{(e)}}{\partial y} & 0 & \frac{\partial N_2^{(e)}}{\partial y} & \dots & 0 & \frac{\partial N_n^{(e)}}{\partial y} \\ \frac{\partial N_1^{(e)}}{\partial y} & \frac{\partial N_1^{(e)}}{\partial x} & \frac{\partial N_2^{(e)}}{\partial y} & \frac{\partial N_2^{(e)}}{\partial x} & \dots & \frac{\partial N_n^{(e)}}{\partial y} & \frac{\partial N_n^{(e)}}{\partial x} \end{bmatrix} \mathbf{u}^{(e)} = \mathbf{B} \mathbf{u}^{(e)}$$

B is called the strain-displacement matrix

Element Construction (cont'd)

Element total potential energy

$$\Pi^{(e)} = \frac{1}{2} \mathbf{u}^{(e)T} \mathbf{K}^{(e)} \mathbf{u}^{(e)} - \mathbf{u}^{(e)T} \mathbf{f}^{(e)}$$

Element stiffness matrix

$$\mathbf{K}^{(e)} = \int_{\Omega^{(e)}} h \, \mathbf{B}^T \mathbf{E} \mathbf{B} \, d\Omega^{(e)}$$

Consistent node force vector

$$\mathbf{f}^{(e)} = \int_{\Omega^{(e)}} h \, \mathbf{N}^T \mathbf{b} \, d\Omega^{(e)} + \int_{\Gamma^{(e)}} h \, \mathbf{N}^T \hat{\mathbf{t}} \, d\Gamma^{(e)}$$

body force

surface force

Requirements on Finite Element Shape Functions

Interpolation Conditions:

 N_i takes on value 1 at node i, 0 at all other nodes

Continuity (intra- and inter-element) and Completeness Conditions

are covered later in the course (Chs. 18-19)