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Introduction to FEM

Plate in Plane Stress
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Introduction to FEM

Plane Stress Physical Assumptions

Plate is flat and has a symmetry plane (the midplane)

All loads and support conditions are midplane symmetric

Thickness dimension is much smaller than inplane dimensions

Inplane displacements, strains and stresses uniform 
          through thickness

Transverse stresses  σ   , σ    and σ    negligible

                           Unessential but used in this course:

Plate fabricated of homogeneous material through thickness

zz xz yz
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Introduction to FEM

Notation for stresses, strains, forces, displacements
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Introduction to FEM

Mathematical Idealization as 
a Two Dimensional Problem
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Introduction to FEM

Inplane Forces are Obtained by
Stress Integration Through Thickness
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(also called membrane forces)
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Introduction to FEM

Plane Stress Boundary Conditions
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Introduction to FEM

The Plane Stress Problem

Given:

   geometry
   material properties
   wall fabrication (thickness only for homogeneous plates)
   applied body forces
   boundary conditions: 
           prescribed boundary forces or tractions
           prescribed displacements

Find:

   inplane displacements
   inplane strains
   inplane stresses and/or internal forces  
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Introduction to FEM

Matrix Notation for Internal Fields 

e(x, y) =

 exx(x, y)

eyy(x, y)

2exy(x, y)




σ(x, y) =

 σxx(x, y)

σyy(x, y)

σxy(x, y)




u(x, y) =
[

ux(x, y)

uy(x, y)

]
displacements

strains

stresses
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Introduction to FEM

Governing Plane Stress Elasticity 
Equations in Matrix Form 


 exx

eyy

2exy


 =


 ∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x




[
ux

uy

]


 σxx

σyy

σxy


 =


 E11 E12 E13

E12 E22 E23

E13 E23 E33





 exx

eyy

2exy




[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

] 
 σxx

σyy

σxy


 +

[
bx

by

]
=

[
0
0

]

e = Du σ = Ee DTσ + b = 0or
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Introduction to FEM

Strong Form Tonti Diagram of 
Plane Stress Governing Equations
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Introduction to FEM

TPE-Based Weak Form Diagram of 
Plane Stress Governing Equations
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Introduction to FEM

Total Potential Energy of Plate 
in Plane Stress 

� = U − W

U = 1
2

∫
	

h σT e = 1
2

∫
	

h eT Ee d	d	

W =
∫

	

h uT b d	 +
∫


t

h uT t̂ d
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Introduction to FEM

Discretization into Plane Stress
Finite Elements 

Ω
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Introduction to FEM

Plane Stress Element Geometries
and Node Configurations 
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Introduction to FEM

Total Potential Energy of Plane Stress Element 

�(e) = U (e) − W(e)

U (e) = 1
2

∫
	(e)

	(e)

	(e)

h σT e = 1
2

∫
h eT Ee d	(e)

W(e) =
∫

h uT b d	(e) +
∫


(e)

h uT t d
(e)

Ω Γ (e)(e)
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Introduction to FEM

Constructing a Displacement Assumed Element 

u(e) = [ ux1 uy1 ux2 . . . uxn uyn ]T

u(x, y) =
[

ux(x, y)

uy(x, y)

]
=

[
N(e)

1 0 N(e)
2 0 . . . N(e)

n 0
0 N(e)

1 0 N(e)
2 . . . 0 N(e)

n

]

= N u(e)

u(e)

Node displacement vector:

Displacement interpolation

n nodes, n=4 in figure

N  is called the shape function matrix
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Introduction to FEM

Element Construction (cont'd) 

e(x, y) =




∂N(e)
1

∂x 0
∂N(e)

2
∂x 0 . . .

∂N(e)
n

∂x 0

0
∂N(e)

1
∂y 0

∂N(e)
2

∂y . . . 0
∂N(e)

n
∂y

∂N(e)
1

∂y
∂N(e)

1
∂x

∂N(e)
2

∂y
∂N(e)

2
∂x . . .

∂N(e)
n

∂y
∂N(e)

n
∂x




u(e) =Bu(e)

Differentiate the displacement interpolation wrt  x,y 
to get the strain-displacement relation

B  is called the strain-displacement matrix
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Introduction to FEM

Element Construction (cont'd) 

f(e) =
∫

	(e)

h NT b d	(e) +
∫


(e)

h NT t̂ d
(e)

�(e) = 1
2u(e)T

K(e)u(e) − u(e)T
f(e)

K(e) =
∫

	(e)

h BT EB d	(e)

Element stiffness matrix

Element total potential energy

Consistent node force vector

body force                  surface force
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Introduction to FEM

Requirements on Finite Element 
Shape Functions 

Interpolation Conditions:

   N   takes on value 1 at node i,   0 at all other nodes

Continuity (intra- and inter-element)
and Completeness Conditions

  are covered later in the course (Chs. 18-19)

i
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