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Introduction to FEM

Bar Member - Variational Derivation
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Introduction to FEM

Bar Member (cont'd)
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u(x)q(x)

x�
�
�

L

cross section

P

IFEM Ch 12 – Slide 3

Department of Engineering Mechanics PhD. TRUONG Tich Thien



Introduction to FEM

The Bar Revisited - Notation

Quantity Meaning

x Longitudinal bar axis∗

(.)′ d(.)/dx
u(x) Axial displacement
q(x) Distributed axial force, given per unit of bar length

L Total bar length
E Elastic modulus
A Cross section area; may vary withx

E A Axial rigidity
e = du/dx = u′ Infinitesimal axial strain
σ = Ee= Eu′ Axial stress

p = Aσ = E A e= E Au′ Internal axial force
P Prescribed end load

∗ x is used in this Chapter instead ofx̄ (as in Chapters 2–3) to simplify the notation.
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Introduction to FEM

Tonti Diagram of Governing Equations 
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Introduction to FEM

Potential Energy of the Bar Member
(before discretization)

U = 1
2

∫ L

0
pe dx= 1

2

∫ L

0
(E Au′)u′ dx = 1

2

∫ L

0
u′E Au′ dx

W =
∫ L

0
qu dx

� = U − W

Internal energy (= strain energy)

External work

Total potential energy
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Introduction to FEM

Concept of Kinematically Admissible Variation

δu(x) is kinematically admissible if u(x) and u(x) + δu(x)

(i)   are continuous over bar length, i.e. 

(ii)  satisfy exactly displacement BC ; in the figure, u(0) = 0 

L

u(x) ∈ C0 in x ∈ [0, L].

u(0) = 0

u(L)

x

u(x)+δu(x) δu(x)

u(x)

u
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Introduction to FEM

The Minimum Potential Energy (MPE) Principle

δ� = δU − δW = 0 iff u = u∗

The MPE principle states that the actual displacement solution
u  (x) that satisfies the governing equations is that which renders
the TPE functional Π[u] stationary:

with respect to admissible variations  u = u  + δu  of the exact
displacement solution  u  (x)

*

*
*
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Introduction to FEM

FEM Discretization of Bar Member

1 2 3 4 5

(1) (2) (3) (4)

u1, f1 u3, f3 u4, f4 u5, f5u2, f2 
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Introduction to FEM

FEM Displacement Trial Function

End node 1 assumed fixed

Axial displacement plotted normal to x 
for visualization convenience

1 2 3 4 5

(1) (2) (3) (4)

u  = 01

u2 u3
u4

u5

u1, f1 u3, f3 u4, f4 u5, f5u2, f2 

x
u(x)

u
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Introduction to FEM

Element Shape Functions

i j(e)

1

0

0

1

N(e)
i

N(e)
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 = L(e)

x
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Introduction to FEM

Total Potential Energy Principle
and Decomposition over Elements

δ� = δU − δW = 0 u = u∗

� = �(1) + �(2) + . . . + �(Ne)

δ� = δ�(1) + δ�(2) + . . . + δ�(Ne) = 0

δ�(e) = δU (e) − δW(e) = 0

 (exact solution)

From fundamental lemma of variational calculus,
each component variation must vanish, giving

But

iff

and
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Introduction to FEM

u(e)(x) = N(e)
i u(e)

i + N(e)
j u(e)

j = [ N(e)
i N(e)

j ]
[

u(e)
i

u(e)
j

]
= Nu(e)

Element Shape Functions (cont'd)

N(e)
i = 1 −



= 1 − ζ, N(e)

j =        = ζ



 ζ = © x−x



in which

Linear displacement interpolation:

dimensionless (natural) coordinatei

x−xi x−xi
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Introduction to FEM

Displacement Variation Process Yields 
the Element Stiffness Equations

U (e) = 1
2(u(e))T K(e)u(e)

W(e) = (u(e))T f(e)

K(e)u(e) = f(e)

{Π   = U    − W (e)(e) (e)

δΠ    = 0   ☞(e)

since δu    is arbitrary [...] = 0 (e) (Appendix D)

the element stiffness equations

(
δu(e)

)T [
K(e)u(e) − f(e)

] = 0
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Introduction to FEM

The Bar Element Stiffness

U (e) = 1
2

∫ 


0
e E A edx

U (e) = 1
2

∫ 


0
[ u(e)

i u(e)
j ]

1




[ −1
1

]
1



[ −1 1]

[
u(e)

i

u(e)
j

]
dx

U (e) = 1
2 [ u(e)

i u(e)
j ]

∫ 


0

E A


2

[
1 −1

−1 1

]
dx

[
u(e)

i

u(e)
j

]
= 1

2

(
u(e)

)T
K(e)u(e)

K(e) =
∫ 


0
E ABTB dx =

∫ 


0

E A


2

[
1 −1

−1 1

]
dx

K(e) = E A




[
1 −1

−1 1

]If  EA  is constant over element

e = u'
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Introduction to FEM

The Consistent Nodal Force Vector

W(e) =
∫ 


0
qu dx=

∫ 


0
qNTT(u   )(e) dx = (

u(e)
)T

∫ 


0
q

[
1 − ζ

ζ

]
dx = (

u(e)
)T

f(e)

f(e) =
∫ 


0
q

[
1 − ζ

ζ

]
dx

in which  ζ = © x−x



i

IFEM Ch 12 – Slide 16

Department of Engineering Mechanics PhD. TRUONG Tich Thien



Introduction to FEM

Bar Consistent Force Vector (cont'd)

f(e) =
∫ 


0
q

[
1 − ζ

ζ

]
dx 


If  q  is constant along element

= q
[ ]

the same result as with EbE load lumping (i.e., assigning
one half of the total load to each node)

1/2

1/2
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