7

FEM Modeling: Introduction

FEM Terminology

degrees of freedom (abbrv: DOF)

state (primary) variables: displacements in mechanics

conjugate variables: forces in mechanics

stiffness matrix

master stiffness equations

$$K u = f$$

$$\mathbf{K} \mathbf{u} = \mathbf{f}$$

$$\mathbf{K} \mathbf{u} = \mathbf{f}_M + \mathbf{f}_I$$

Physical Significance of Vectors u and f in Miscellaneous FEM Applications

Application Problem	State (DOF) vector u represents	Forcing vector f represents
Structures and solid mechanics	Displacement	Mechanical force
Heat conduction	Temperature	Heat flux
Acoustic fluid	Displacement potential	Particle velocity
Potential flows	Pressure	Particle velocity
General flows	Velocity	Fluxes
Electrostatics	Electric potential	Charge density
Magnetostatics	Magnetic potential	Magnetic intensity

Mathematical Model Definition

Traditional definition

Scaled fabricated version of a physical system (think of a car or train model)

Simulation oriented definition

A model is a symbolic device built to simulate and predict aspects of behavior of a system

Recall the "Breakdown" DSM Steps

Breakdown

Disconnection
Localization
Member (Element) Formation

Let Stop Here and Study Generic Elements next

... Because Most of the Remaining DSM Steps

Globalization
Merge
Application of BCs
Solution
Recovery of Node Forces

are **Element Independent**

Attributes of Mechanical Finite Elements

Dimensionality

Nodes serve two purposes geometric definition home for DOFs (connectors)

Degrees of freedom (DOFs) or "freedoms" Conjugate node forces

Material properties Fabrication properties

Element Geometry Is Defined by Node Locations

1D
2D
2D
3D

Classification of Mechanical Finite Elements

Primitive Structural

Continuum

Special

Macroelements

Substructures

Superelements

Introduction to FEM **Primitive Structural Elements** (often built from MoM models) Physical Finite Element **Mathematical** Structural Discretization **Model Name** Component bar beam tube, pipe spar (web) shear panel (2D version of above)

Continuum Elements

Special Elements

Crack element

Infinite element

Honeycomb panel

MacroElements

Boundary Conditions (BCs)

The most difficult topic for FEM program users ("the devil hides on the boundary")

Boundary Conditions

Essential vs. Natural

Recipe:

- 1. If a BC involves one or more DOF in a direct way, it is <u>essential</u> and goes to the Left Hand Side (LHS) of Ku = f
- 2. Otherwise it is *natural* and goes to the Right Hand Side (RHS) of Ku = f

Examples of Structural Models: Rocket Nozzle (Aerospace Engrg)

(a) Typical solid rocket nozzle (Aerojet Corp., 1963)

(b) Finite element idealization

Examples of Structural Models: SuperTanker (Marine Engrg) Neutral Axis Cross section of tanker Cross section of tanker

Examples of Structural Models: F16 Internal Structure (Aero)

