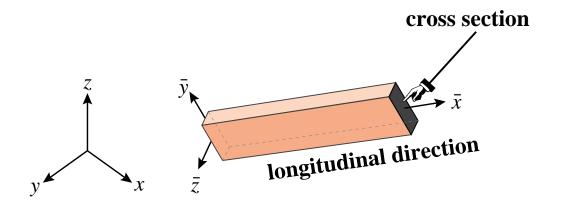
6


Constructing MoM Members

What Are MoM Members?

Skeletal structural members whose stiffness equations can be constructed by Mechanics of Materials (MoM) methods

Can be locally modeled as 1D elements

MoM Members Tend to Look Alike ...

One dimension (longitudinal) much larger than the other two (transverse)

But Receive Different Names According to Function

Bars: transmit axial forces

Beams: transmit bending

Shafts: transmit torque

Spars (=Webs): transmit shear

Beam-column: transmit bending + compression

Common Features of MoM
Finite Element Models

End quantities are defined at the joints

v

Internal quantities are defined in the member

Governing Matrix Equations for Simplex MoM Element

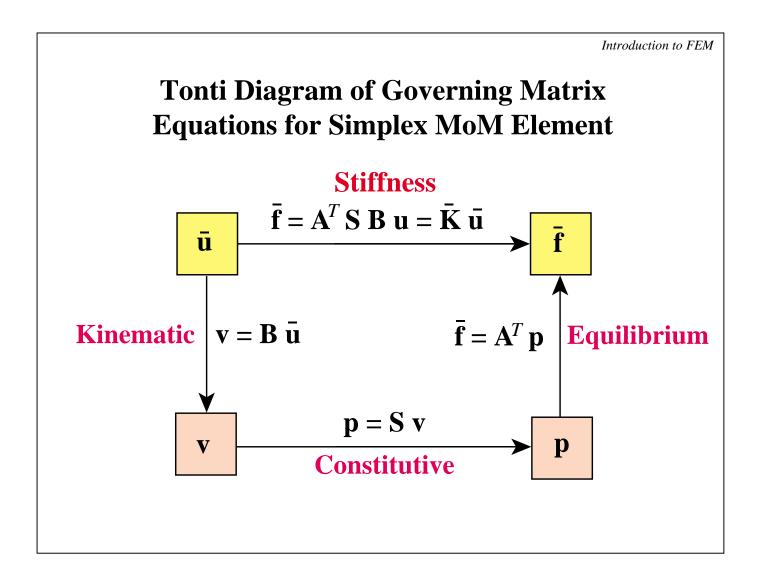
From node displacements to internal deformations (strains)

$$\mathbf{v} = \mathbf{B} \ \overline{\mathbf{u}}$$

Kinematic

From deformations to internal forces

$$p = S v$$


Constitutive

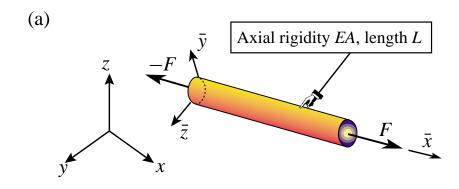
From internal forces to node forces

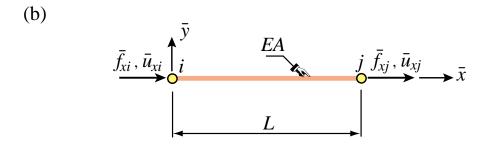
$$\overline{\mathbf{f}} = \mathbf{A} \mathbf{p}$$

Equilibrium

If \bar{f} and \bar{u} are PVW (Virtual Work) conjugate, B = A

Elimination of the Internal Quantities v and p gives the Element Stiffness Equations through Simple Matrix Multiplications


$$\mathbf{\bar{f}} = \mathbf{A}^T \mathbf{S} \mathbf{B} \, \mathbf{\bar{u}} = \mathbf{\bar{K}} \mathbf{\bar{u}}$$


$$\mathbf{\bar{K}} = \mathbf{A}^T \mathbf{S} \mathbf{B}$$

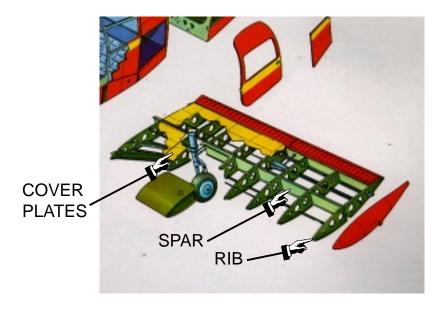
$$\mathbf{\bar{K}} = \mathbf{A}^T \mathbf{S} \mathbf{B}$$
If $\mathbf{B} = \mathbf{A} \quad \mathbf{\downarrow}$

$$\mathbf{\bar{K}} = \mathbf{B}^T \mathbf{S} \mathbf{B}$$
 symmetric if \mathbf{S} is

The Bar Element Revisited

The Bar Element Revisited (cont'd)

$$d = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{u}_{xi} \\ \bar{u}_{xj} \end{bmatrix} = \mathbf{B}\bar{\mathbf{u}}$$


$$F = \frac{EA}{L}d = Sd,$$

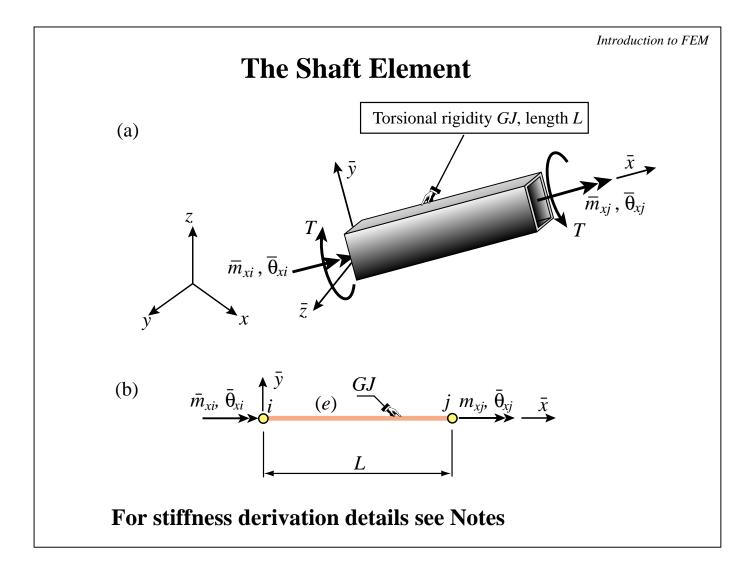
$$\bar{\mathbf{f}} = \begin{bmatrix} \bar{f}_{xi} \\ \bar{f}_{xj} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} F = \mathbf{A}^T F$$

$$\bar{\mathbf{K}} = \mathbf{A}^T S \mathbf{B} = S \mathbf{B}^T \mathbf{B} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Can be expanded to the 4 x 4 of Chapter 2 by adding two zero rows and columns to accomodate \overline{u}_{yi} and \overline{u}_{yj}

Spars used in Wing Structure (Piper Cherokee)

The Spar Element (cont'd)


$$\gamma = \frac{1}{L} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{u}_{yi} \\ \bar{u}_{yj} \end{bmatrix} = \mathbf{B}\bar{\mathbf{u}}$$

$$V = GA_s \gamma = S \gamma$$

$$\bar{\mathbf{f}} = \begin{bmatrix} \bar{f}_{yi} \\ \bar{f}_{yj} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} V = \mathbf{A}^T V$$

$$\bar{\mathbf{f}} = \begin{bmatrix} \bar{f}_{yi} \\ \bar{f}_{yj} \end{bmatrix} = \mathbf{A}^T S \mathbf{B} \bar{\mathbf{u}} = \frac{G A_s}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{u}_{yi} \\ \bar{u}_{yj} \end{bmatrix} = \bar{\mathbf{K}} \bar{\mathbf{u}}$$

$$\bar{\mathbf{K}} = \frac{GA_s}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

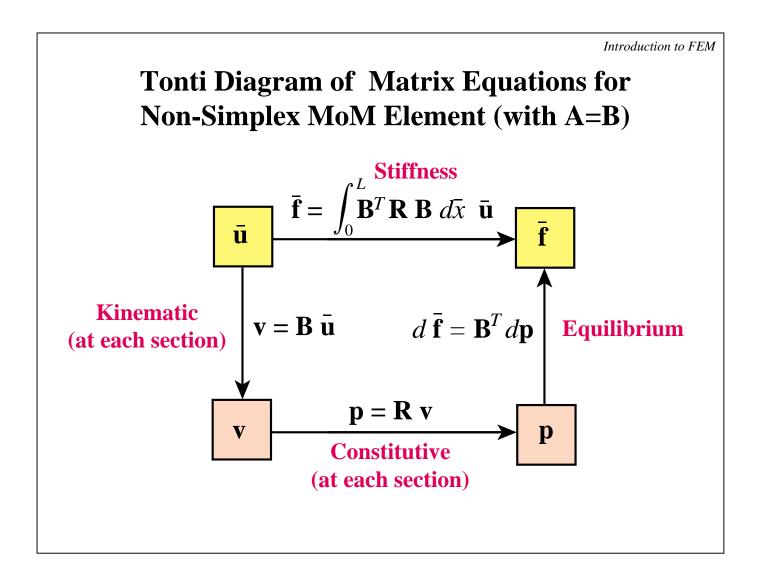
Matrix Equations for Non-Simplex MoM Element

From node displacements to internal deformations at each section

$$v=B\;\bar{u}$$

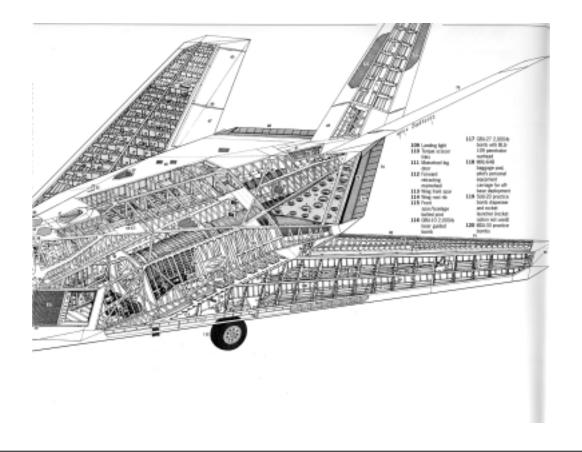
Kinematic

From deformations to internal forces at each section

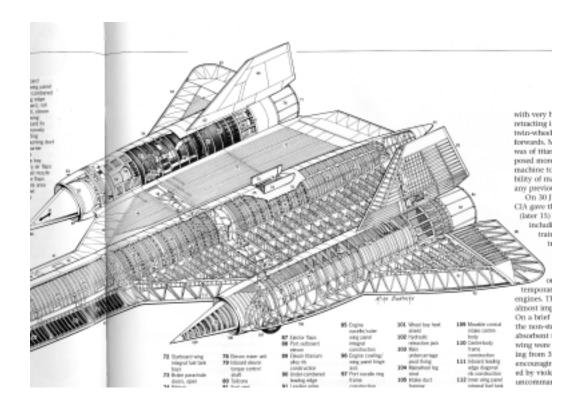

$$p = Rv$$

Constitutive

From internal forces to node forces


$$d\,\bar{\mathbf{f}} = \mathbf{A}^T d\mathbf{p}$$

Equilibrium



Low-Aspect Delta Wing, F-117 (1975)

Low-Aspect Delta Wing, Blackhawk (1972)

