Introduction to FEM

Overview

Course Coverage

This course consists of three Parts:

- I. Finite Element Basic Concepts
- II. Formulation of Finite Elements
- III. Computer Implementation of FEM

Where the Course Fits

The field of Mechanics can be subdivided into 3 major areas:

Mechanics
Applied
Computational

Computational Mechanics

Branches of *Computational Mechanics* can be distinguished according to the physical focus of attention

Computational Mechanics

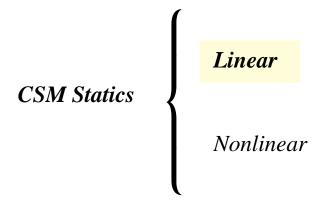
Nano and Micromechanics

Continuum Mechanics:
Solids and Structures
Fluids
Multiphysics

Systems

Computational Solid and Structural Mechanics

A convenient subdivision of problems in Computational Solid and Structural Mechanics (CSM) is


Computational
Solid and Structural
Mechanics (CSM)

Statics

Dynamics

CSM Statics

A further subdivision of problems in CSM Statics is

CSM Linear Statics

For the numerical simulation on the computer we must now chose a *spatial discretization method:*

CSM Linear Statics

Finite Element Method

Finite Difference Method

Boundary Element Method

Finite Volume Method

Spectral Method

Mesh-Free Method

CSM Linear Statics by FEM

Having selected the FEM for *discretization*, we must next pick a formulation and a solution method:

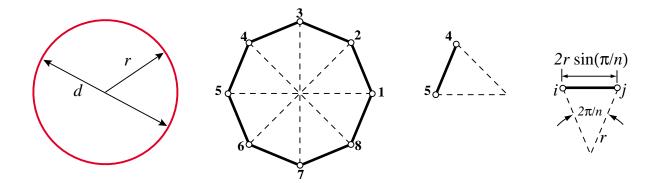
 $\textbf{Formulation of FEM Model} \begin{cases} \textbf{\textit{Displacement}} \\ Equilibrium \\ \textit{Mixed} \\ \textit{Hybrid} \end{cases}$

Solution of FEM Model

Stiffness
Flexibility
Mixed

Summarizing: This Course Covers

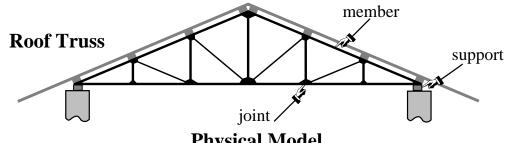
Computational structural mechanics


Linear static problems

Spatially discretized by displacement-formulated FEM

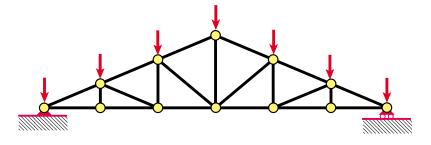
Solved by the stiffness method

What is a Finite Element?


Archimedes' problem (*circa* 250 B.C.): rectification of the circle as limit of inscribed regular polygons

Computing π "by Archimedes FEM"

n	$\pi_n = n\sin(\pi/n)$	Extrapolated by Wynn- ϵ	Exact π to 16 places
1	0.0000000000000000		
2	2.00000000000000000		
4	2.828427124746190	3.414213562373096	
8	3.061467458920718		
16	3.121445152258052	3.141418327933211	
32	3.136548490545939		
64	3.140331156954753	3.141592658918053	
128	3.141277250932773		
256	3.141513801144301	3.141592653589786	3.141592653589793

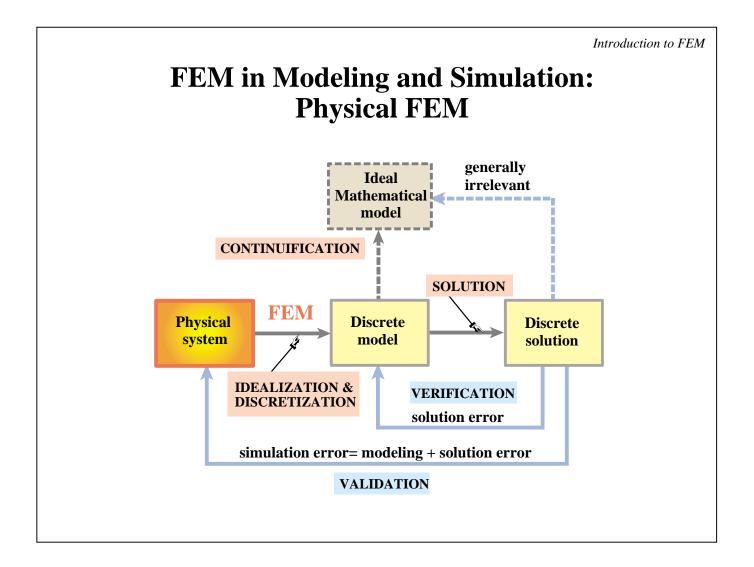

The Idealization Process for a Simple Structure

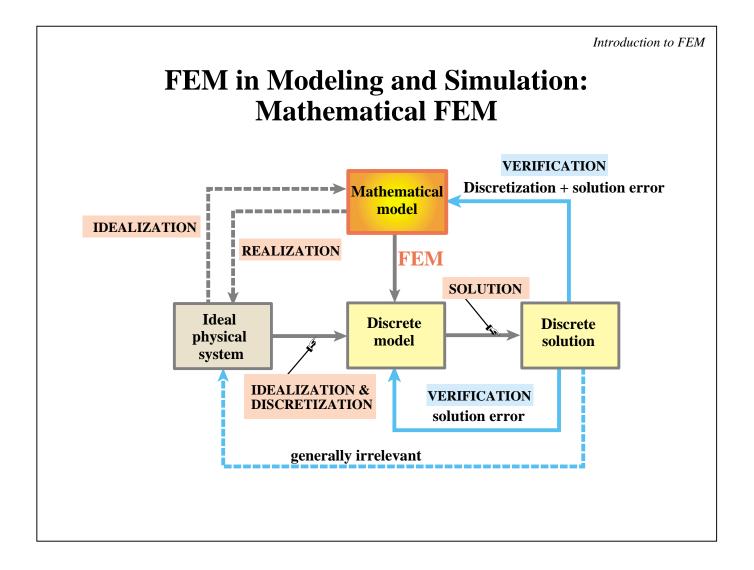
Physical Model

Mathematical and Discrete Model

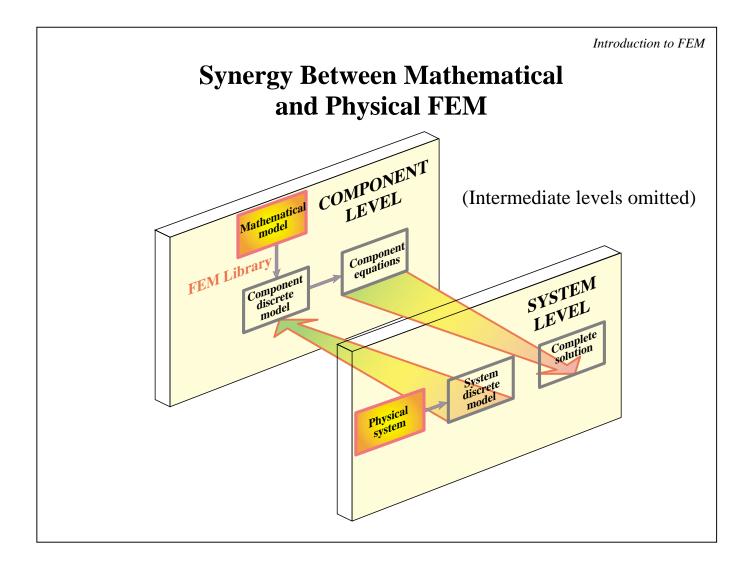
Two Interpretations of FEM for Teaching

Physical


Breakdown of structural system into components (elements) and reconstruction by the assembly process


Emphasized in Part I

Mathematical


Numerical approximation of a Boundary Value Problem by Ritz-Galerkin discretization with functions of local support

Emphasized in Part II

Recommended Books for Linear FEM

Basic level (reference): Zienkiewicz & Taylor (1988), Vols I (1988), II (1993). A comprehensive upgrade of the 1977 edition. Primarily an encyclopedic reference work that provides a panoramic coverage of FEM, as well as a comprehensive list of references. Not a textbook.

Basic level (textbook): Cook, Malkus & Plesha (1989); this third edition is fairly comprehensive in scope and up to date although the coverage is more superficial than Zienkiewicz & Taylor.

Intermediate level: Hughes (1987). It requires substantial mathematical expertise on the part of the reader.

Mathematically oriented: Strang & Fix (1973). Most readable mathematical treatment although outdated in several subjects.

Most fun (if you like British "humor"): Irons & Ahmad (1980)

Best value for the \$\$\$: Przemieniecki (Dover edition 1985, ~\$16). Although outdated in many respects (e.g. the word "finite element" does not appear in this reprint of the original 1966 book), it is a valuable reference for programming simple elements.

Comprehensive web search engine for out-of print books: http://www3.addall.com