ChƯONG IX TOOCXO DỘNG LƯỢNG

9-1. Biểu thức tổng quát của mômen động lự̂ng

1. Đinh nghăa
a) Dọng lương. Gọi P là một chất điểm có khối lự̛ng m . Vận tốc của P trong hệ quy chiếu (R) ở thời diêm t lả $\vec{v}_{P}(R)$. Ta gọi đọng lượng của chất điểm P . là véctơ

$$
\begin{equation*}
\overrightarrow{\mathrm{q}}_{\mathrm{m}}=\mathrm{m} \overrightarrow{\mathrm{v}}_{\mathrm{P}}^{(\mathrm{R})} \tag{9-1}
\end{equation*}
$$

Néu P là một điểm của vật rấn S thi dộng lượng của cả vật rấn sê là:

$$
\begin{equation*}
\vec{Q}=\int_{S} \vec{v}_{P}^{(R)} d m \tag{9-2}
\end{equation*}
$$

Dại lượng đơ còn được gọi là tổng động lượng của hệ.
Gọi O là gốc tọa dộ trong quy chiếu (R) và G là trọng tâm của vật rắn, vận tốc $\overrightarrow{\mathrm{v}}_{\mathrm{P}}^{(\mathrm{R})}$ được biểu diển dưới dạng sau đây :

$$
\overrightarrow{v_{P}^{(R)}}=\frac{\mathrm{d} \overrightarrow{O P}}{\mathrm{dt}}=\frac{\mathrm{d} \overrightarrow{\mathrm{OG}}}{\mathrm{dt}}+\frac{\mathrm{d} \overrightarrow{\mathrm{GP}}}{\mathrm{dt}}
$$

Hay :

$$
\begin{equation*}
\overrightarrow{\mathrm{v}}_{\mathrm{P}}^{(\mathrm{R})}=\overrightarrow{\mathrm{v}}_{\mathrm{G}}^{\mathrm{R})}+\frac{\mathrm{d} \overrightarrow{\mathrm{GP}}}{\mathrm{dt}} \tag{9-3}
\end{equation*}
$$

Đem (9-3) vào (9-2) ta có :

$$
\overrightarrow{\mathrm{Q}}=\int_{\mathrm{S}} \overrightarrow{\left.\mathrm{v}_{\mathrm{G}}^{\mathrm{R}}\right) \mathrm{dm}+\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{S}} \overrightarrow{\mathrm{GP}} \mathrm{dm} . .}
$$

Số hạng cuối cùng của đả̉ng thức đơ là bầng 0 theo định nghia trọng tâm, vậy :

$$
\begin{equation*}
\left.\overrightarrow{\mathrm{Q}}=\mathrm{M} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{G}}^{\mathrm{R}}\right) \tag{9-4}
\end{equation*}
$$

trong đó M là khối lượng của vật rắn.
b) Mómen dông luơng tại C

Gọi C là một điểm trong hệ quy chiếu (R). Mômen động lượng của toàn thể vật rấn đối với C là biểu thức vécto :

$$
\begin{equation*}
\overrightarrow{\mu_{\mathrm{c}}}=\int_{\mathrm{S}} \overrightarrow{\mathrm{CP}} \wedge \overrightarrow{\mathrm{v}_{\mathrm{P}}^{(\mathrm{R})}} \cdot \mathrm{dm} \tag{9-5}
\end{equation*}
$$

Ta hãy xét tưong quan giưa hai mômen động lượng tại hai diểm C và K . Theo định nghla ta có :

$$
\begin{equation*}
\vec{\mu}_{\mathrm{K}}=\int_{\mathrm{S}} \overrightarrow{\mathrm{KP}} \wedge \overrightarrow{\mathrm{v}}_{\mathrm{P}}^{(\mathrm{R})} \cdot \mathrm{d} m \tag{9-6}
\end{equation*}
$$

Hay có the viết :

$$
\begin{align*}
\vec{\mu}_{\mathrm{K}} & =\int_{\mathrm{S}}(\overrightarrow{\mathrm{KC}}+\overrightarrow{\mathrm{CP}}) \wedge \overrightarrow{\left.\mathrm{v}_{\mathrm{P}}^{\mathrm{Q}}\right)} \mathrm{dm}= \\
& =\int_{\mathrm{S}} \overrightarrow{\mathrm{KC}} \wedge \overrightarrow{\left.\mathrm{v}_{\mathrm{P}}^{\mathrm{R}}\right)} \mathrm{dm}+\int_{\mathrm{S}} \overrightarrow{\mathrm{CP}} \wedge \overrightarrow{\mathrm{v}_{\mathrm{P}}^{\mathrm{R})} \mathrm{dm}} \tag{9-7}
\end{align*}
$$

Vî $\overrightarrow{\mathrm{KC}}$ không phụ thuộc vào dấu tích phân nên ta có thẻ̉ đưa ra khỏi dấu tích phân và chú ý đến (9-2) ta cớ thể viết lại (9-7) dưới dạng :

$$
\begin{equation*}
\overrightarrow{\mu_{\mathrm{K}}}=\overrightarrow{\mu_{\mathrm{C}}}+\overrightarrow{\mathrm{Q}} \wedge \overrightarrow{\mathrm{CK}} \tag{9-8}
\end{equation*}
$$

Vậy trường véctơ $\vec{\mu}$ là một trường phản đối xứng. Trường đó cùng với \vec{Q} lập thành một toocxo và toocxo đó được gọi là toocxo dông luơng.

9-2. Tinh mômen đông lượng $\vec{\mu}$

1. Truờng hơp tơng quát. Ta tìm cách xác định trị số của $\vec{\mu}_{\mathrm{C}}$ theo tích phân (9-5) .

Gọi (R_{1}) là hệ quy chiếu Galilê vá̛i các trục tọa độ $\mathrm{O}_{1} \mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}$ (h. 9-1) và hệ quy chiếu thứ hai (R) gắn liến với vật rắn thể hiện bởi cac trục tọa độ Oxyz. Ki hiệu $\vec{i}, \vec{j}, \vec{k}$ là các vécto trên các trục $\mathrm{Ox}, \mathrm{Oy}, \mathrm{Oz}$ và $\vec{\Omega}^{(1)}$ là véctơ tốc độ quay tức thời của vật rắn đới với hệ quy chiếu cố định (R_{1}).

Tốc độ của P trong hệ quy chiếu (R_{1}) tính theo toocxơ dộng học là :

Hinh 9-1.

Dem (14-9) vào (14-5) ta có :

$$
\overrightarrow{\mu_{\mathrm{C}}}=\int_{\mathrm{S}} \overrightarrow{\mathrm{CP}} \wedge \overrightarrow{v_{\mathrm{o}}^{\left(\mathrm{R}_{1}\right)}} \cdot \mathrm{dm}+\int_{\mathrm{S}} \overrightarrow{\mathrm{CP}} \wedge\left(\overrightarrow{\Omega^{(1)}} \wedge \overrightarrow{\mathrm{OP}}\right) \mathrm{dm}
$$

Vi ta có $\overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{CO}}+\overrightarrow{\mathrm{OP}}$ nên số hạng cuối có thể tách thành hai

$$
\begin{align*}
\vec{\mu}_{c} & =\int_{\mathrm{S}} \overrightarrow{\mathrm{CP}} \wedge \overrightarrow{\left.\mathrm{v}_{o}^{(R)}\right)} \mathrm{dm}+\int_{\mathrm{S}} \overrightarrow{\mathrm{CO}} \wedge\left(\overrightarrow{\Omega^{(1)}} \wedge \overrightarrow{\mathrm{OP}}\right) \mathrm{dm}+ \\
& +\int_{\mathrm{S}} \overrightarrow{\mathrm{OP}} \wedge\left(\overrightarrow{\Omega^{(1)}} \wedge \overrightarrow{\mathrm{OP}}\right) \mathrm{dm} \tag{9-10}
\end{align*}
$$

Chưng ta lần lượt tính các só hạng tích phân đó.
a) Tich phan I_{l}

$$
\begin{equation*}
\mathrm{I}_{1}=\int_{\mathrm{S}} \overrightarrow{\mathrm{CP}} \wedge \overrightarrow{\mathrm{v}_{\mathrm{o}}^{\left(\mathrm{R}_{1}\right)} \mathrm{dm}} \tag{9-11}
\end{equation*}
$$

Gọi G là trọng tâm của vật rán, ta có thể tách tích phân đó làm hai như sau :

$$
\begin{equation*}
\mathrm{I}_{1}=\int_{\mathrm{S}} \overrightarrow{\mathrm{CG}} \wedge{\left.\left.\overrightarrow{v_{o}^{(R}}\right)_{1}\right)}_{\mathrm{dm}}+\int_{\mathrm{S}} \overrightarrow{\mathrm{GP}} \wedge \mathrm{v}_{o}^{\left(\mathrm{R}_{1}\right)} \mathrm{dm} \tag{9-12}
\end{equation*}
$$

Theo định nghia của trong tảm, ta có :

$$
\begin{equation*}
\int_{\mathrm{S}} \overrightarrow{\mathrm{GP}} \cdot \mathrm{dm}=0 \tag{9-13}
\end{equation*}
$$

Vậy số hạng thứ hai trong (9-12) là triệt tiêu. Tích phân I_{1} sé là:

$$
\begin{equation*}
\mathrm{I}_{1}=\int_{\mathrm{S}} \overrightarrow{\mathrm{CG}} \wedge \overrightarrow{\left.\mathrm{v}_{o}^{\left(\mathrm{R}_{1}\right.}\right)} \mathrm{dm}=\overrightarrow{\mathrm{CG}} \int \overrightarrow{\mathrm{v}}_{\mathrm{o}}^{\left(\mathrm{R}_{1}\right)} \mathrm{dm}=\overrightarrow{\mathrm{CG}} \wedge \overrightarrow{\mathrm{v}_{\mathrm{o}}^{\left(\mathrm{R}_{1}\right)} \mathrm{M}} \tag{9-14}
\end{equation*}
$$

Chúu y. $\overrightarrow{\mathrm{CG}}$ và $\mathrm{v}_{\mathrm{o}}^{\left(\mathrm{R}_{1}\right)}$ không phụ thuộc vảo dấu của tích phân.
b) Tich phan I_{2}

$$
\begin{equation*}
I_{2}=\int_{S} \overrightarrow{\mathrm{CO}} \wedge\left(\overrightarrow{\Omega^{(1)}} \wedge \overrightarrow{\mathrm{OP}}\right) \mathrm{dm} \tag{9-15}
\end{equation*}
$$

Có thê viét lại như sau :

$$
\begin{aligned}
\mathrm{I}_{2} & =\overrightarrow{\mathrm{CO}} \wedge \overrightarrow{\Omega^{(1)}} \wedge \int_{\mathrm{S}} \overrightarrow{\mathrm{OP} d m}= \\
& \left.=\overrightarrow{\mathrm{CO}} \wedge{\overrightarrow{\Omega^{(1)}} \wedge\left(\int_{S} \overrightarrow{\mathrm{OG}} d m+\int \overrightarrow{\mathrm{GP}} \mathrm{dm}\right)} \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Hay :

$$
\begin{equation*}
\left.I_{2}=\overrightarrow{\mathrm{CO}} \wedge \overrightarrow{\left(\vec{\Omega}^{(1)}\right.} \wedge \overrightarrow{\mathrm{OG}}\right) \cdot \mathrm{M} \tag{9-16}
\end{equation*}
$$

c) Tich phan I_{3}

$$
\begin{equation*}
I_{3}=\int_{S} \overrightarrow{\mathrm{OP}} \wedge\left(\overrightarrow{\Omega^{(1)}} \wedge \overrightarrow{\mathrm{OP}}\right) \mathrm{dm} \tag{9-17}
\end{equation*}
$$

Khai triển biểu thức trong ngoặc ta có :

$$
\begin{equation*}
\mathrm{I}_{3}=\int_{\mathrm{S}}(\overrightarrow{\mathrm{OP}})^{2} \cdot \overrightarrow{\Omega^{(1)}} \mathrm{dm}-\int\left(\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\Omega^{(1)}}\right) \overrightarrow{\mathrm{OP}} \mathrm{dm} \tag{9-18}
\end{equation*}
$$

Nhưng như ta có :

$$
\begin{align*}
& \overrightarrow{\mathrm{OP}}=x \overrightarrow{\mathrm{i}}+\mathrm{y} \overrightarrow{\mathrm{j}}+\mathrm{z} \overrightarrow{\mathrm{k}} \\
& \overrightarrow{\Omega^{(1)}}=\mathrm{p} \overrightarrow{\mathrm{i}}+\mathrm{q} \overrightarrow{\mathrm{j}}+\mathrm{rk} \tag{9-19}
\end{align*}
$$

p, q, r là các thành phần của $\overrightarrow{\Omega^{(1)}}$ trong $O_{x y} z$. Dem thay vào (9-18) ta có :

$$
\begin{align*}
I_{3} & =\int_{S}\left(x^{2}+y^{2}+z^{2}\right)(p \vec{i}+q \vec{j}+r \vec{k}) d m- \\
& -\int_{S}(x p+y q+z r)(x \vec{i}+y \vec{j}+z \vec{k}) d m \tag{9-20}
\end{align*}
$$

Sau khi khai triển ta có :

$$
\begin{align*}
I_{3} & =\left[\int_{S}\left(y^{2}+z^{2}\right) p d m-q \int_{S} x y d m-r \int_{S} x z d m\right] \vec{r}+ \\
& +\left[\int_{S}\left(z^{2}+x^{2}\right) q d m-r \int_{S} y z d m-p \int_{S} y x d m\right] \vec{j}+ \\
& +\left[\int_{S}\left(x^{2}+y^{2}\right) r d m-p \int_{S} z x d m-q \int_{S} z y d m\right] \overrightarrow{\mathbf{R}} \tag{9-21}
\end{align*}
$$

Chú ý các tich phân trong ngoạc là các mômen quán tính hoặc mômen quán tinh li tâm của vật rấn đối với các trục tọa độ Oxyz. Nếu kí hiệu các thành phẩn của ma trận quán tính tại O của vật rấn như sau :

$$
\left(I_{o}\right)=\left[\begin{array}{rrr}
A & F & E \tag{9-22}\\
-F & B & -D \\
-E & D & C
\end{array}\right]
$$

Thil biểu thức của I_{3} được viết dưới dạng :

$$
\begin{equation*}
I_{3}=\left(I_{0}\right) \overrightarrow{\Omega^{(1)}} \tag{9-23}
\end{equation*}
$$

Mang (9-14) , (9-16) và (9-23) vào (9-10) ta có :

$$
\begin{align*}
\overrightarrow{\mu_{\mathrm{c}}}=\overrightarrow{\mathrm{CG}} \wedge \overrightarrow{\mathrm{v}_{\mathrm{o}}^{\left(R_{1}\right)}} \cdot \mathrm{M} & +\overrightarrow{\mathrm{CO}} \wedge\left(\overrightarrow{\Omega^{(1)}} \wedge \overrightarrow{\mathrm{OG}}\right) \mathrm{M}+ \\
& +\left(\mathrm{I}_{\mathrm{o}}\right) \overrightarrow{\Omega^{(1)}} \tag{9-24}
\end{align*}
$$

2. Các trừng hơp aăc biệt. Địh 1 I Koening

a) Nếu O trùng với G và diểm C cüng trùng vào đó thì biểu thức $\vec{\mu}_{\mathrm{G}}$ trở thảnh mômen dộng lượng của hệ dối với trọng tâm của nó. Trong trường hợp này ta có $\overrightarrow{\mathrm{CG}}=\overrightarrow{\mathrm{CO}}=\overrightarrow{\mathrm{O}}$. Vậy :

$$
\begin{equation*}
\vec{\mu}_{\mathrm{G}}=\left(\mathrm{I}_{\mathrm{G}}\right) \vec{\Omega}^{(1)} \tag{9-25}
\end{equation*}
$$

(I_{G}) là ma trận quán tính được tinh tại tâm G .
b) Nểu O trùng với G và là cố định nghia là vật rấn chi quay chung quanh G. Khi đớ ta có đồng thời hai điếu kiện : $\left.\vec{v}_{\mathrm{o}}^{\mathrm{(}} \mathrm{~K}_{1}\right)=0$ và $\overrightarrow{\mathrm{OG}}=0$. Như vậy mômen động lượng đới với bất kỉ điểm C nào trong không gian cung bàng mômen động lượng đối với trọng tâm G. Ta có :

$$
\begin{equation*}
\vec{\mu}_{\mathrm{C}}=\vec{\mu}_{\mathrm{G}}=\left(\mathrm{I}_{\mathrm{G}}\right) \overrightarrow{\mathrm{Q}}^{(1)} \tag{9-26}
\end{equation*}
$$

Ta có một trường mômen động lượng đêu. Vectơ $\overrightarrow{\mathrm{Q}}=0$. Thực vậy vi $\left.\vec{Q}=M \cdot \vec{v}_{\mathrm{G}}^{\mathrm{R}}\right)=0$

c) Dinh li Koening

Nếu gớc tọa độ O trùng với trọng tâm G của vật rán thì ta sē có :

$$
\begin{equation*}
\vec{\mu}_{C}=\overrightarrow{\mathrm{CG}} \wedge \overrightarrow{\left.\mathrm{M} \overrightarrow{\mathrm{~V}}_{\mathrm{G}}^{\mathrm{R}_{1}}\right)}+\left(\mathrm{I}_{\mathrm{G}}\right) \overrightarrow{\Omega^{(1)}} \tag{9-27}
\end{equation*}
$$

Ta có thê̂ phất biểu định lí sau đây :
Mômen aọng luơng của một hẹ chât diêm aối với một điểm C nào dó trong không gion quy chiếu của hè diếm là bảng tởng mômen dông luợng của hệ aói với trong tam G của hẹ và mômen dộng luơng dối vá́i C của một chất diém có khối luợng là bàng cả khối luơng của hẹ̉ aăt tải trọng tâm G của hẹ gây nén.

Với (14-25) ta có thể viết (14-27) lại dưới dạng :

$$
\begin{equation*}
\left.\vec{\mu}_{\mathrm{C}}=\vec{\mu}_{\mathrm{G}}+\overrightarrow{\mathrm{CG}} \wedge \overrightarrow{\mathrm{Mv}}_{\mathrm{G}}^{\mathrm{R}_{1}}\right) \tag{9-28}
\end{equation*}
$$

