PHẦN 1

'TENSOR

GHUONG I

CÁCH VIẾT THEO CHỈ SỐ

1-1. Biến só

 mợt chū câi với mốt chl số kèm theo. Ví dụ vái chū x chàng han, như vây io bién so dộc lâp ae là $x_{1}, x_{2} ; x_{3} \ldots x_{n}$ hoăc x^{1},

Vơ quy ươ đó ta dê dang biể diên mờt tơng có dạng :

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=\sum_{i=1}^{i=4} a_{r} x_{i} \\
& \frac{\partial u}{\partial y^{1}} d x^{1}+\frac{\partial u}{\partial x^{2}} d x^{2}+\frac{\partial u}{\partial x^{3}} d x^{3}=\sum_{i=1}^{i=3} \frac{\partial u}{\partial x^{i}} d x^{i} \\
& \frac{\partial y^{1}}{\partial x^{\alpha}} \cdot \frac{\partial y^{1}}{\partial x^{\beta}}+\frac{\partial y^{2}}{\partial x^{\alpha}} \cdot \frac{\partial y^{2}}{\partial x^{\beta}}+\ldots+\frac{\partial y^{n}}{\partial x^{\alpha}} \cdot \frac{\partial y^{n}}{\partial x^{\beta}}=\sum_{i=1}^{i \pi n} \frac{\partial y^{i}}{\partial x^{\pi}} \cdot \frac{\partial y^{j}}{\partial x^{\beta}}
\end{aligned}
$$

duek dang tong theo hai chi só khác nhau nher :

$$
\sum_{i=1}^{i=3} \sum_{i=1}^{j=2} a_{i j} b^{i j} \text { hay } \sum_{\alpha=1}^{\alpha=n \beta=n} \sum_{\beta=1}^{n} A^{\alpha \beta \beta} \frac{\partial x^{\alpha}}{\partial y^{i}} \frac{\partial x^{\beta}}{\partial y^{j}}
$$

Các bie̛n thức đo co nghia là:

$$
\begin{aligned}
& \sum_{i=1}^{i=3} \sum_{j=1}^{j=2} a_{i j} b^{i j}=\sum_{i=1}^{i=3} a_{i 1}^{b^{1}}+a_{i 2} b^{i 2}= \\
& =a_{11} b^{11}+a_{21} b^{21}+a_{31} b^{31}+a_{12} b^{i 2}+a_{22} b^{22}+a_{32} b^{32} \\
& \sum_{a=1}^{a=n} \sum_{\beta=1}^{\beta=n} A^{\alpha \beta} \frac{\partial x^{i \alpha}}{\partial y^{i}} \cdot \frac{\partial x^{\beta}}{\partial y^{i}}= \\
& =\sum_{\beta=1}^{\beta=n}\left[A^{i \beta} \cdot \frac{\partial x^{I}}{\partial y^{i}} \cdot \frac{\partial x^{\beta}}{\partial y^{j}}+A^{\partial \beta} \cdot \frac{\partial x^{2}}{\partial y^{i}} \cdot \frac{\partial x^{\beta}}{\partial y^{j}}+\ldots y^{\prime}+A^{n \beta} \cdot \frac{\partial x^{n}}{\partial y^{i}} \cdot \frac{\partial x^{\beta}}{\partial y^{j}}\right]= \\
& =A^{l l} \frac{\partial x^{1}}{\partial y^{i}} \cdot \frac{\partial x^{i}}{\partial y^{j}}+A^{2 \lambda} \frac{\partial x^{2}}{\partial y^{i}} \cdot \frac{\partial x^{1}}{\partial y^{j}}+\ldots+A^{n l} \frac{\partial x^{n}}{\partial y^{i}} \cdot \frac{\partial x^{1}}{\partial y^{j}}+ \\
& +A^{12} \frac{\partial x^{1}}{\partial y^{i}} \cdot \frac{\partial x^{2}}{\partial y^{j}}-A^{22} \frac{\partial x^{2}}{\partial y^{i}} \cdot \frac{\partial x^{2}}{\partial y^{j}}+\ldots+A^{n 2} \frac{\partial x^{n}}{\partial y^{i}} \cdot \frac{\partial x^{2}}{\partial y^{j}}+ \\
& +A^{1 n} \cdot \frac{\partial x^{1}}{\partial y^{y}} \cdot \frac{\partial x^{n}}{\partial y^{j}}+A^{2 n} \frac{\partial x^{2}}{\partial y^{i}} \frac{\partial x^{n}}{\partial y^{d}}+\ldots+A^{n n} \frac{\partial \sum^{n}}{\partial y^{i}} \cdot \frac{\partial x^{n}}{\partial y^{j}}
\end{aligned}
$$

$$
\prod_{i=1}^{i=3}\left(a_{i}^{1}-b_{i}^{1}\right)=\left(a_{1}^{1}-b_{1}^{1}\right)\left(a_{2}^{1}-a_{2}^{1}\right)\left(i_{3}^{3}-b_{1}^{1}\right)
$$

1-2. Quy ức Anh-stanh (Einsteía)

Ta dual ra quy toóc sau đây dé̉ loait bơ dáa tóng :
Nêu trong nọ̣t đơn thưc mợt chi ab dực nhăc lại một lên
 tông đ̛̃i vój chis s6 đo.

Vi dụ

$$
\sum_{i=1}^{i=n} a_{r} y^{j}=a_{1} y^{l}+a_{2} y^{2}+\ldots+a_{n} y^{n}
$$

Đưọc viét gọn lại nha sau :

$$
\sum_{i=1}^{i \pm n} a_{i} j^{i}=a_{i} y^{i} \quad(i=1,2, \ldots n)
$$

$$
a_{k}^{1} \cdot b_{3}^{k}=a_{1}^{1} b_{3}^{1}+a_{2}^{1} b_{3}^{2}+\ldots+a_{n}^{1} b_{3}^{n}
$$

Biếu thực : $a_{k} \cdot k_{1}^{5} \cdot c^{1}$ vơ $(k=1,2 \ldots m)$ và $(1=1,2 \ldots n)$ co mgha la :

$$
\begin{aligned}
a_{k} \cdot b_{1}^{k} \cdot c^{1}= & a_{1} b_{1}^{1} c^{1}+a_{2} b_{1}^{2} c^{1}+\ldots+a_{m} b_{1}^{m} \cdot c^{1}+ \\
& +a_{1} b_{2}^{1} c^{2}+a_{2} b_{2}^{2} c^{2}+\ldots+a_{n} b_{2}^{n_{n}} c^{2}+ \\
& +\ldots \ldots \ldots+ \\
& +a_{1} b_{n}^{1} c^{n}+\ldots+a_{m} b_{n}^{m} c^{n}
\end{aligned}
$$

Quy ưó đ đó áp dụng cả cho các đạo hàm rièng vái hàm n biễ

$$
\frac{\partial x^{2}}{\partial y^{\beta}} d y^{\beta}=\frac{\partial x^{2}}{\partial y^{1}} d y^{1}+\frac{\partial x^{2}}{\partial y^{2}} d y^{2}+\ldots+\frac{\partial x^{2}}{\partial y^{n}} \cdot d y^{n}
$$

Biêu thứe $\frac{\partial S}{\partial \mathrm{z}^{\mathrm{i}}} \cdot \frac{\partial \mathrm{z}^{\mathrm{i}}}{\partial y^{\mathrm{k}}}$ nó aghia la:

$$
\frac{\partial S}{\partial x^{i}} \frac{\partial x^{i}}{\partial y^{k}}=\frac{\partial S}{\partial x^{1}} \cdot \frac{\partial x^{1}}{\partial x^{k}}+\frac{\partial S}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial y^{k}}+\ldots+\frac{\partial S}{\partial x^{n}} \cdot \frac{\partial x^{n}}{\partial y^{k}}
$$

 cam". Te co the thay didi chi so cam ma y nghia cila bién thứ không thay đơi. VI du :

$$
\begin{aligned}
& a^{b} b_{1}=a^{a} b^{2}=a^{c} b_{a b}=\cdots \\
& \frac{\partial S}{\partial \mathbf{i}^{\prime}} \cdot \frac{\partial x^{i}}{\partial y^{k}}=\frac{\partial S}{\partial x^{w}} \cdot \frac{\partial x^{m}}{\partial y^{k}}=\frac{\partial S}{\partial x^{y}} \cdot \frac{\partial x^{y}}{\partial x^{k}}=\ldots
\end{aligned}
$$

1-3. Ki hitôn Krố-nêtke (Kronecker)

 KI biẹu do dươe viêt như sau :

$$
\begin{array}{ll}
\delta_{i j}=1 \quad \text { khi } i=j \quad(i, j=1,2,3) \\
\delta_{i, ~}^{i}=0 & \text { khi } i \neq j
\end{array}
$$

Voi dith nghia do ta co the thigt lap ma mrạ san day:

$$
\left[\begin{array}{lll}
\delta_{11} & \delta_{21} & \delta_{13} \\
\delta_{21} & \alpha_{22} & \delta_{23} \\
\delta_{31} & \delta_{32} & \delta_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0
\end{array}\right]
$$

Th thity cace phon ta ben fucong cheo chith la bang don vị

$$
d^{2}+(d)^{2}+\left(d x^{2}\right)^{2}+(d)^{2}
$$

Co thê viêt dứn dang ;

1-4. Ki hị̣̂̂u phản đói xứng (Kí biẹu Spin)

Đượ viett như san :

$$
\begin{aligned}
& \varepsilon^{i j}=0(i, j=1,2) \\
& \varepsilon^{i j}=1(i=1 ; j=2) \\
& \varepsilon^{i j}=-1(i=2 ; j=1)
\end{aligned}
$$

nghia la

$$
\varepsilon^{11}=0, \varepsilon^{22}=0, \varepsilon^{12}=1, \varepsilon^{21}=-1
$$

Th nibṣn thafy rang: $\varepsilon^{\mathrm{ij}}=-\varepsilon^{\mathrm{ji}}$
Yi dụ wời đỉnh thức :

$$
\left|\begin{array}{ll}
a_{1}^{1} & \mathbf{a}_{1}^{4} \\
a_{2}^{1} & a_{2}^{2}
\end{array}\right|=a_{1}^{1} a_{2}^{2}-a_{2}^{1}, a_{1}^{2}
$$

Có thé biefu dién nhu sau

$$
\varepsilon^{1} a_{1}^{1} a_{j}^{2}=a_{1}^{1} a_{2}^{2}-a_{2}^{1} a_{1}^{2}
$$

KJ hiẹu phàn aficug con Flat cho ba chi so hoado nhitu hon nüg. VI du Wer ba chl sol ta c6:

$$
\varepsilon^{i j k} \text { hay } \varepsilon_{i j k}
$$

 cung tri so, bang 1 nẽ̛ ha chi so co tha tự 123 hay một sof chẳn ian hoan vị:

V1 dụ :

$$
\begin{aligned}
& \varepsilon^{112}=\varepsilon^{222}=\varepsilon^{233}=0 \\
& \varepsilon^{123}=\varepsilon^{312}=\varepsilon^{31}=1 \\
& \varepsilon^{132}=\varepsilon^{213}=\varepsilon^{321}=-1
\end{aligned}
$$

Nyla là

$$
\varepsilon^{i j k}=\frac{1}{2}(j-j)(j-k)(k-1)
$$

Cung eo the xet thut hinh vé (1-1) chitu nguoc laji $\varepsilon^{123} \times-1$

Mọt dinh thúc hang ba có the oieu dien nhu eaus:

$$
\left|\begin{array}{lll}
a_{1}^{1} & a_{1}^{2} & a_{1}^{3} \\
a_{2}^{1} & a_{2}^{2} & a_{2}^{3} \\
a_{3}^{1} & a_{2}^{3} & a_{3}^{3}
\end{array}\right|=e^{1 j k_{1} a_{1}^{1} a_{1}^{2} a_{k}^{3}}
$$

 nhiẹ́u lần ở trôn hoạ̀c à duói thl phép tởng chí layy một lânn.

Vi dụ:

$$
a_{e q} d x^{\alpha} \cdot d x^{\prime 2}=a_{11}\left(d x^{1} y^{2}+a_{22}\left(d x^{2}\right)^{2}+\ldots+a_{n n}\left(d x^{n}\right)^{2}\right.
$$

Thực vậy vi thea dịnh nghia :

$$
\dot{\mathrm{a}}_{\alpha \alpha} \mathrm{d} \mathrm{x}^{\prime 2} \cdot \mathrm{dx}^{\alpha}=\delta_{\alpha \beta} \beta_{\alpha \beta} \mathrm{d}^{\prime /} \mathrm{d} \mathrm{x}^{\prime}
$$

Trên dây ta đa nói các tinh chät chung cho các chi sóo trẻn hoặc ơ dươi. Trong phép toân tenxa chi só ó trên huậc δ dứ̛i rất quan trọng, vị trí dó chl cho ta biết đó là vecto phàn biến hay hiệp bién (điếu này sē đực nóí rō ơ phàn sau) do đó ta phải thận trọng không đượ nhåm lẵ.

1-5. Các phép toán đại so dưới dạng chì só

1. Phép cộng : Chì sớ có thé thực hiện khí :

- Các đại lượng dự̛̣ biêu diễn bềng các dạng chf sṓ phải là các đại lương cùng loại.
- Cace chí sơ phải cùng có gizi hạn nhu nhau. Nẽu các chi sof không co cùng mợt giới hạn thi ta phải sử dụng cace phép
 phép cộng.

Ví dụ : Nếu ab và ca là câc đạa lự̛̣g đợng loaî thì tổng $\mathrm{a}_{\mathrm{i}}^{3} \mathrm{~b}$ và $\mathrm{e} \mathrm{f}^{\mathrm{f}} \mathrm{i}^{\mathrm{i}}$ vói $\mathrm{i}=1,2,3,4$ sē là :

$$
a^{3} b^{i}+c_{i} d^{i} \quad(i=1,2,3,4)
$$

2. Phép nhan vái mat so: Ta có caic biéu thức tưng quan sau day :

$$
\begin{gathered}
\left.5, \mu a^{i} b_{i}^{j}\right)=5 \mu\left(a^{h} b_{k}^{j}\right. \\
(\mu+v) a^{i} b_{i}^{i}=\mu a^{i} b!+a^{i} b_{i}^{j} \\
\mu\left(a^{i} b_{1}^{j}+c^{i} d_{i}^{j}\right)=\mu\left(a^{i} b_{i}^{j}\right)+\mu\left(c_{i}^{j}\right)
\end{gathered}
$$

a và v là mợt só thựe nào dó.
3. Phép nhan hai sồ dưoi dang chi só :
 Tich cùa a.b sẽ nhur sau :

$$
\mathbf{a} . \mathrm{b} \doteq \mathbf{m}^{z} \cdot \mathbf{r}_{\alpha} \cdot \mathbf{n}^{\beta} \mathbf{s}_{\beta}=\mathbf{m}^{\alpha} \cdot \mathbf{r}^{g} \cdot \mathbf{r}_{r 2} \mathbf{s}_{\beta}
$$

 khai trî́n của biéu thức đọ́ se là :

$$
m^{\prime} n^{\prime 2} r_{a} s_{\alpha}=m^{1} n^{1} r_{1} s_{1}+m^{2} n^{2} r_{2} s_{2}+\ldots+m^{4} n^{4} r_{4}^{s_{4}}
$$

Mọt v[dư khac, ta co :

$$
\begin{aligned}
& d y^{i}=\frac{\partial y^{i}}{\partial x^{\alpha}} \mathrm{d} x^{\alpha} \quad(\alpha=1,2,3) \\
& d y^{j}=\frac{\partial y^{j}}{\partial x^{\beta}} \mathrm{d} x^{\beta} \quad(\beta=1,2,3)
\end{aligned}
$$

Vạy:

$$
d y^{i} \cdot d y^{j}=\frac{\partial y^{j}}{\partial x^{\alpha}} \cdot \frac{\partial y^{j}}{\partial x^{\beta}} \cdot d x^{\alpha} \cdot d x^{\beta}
$$

vaí $(\alpha=1,2,3)$ và $(\beta=1,2,3)$
Không nên nhắm phêp toán dó wớ phêp nhan sau day :

$$
(\mathrm{d} y)^{2}=\left(\frac{\partial y^{\mathrm{i}}}{\partial \mathrm{x}^{2}}\right)^{2} \cdot\left(\mathrm{~d} x^{2}\right)^{2} \quad(\alpha=1,2,3)
$$

Tính chăt hoảu vị, kếl hạp và phản phới đếu rghiẹ̀m đúng vai càc phẹf toên chì só:

$$
\begin{aligned}
& a_{i} b^{i}=b^{i} a_{1} \\
& \left(a_{j}^{i} b_{b}, c^{i}=z_{j}^{j} n_{k}^{j} c_{1}^{k}\right) \\
& a_{j}\left(b_{n}^{i}+c_{7}^{i}\right)=a_{i} b_{n}^{j}+a_{1} c_{r}^{j}
\end{aligned}
$$

4. Lūy thừ : Ví dụ ta phài thực hiện phêp lî́y thừa :

$$
\left(a_{\mathrm{j}}^{\mathrm{i}} \cdot \mathrm{~b}_{\mathrm{b}}^{\mathrm{j}}\right)^{3} \quad(\mathrm{j}=1,2,3)
$$

Ta phái thay cac chì s δ câm như sau :

$$
\begin{gathered}
\left(a_{i} b_{k}^{i}\right)^{3}=\left(a_{j}^{i} b_{b}^{i}\right)\left(a_{s}^{i}, b_{b}^{i}\right)\left(a_{i}^{i}, b_{i}^{i}\right) \\
(j=1,2,3) \\
(s=1,2,3) \\
(t=1,2,3)
\end{gathered}
$$

5. Phẹp dưo hàm:

Giâ sự a_{t} vâ ba \mathfrak{b}^{i} với $i=1,2 \ldots$ n lả các hàm sớ cùng biên só t. Đạo hảm cúa tích $a_{i} k^{i}$ sẹ̄ là :

$$
\frac{d}{d t}\left(a_{i} b^{i}\right)=\dot{a}_{i} b_{i}+a_{i} \dot{b}^{i}
$$

Trong dof: $\quad \dot{a}_{i}=\frac{d a_{i}}{d t}$ ve $\dot{b}^{i}=\frac{d b^{i}}{d t}$
Thưe vạy ta co:

$$
\begin{aligned}
\frac{d}{d t}\left(a_{i} b^{j}\right) & =\frac{d}{d t}\left(a_{1} b^{1}+a_{2} b^{2}+\ldots+a_{n} b^{n}\right) \\
& =\dot{a}_{1} b^{1}+a_{1} \dot{b}^{1}+\dot{a}_{2} b^{2}+a_{2} \dot{b}^{2}+\ldots+\dot{a}_{n} b^{n}+a_{n} \dot{b}^{n} \\
& =\dot{a}_{i} b^{i}+a_{i} \dot{b}^{i}
\end{aligned}
$$

Bay gió ta hay xét truờng hợp vói hai chí sô cam :

$$
\frac{d}{d t}\left(q_{i} b^{\prime}{ }^{\mathbf{j}}\right) \text { vái }(j=1,2, \ldots n, j=1,2 \ldots n\}
$$

$$
\frac{d}{d t}\left(a_{i j} b^{i}{ }^{i}{ }^{j}\right)=\dot{a}_{i j} b^{i} c^{i}+a_{i j} b^{i} c^{j}+a_{i j} b^{j}{ }^{j}
$$

Thựe vậy, dạt $\mathrm{d}_{\mathrm{i}}=\mathrm{a}_{\mathrm{ij}} \mathrm{j}^{j}$ biếu thứe trên đự̂c viêt lại như sau:

$$
a_{i j} b^{i}{ }^{\mathbf{j}}=d_{i} b^{i}
$$

Ơ trōn táa dă có:

$$
\frac{d\left(d_{i} b^{i}\right)}{d t}=d_{j} b^{i}+d_{i} b^{i}
$$

Tính $\dot{d}_{\mathbf{i}}$ ta 06 :

$$
\dot{d}_{i}=\dot{a}_{i j} j^{j}+a_{i j}{ }^{j}
$$

Vày :

$$
\frac{d\left(a_{i j} b^{2} e^{j}\right)}{d t}=\left(\dot{a}_{i j} j^{j}+a_{i j} \dot{j}^{j}\right) b^{i}+d_{j} \dot{b}^{i}=\dot{a}_{i j} b^{i} e^{j}+a_{i j} b^{i} c^{j}+a_{i j} \cdot b^{i} b^{j}
$$

Cùng cách chứng minh vơi nhiếu chỉ sớ cả̀m. VI dụ :

$$
\frac{d}{d t}\left(a_{i j}{ }_{i j}{ }^{i j}\right)=\dot{a}_{i j} b^{i j}+a_{i j} \dot{b}^{i j}
$$

Đạc biẹt trong trường hợp dạng toàn phưng :

$$
\frac{d}{d t}\left(a_{i j} x^{i} x^{j}\right)=\dot{a}_{i j} x^{j} x^{j}+z_{i j} \dot{x}^{\dot{i}} x^{j}+a_{i j} x^{-x^{j}} x^{j}
$$

Khi $a_{i j}$ là nhửng hàng sóf thì ta $\mathrm{c} \delta$:

$$
\frac{d}{d t}\left(a_{i j} j^{j} x^{j}\right)=a_{i j}\left(\dot{x}^{\dot{i}} x^{j}+x^{i} \cdot \dot{x^{j}}\right)
$$

6. Cic dao hàm rieng phăn:

Ap dụng céc quy taçe độ hàm trên ta cá :

$$
\frac{\partial}{\partial x^{1}}\left(a_{i j} b^{j} e^{j}\right)=\frac{\partial a_{i j}}{\partial x^{l}} b^{i} e^{j}+a_{i j} \frac{\partial b^{i}{ }^{i} c^{j}}{\partial a^{2}} a_{i j} b^{j} \frac{\partial c^{j}}{\partial x^{1}}
$$

Cùng cách như vậy ta lấy vi phân riéng phân đời với $x^{2} \ldots x^{n}$.

Truờng kọp rièng quan trọng to là dạng toân phương đơi xững :

$$
T=a_{i j} x^{j} x^{j}
$$

'Trong đó $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$ và là các hàng só
Ta có :

$$
\frac{\partial T}{\partial x^{k}}=a_{i j}\left[\frac{\partial x^{i}}{\partial x^{k}} x^{j}+\frac{\partial x^{j}}{\partial x^{i}} x^{i}\right]
$$

Trong dis $\frac{\partial x^{i}}{\partial \mathrm{x}^{k}}=0$ với $i \neq k$ và bâng 1 với $i=k$.
Do dó : $\quad \frac{\partial T}{\partial x^{k}}=a_{i j}\left[\delta_{k^{j}}^{j}+\delta_{k}^{j} x^{i}\right]$
Nhutng

$$
\delta_{\mathrm{k}}^{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{kj}} \text { và } \delta_{\mathrm{k}}^{\mathrm{j}_{\mathrm{i}} \mathrm{a}_{\mathrm{ij}}}=\mathrm{a}_{\mathrm{ik}}
$$

Văद : $\quad \frac{\partial T}{\partial X^{k}}=a_{k!} x^{j}+a_{k i} x^{j}$
Trong biớu thưc cuff cùng ta co the thay cac chi sow cam.
Vhy : $\quad \frac{\partial T}{\partial x^{k}}=2 a_{\mathrm{k}_{\mathrm{j}}} \cdot \mathrm{x}_{\mathrm{j}} \quad(\mathrm{j}=1,2, \ldots \mathrm{n})$
7. Phep tich phin : Phép tich phan dươc thưc hiẹn theo quy tate của phép tống.

Vi dụ :

$$
\begin{gathered}
\int_{t_{0}}^{t} a_{i} b^{i} d t=\int_{1_{v}}^{t} a_{1} b^{1} d t+\int_{t_{n}}^{1} a_{2} b^{2} d t+\ldots+\int_{t_{4}}^{t} a_{n} b^{n} d t \\
(i=1,2 \ldots n)
\end{gathered}
$$

Ta cưng cơ thê sữ dụng phuơng phap tich phăn đoạn :

$$
\int_{i}^{1} a_{i} d b^{i}=a_{i}[b]_{t_{i}}^{i}-\int_{i_{2}}^{1} b^{i} d a_{i} \quad(i=1,2 \ldots n)
$$

