
C H A P T E R  

Introduction to Rotating 
Machines 

T 
he object of this chapter is to introduce and discuss some of the principles 
underlying the performance of electric machinery. As will be seen, these prin- 
ciples are common to both ac and dc machines. Various techniques and approx- 

imations involved in reducing a physical machine to simple mathematical models, 
sufficient to illustrate the basic principles, will be developed. 

4.1 E L E M E N T A R Y  C O N C E P T S  
Equation 1.27, e = d)~/dt, can be used to determine the voltages induced by time- 
varying magnetic fields. Electromagnetic energy conversion occurs when changes in 
the flux linkage ~. result from mechanical motion. In rotating machines, voltages are 
generated in windings or groups of coils by rotating these windings mechanically 
through a magnetic field, by mechanically rotating a magnetic field past the winding, 
or by designing the magnetic circuit so that the reluctance varies with rotation of the 
rotor. By any of these methods, the flux linking a specific coil is changed cyclically, 
and a time-varying voltage is generated. 

A set of such coils connected together is typically referred to as an armature 
winding. In general, the term armature winding is used to refer to a winding or a set 
of windings on a rotating machine which carry ac currents. In ac machines such as 
synchronous or induction machines, the armature winding is typically on the station- 
ary portion of the motor referred to as the stator, in which case these windings may 
also be referred to as stator windings. Figure 4.1 shows the stator winding of a large, 
multipole, three-phase synchronous motor under construction. 

In a dc machine, the armature winding is found on the rotating member, referred 
to as the rotor. Figure 4.2 shows a dc-machine rotor. As we will see, the armature 
winding of a dc machine consists of many coils connected together to form a closed 
loop. A rotating mechanical contact is used to supply current to the armature winding 
as the rotor rotates. 
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Figure 4.1 Stator of a 190-MVA three-phase 12-kV 37-r/min hydroelectric generator. 
The conductors have hollow passages through which cooling water is circulated. (Brown 
Boveri Corporation.) 

Synchronous and dc machines typically include a second winding (or set of 
windings) which carry dc current and which are used to produce the main operating 
flux in the machine. Such a winding is typically referred to as field winding. The field 
winding on a dc machine is found on the stator, while that on a synchronous machine 
is found on the rotor, in which case current must be supplied to the field winding via 
a rotating mechanical contact. As we have seen, permanent magnets also produce dc 
magnetic flux and are used in the place of field windings in some machines. 

In most rotating machines, the stator and rotor are made of electrical steel, and 
the windings are installed in slots on these structures. As is discussed in Chapter 1, 
the use of such high-permeability material maximizes the coupling between the coils 
and increases the magnetic energy density associated with the electromechanical 
interaction. It also enables the machine designer to shape and distribute the magnetic 
fields according to the requirements of each particular machine design. The time- 
varying flux present in the armature structures of these machines tends to induce 
currents, known as eddy currents, in the electrical steel. Eddy currents can be a large 
source of loss in such machines and can significantly reduce machine performance. In 
order to minimize the effects of eddy currents, the armature structure is typically built 
from thin laminations of electrical steel which are insulated from each other. This is 
illustrated in Fig. 4.3, which shows the stator core of an ac motor being constructed 
as a stack of individual laminations. 

In some machines, such as variable reluctance machines and stepper motors, 
there are no windings on the rotor. Operation of these machines depends on the 
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F igu re  4 .2  Armature of a dc motor. (General Electric Company.) 

F igu re  4.3 Partially completed stator core for an ac motor. 
(Westinghouse Electric Corporation.) 
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nonuniformity of air-gap reluctance associated with variations in rotor position in 
conjunction with time-varying currents applied to their stator windings. In such ma- 
chines, both the stator and rotor structures are subjected to time-varying magnetic 
flux and, as a result, both may require lamination to reduce eddy-current losses. 

Rotating electric machines take many forms and are known by many names: dc, 
synchronous, permanent-magnet, induction, variable reluctance, hysteresis, brush- 
less, and so on. Although these machines appear to be quite dissimilar, the physical 
principles governing their behavior are quite similar, and it is often helpful to think 
of them in terms of the same physical picture. For example, analysis of a dc machine 
shows that associated with both the rotor and the stator are magnetic flux distributions 
which are fixed in space and that the torque-producing characteristic of the dc machine 
stems from the tendency of these flux distributions to align. An induction machine, in 
spite of many fundamental differences, works on exactly the same principle; one can 
identify flux distributions associated with the rotor and stator. Although they are not 
stationary but rather rotate in synchronism, just as in a dc motor they are displaced by 
a constant angular separation, and torque is produced by the tendency of these flux 
distribution to align. 

Certainly, analytically based models are essential to the analysis and design of 
electric machines, and such models will be derived thoughout this book. However, 
it is also important to recognize that physical insight into the performance of these 
devices is equally useful. One objective of this and subsequent chapters is to guide 
the reader in the development of such insight. 

4,2  I N T R O D U C T I O N  TO AC AND DC 
M A C H I N E S  

4.2.1 AC Machines 

Traditional ac machines fall into one of two categories: synchronous and induction. 
In synchronous machines, rotor-winding currents are supplied directly from the sta- 
tionary frame through a rotating contact. In induction machines, rotor currents are 
induced in the rotor windings by a combination of the time-variation of the stator 
currents and the motion of the rotor relative to the stator. 

Synchronous Machines A preliminary picture of synchronous-machine perfor- 
mance can be gained by discussing the voltage induced in the armature of the 
very much simplified salient-pole ac synchronous generator shown schematically 
in Fig. 4.4. The field-winding of this machine produces a single pair of magnetic 
poles (similar to that of a bar magnet), and hence this machine is referred to as a 
two-pole machine. 

With rare exceptions, the armature winding of a synchronous machine is on the 
stator, and the field winding is on the rotor, as is true for the simplified machine 
of Fig. 4.4. The field winding is excited by direct current conducted to it by means 
of stationary carbon brushes which contact rotatating slip rings or collector rings. 
Practical factors usually dictate this orientation of the two windings: It is advantageous 



4.2 Introduction to AC and DC Machines 177 

~ld 
nding 

Flux 
paths 

Figure 4.4 Schematic view of a simple, 
two-pole, single-phase synchronous 
generator. 

to have the single, low-power field winding on the rotor while having the high-power, 
typically multiple-phase, armature winding on the stator. 

The armature winding, consisting here of only a single coil of N turns, is indicated 
in cross section by the two coil sides a and - a  placed in diametrically opposite narrow 
slots on the inner periphery of the stator of Fig. 4.4. The conductors forming these 
coil sides are parallel to the shaft of the machine and are connected in series by 
end connections (not shown in the figure). The rotor is turned at a constant speed 
by a source of mechanical power connected to its shaft. The armature winding is 
assumed to be open-circuited and hence the flux in this machine is produced by the 
field winding alone. Flux paths are shown schematically by dashed lines in Fig. 4.4. 

A highly idealized analysis of this machine would assume a sinusoidal distribu- 
tion of magnetic flux in the air gap. The resultant radial distribution of air-gap flux 
density B is shown in Fig. 4.5a as a function of the spatial angle Oa (measured with 
respect to the magnetic axis of the armature winding) around the rotor periphery. In 
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Figure 4.5 (a) Space distribution of flux density and 
(b) corresponding waveform of the generated voltage for the 
single-phase generator of Fig. 4.4. 
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practice, the air-gap flux-density of practical salient-pole machines can be made to 
approximate a sinusoidal distribution by properly shaping the pole faces. 

As the rotor rotates, the flux-linkages of the armature winding change with time. 
Under the assumption of a sinusoidal flux distribution and constant rotor speed, the 
resulting coil voltage will be sinusoidal in time as shown in Fig. 4.5b. The coil 
voltage passes through a complete cycle for each revolution of the two-pole machine 
of Fig. 4.4. Its frequency in cycles per second (Hz) is the same as the speed of the 
rotor in revolutions per second: the electric frequency of the generated voltage is 
synchronized with the mechanical speed, and this is the reason for the designation 
"synchronous" machine. Thus a two-pole synchronous machine must revolve at 3600 
revolutions per minute to produce a 60-Hz voltage. 

A great many synchronous machines have more than two poles. As a specific 
example, Fig. 4.6 shows in schematic form a four-pole single-phase generator. The 
field coils are connected so that the poles are of alternate polarity. There are two 
complete wavelengths, or cycles, in the flux distribution around the periphery, as 
shown in Fig. 4.7. The armature winding now consists of two coils al, - a l  and 
a2, --a2 connected in series by their end connections. The span of each coil is one 
wavelength of flux. The generated voltage now goes through two complete cycles 
per revolution of the rotor. The frequency in hertz will thus be twice the speed in 
revolutions per second. 

When a machine has more than two poles, it is convenient to concentrate on 
a single pair of poles and to recognize that the electric, magnetic, and mechanical 
conditions associated with every other pole pair are repetitions of those for the pair 
under consideration. For this reason it is convenient to express angles in electrical 
degrees or electrical radians rather than in physical units. One pair of poles in a 
multipole machine or one cycle of flux distribution equals 360 electrical degrees or 
2Jr electrical radians. Since there are poles/2 complete wavelengths, or cycles, in one 

Figure 4.6 Schematic view of a 
simple, four-pole, single-phase 
synchronous generator. 
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Figure 4.7 Space distribution of the air-gap flux density in a 
idealized, four-pole synchronous generator. 

complete revolution, it follows, for example, that 

( p ° l e s )  Oa (4.1) 
0ae = 2 

where 0ae is the angle in electrical units and 0a is the spatial angle. This same rela- 
tionship applies to all angular measurements in a multipole machine; their values in 
electrical units will be equal to (poles/2) times their actual spatial values. 

The coil voltage of a multipole machine passes through a complete cycle every 
time a pair of poles sweeps by, or (poles/2) times each revolution. The electrical 
frequency fe of the voltage generated in a synchronous machine is therefore 

fe -- ( p l e s )  n Hz (4.2) 

where n is the mechanical speed in revolutions per minute, and hence n/60 is the 
speed in revolutions per second. The electrical frequency of the generated voltage in 
radians per second is We = (poles/2) corn where corn is the mechanical speed in radians 
per second. 

The rotors shown in Figs. 4.4 and 4.6 have salient, or projecting, poles with con- 
centrated windings. Figure 4.8 shows diagrammatically a nonsalient-pole, or cylin- 
drical rotor. The field winding is a two-pole distributed winding; the coil sides are 
distributed in multiple slots around the rotor periphery and arranged to produce an 
approximately sinusoidal distribution of radial air-gap flux. 

The relationship between electrical frequency and rotor speed of Eq. 4.2 can serve 
as a basis for understanding why some synchronous generators have salient-pole ro- 
tor structures while others have cylindrical rotors. Most power systems in the world 
operate at frequencies of either 50 or 60 Hz. A salient-pole construction is character- 
istic of hydroelectric generators because hydraulic turbines operate at relatively low 
speeds, and hence a relatively large number of poles is required to produce the desired 
frequency; the salient-pole construction is better adapted mechanically to this situa- 
tion. The rotor of a large hydroelectric generator is shown in Fig. 4.9. Steam turbines 
and gas turbines, however, operate best at relatively high speeds, and turbine-driven 
alternators or turbine generators are commonly two- or four-pole cylindrical-rotor 
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Figure 4.8 Elementary two-pole 
cylindrical-rotor field winding. 

Figure 4.9 Water-cooled rotor of the 190-MVA 
hydroelectric generator whose stator is shown in Fig. 4.1. 
(Brown Boveri Corporation.) 
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Figure 4 .10  Rotor of a two-pole 3600 r/min turbine generator. (Westinghouse Electric 
Corporation.) 

machines. The rotors are made from a single steel forging or from several forgings, 
as shown in Figs. 4.10 and 4.11. 

Most of the world's power systems are three-phase systems and, as a result, 
with very few exceptions, synchronous generators are three-phase machines. For the 
production of a set of three voltages phase-displaced by 120 electrical degrees in 
time, a minimum of three coils phase-displaced 120 electrical degrees in space must 
be used. A simplified schematic view of a three-phase, two-pole machine with one 
coil per phase is shown in Fig. 4.12a. The three phases are designated by the letters 
a, b, and c. In an elementary four-pole machine, a minimum of two such sets of coils 
must be used, as illustrated in Fig. 4.12b; in an elementary multipole machine, the 
minimum number of coils sets is given by one half the number of poles. 

The two coils in each phase of Fig. 4.12b are connected in series so that their 
voltages add, and the three phases may then be either Y- or A-connected. Figure 4.12c 
shows how the coils may be interconnected to form a Y connection. Note however, 
since the voltages in the coils of each phase are indentical, a parallel connection is 
also possible, e.g., coil (a, - a )  in parallel with coil (a', - a ' ) ,  and so on. 

When a synchronous generator supplies electric power to a load, the armature 
current creates a magnetic flux wave in the air gap which rotates at synchronous speed, 
as shown in Section 4.5. This flux reacts with the flux created by the field current, 
and electromechanical torque results from the tendency of these two magnetic fields 
to align. In a generator this torque opposes rotation, and mechanical torque must be 
applied from the prime mover to sustain rotation. This electromechanical torque is the 
mechanism through which the synchronous generator converts mechanical to electric 
energy. 

The counterpart of the synchronous generator is the synchronous motor. A cut- 
away view of a three-phase, 60-Hz synchronous motor is shown in Fig. 4.13. Alter- 
nating current is supplied to the armature winding on the stator, and dc excitation 
is supplied to the field winding on the rotor. The magnetic field produced by the 
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Figure 4.11 Parts of multipiece rotor for a 1333-MVA three-phase 1800 r/min turbine 
generator. The separate forgings will be shrunk on the shaft before final machining and 
milling slots for the windings. The total weight of the rotor is 435,000 lb. (Brown Boveri 
Corporation.) 
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Figure 4.12 Schematic views of three-phase generators: (a) two-pole, (b) four-pole, and 
(c) Y connection of the windings. 

armature currents rotates at synchronous speed. To produce a steady electromechan- 
ical torque, the magnetic fields of the stator and rotor must be constant in amplitude 
and stationary with respect to each other. In a synchronous motor, the steady-state 
speed is determined by the number of poles and the frequency of the armature current. 
Thus a synchronous motor operated from a constant-frequency ac source will operate 
at a constant steady-state speed. 
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Figure 4 .13  Cutaway view of a high-speed synchronous motor. The excitor shown on the 
left end of the rotor is a small ac generator with a rotating semiconductor rectifier assembly. 
(General Electric Company.) 

In a motor the electromechanical torque is in the direction of rotation and balances 
the opposing torque required to drive the mechanical load. The flux produced by 
currents in the armature of a synchronous motor rotates ahead of that produced by 
the field, thus pulling on the field (and hence on the rotor) and doing work. This is 
the opposite of the situation in a synchronous generator, where the field does work as 
its flux pulls on that of the armature, which is lagging behind. In both generators and 
motors, an electromechanical torque and a rotational voltage are produced. These are 
the essential phenomena for electromechanical energy conversion. 

Induction Machines A second type of ac machine is the induction machine. Like 
the synchronous machine, the stator winding of an induction machine is excited with 
alternating currents. In contrast to a synchronous machine in which a field winding on 
the rotor is excited with dc current, alternating currents flow in the rotor windings of 
an induction machine. In induction machines, alternating currents are applied directly 
to the stator windings. Rotor currents are then produced by induction, i.e., transformer 
action. The induction machine may be regarded as a generalized transformer in which 
electric power is transformed between rotor and stator together with a change of 
frequency and a flow of mechanical power. Although the induction motor is the most 
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common of all motors, it is seldom used as a generator; its performance characteristics 
as a generator are unsatisfactory for most applications, although in recent years it has 
been found to be well suited for wind-power applications. The induction machine 
may also be used as a frequency changer. 

In the induction motor, the stator windings are essentially the same as those of 
a synchronous machine. However, the rotor windings are electrically short-circuited 
and frequently have no external connections; currents are induced by transformer 
action from the stator winding. A cutaway view of a squirrel-cage induction motor is 
shown in Fig. 4.14. Here the rotor "windings" are actually solid aluminum bars which 
are cast into the slots in the rotor and which are shorted together by cast aluminum 
rings at each end of the rotor. This type of rotor construction results in induction 
motors which are relatively inexpensive and highly reliable, factors contributing to 
their immense popularity and widespread application. 

As in a synchronous motor, the armature flux in the induction motor leads that of 
the rotor and produces an electromechanical torque. In fact, we will see that, just as 
in a synchronous machine, the rotor and stator fluxes rotate in synchronism with each 
other and that torque is related to the relative displacement between them. However, 
unlike a synchronous machine, the rotor of an induction machine does not itself 
rotate synchronously; it is the "slipping" of the rotor with respect to the synchronous 
armature flux that gives rise to the induced rotor currents and hence the torque. 
Induction motors operate at speeds less than the synchronous mechanical speed. A 
typical speed-torque characteristic for an induction motor is shown in Fig. 4.15. 

Figure 4 .14  Cutaway view of a squirrel-cage induction motor. 
(Westinghouse Electric Corporation.) 
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Figure 4 .15 Typical induction-motor speed-torque 
characteristic. 

Figure 4 .16 Cutaway view of a typical integral-horsepower dc motor. (ASEA 
Brown Boveri.) 

4 .2 .2  DC M a c h i n e s  

As has been discussed, the armature winding of a dc generator is on the rotor with 
current conducted from it by means of carbon brushes. The field winding is on the 
stator and is excited by direct current. A cutaway view of a dc motor is shown in 
Fig. 4.16. 

A very elementary two-pole dc generator is shown in Fig. 4.17. The armature 
winding, consisting of a single coil of N turns, is indicated by the two coil sides 
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Figure 4.17  Elementary dc machine with 
commutator. 

a and - a  placed at diametrically opposite points on the rotor with the conductors 
parallel to the shaft. The rotor is normally turned at a constant speed by a source 
of mechanical power connected to the shaft. The air-gap flux distribution usually 
approximates a flat-topped wave, rather than the sine wave found in ac machines, and 
is shown in Fig. 4.18a. Rotation of the coil generates a coil voltage which is a time 
function having the same waveform as the spatial flux-density distribution. 

Although the ultimate purpose is the generation of a direct voltage, the voltage 
induced in an individual armature coil is an alternating voltage, which must there- 
fore be rectified. The output voltage of an ac machine can be rectified using external 
semiconductor rectifiers. This is in contrast to the conventional dc machine in which 
rectification is produced mechanically by means of a commutator, which is a cylinder 
formed of copper segments insulated from each other by mica or some other highly 
insulating material and mounted on, but insulated from, the rotor shaft. Stationary 
carbon brushes held against the commutator surface connect the winding to the exter- 
nal armature terminals. The commutator and brushes can readily be seen in Fig. 4.16. 
The need for commutation is the reason why the armature windings of dc machines 
are placed on the rotor. 

For the elementary dc generator, the commutator takes the form shown in Fig. 4.17. 
For the direction of rotation shown, the commutator at all times connects the coil side, 
which is under the south pole, to the positive brush and that under the north pole to 
the negative brush. The commutator provides full-wave rectification, transforming 
the voltage waveform between brushes to that of Fig. 4.18b and making available 
a unidirectional voltage to the external circuit. The dc machine of Fig. 4.17 is, of 
course, simplified to the point of being unrealistic in the practical sense, and later it 
will be essential to examine the action of more realistic commutators. 

The effect of direct current in the field winding of a dc machine is to create a 
magnetic flux distribution which is stationary with respect to the stator. Similarly, the 
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Figure 4.18 (a) Space distribution of air-gap flux density in an 
elementary dc machine; (b) waveform of voltage between brushes 

effect of the commutator is such that when direct current flows through the brushes, 
the armature creates a magnetic flux distribution which is also fixed in space and 
whose axis, determined by the design of the machine and the position of the brushes, 
is typically perpendicular to the axis of the field flux. 

Thus, just as in the ac machines discussed previously, it is the interaction of these 
two flux distributions that creates the torque of the dc machine. If the machine is acting 
as a generator, this torque opposes rotation. If it is acting as a motor, the electrome- 
chanical torque acts in the direction of the rotation. Remarks similar to those already 
made concerning the roles played by the generated voltage and electromechanical 
torque in the energy conversion process in synchronous machines apply equally well 
to dc machines. 

4.3  MMF OF D I S T R I B U T E D  W I N D I N G S  
Most armatures have distributed windings, i.e., windings which are spread over a 
number of slots around the air-gap periphery, as in Figs. 4.2 and 4.1. The individual 
coils are interconnected so that the result is a magnetic field having the same number 
of poles as the field winding. 

The study of the magnetic fields of distributed windings can be approached by 
examining the magnetic field produced by a winding consisting of a single N-turn 
coil which spans 180 electrical degrees, as shown in Fig. 4.19a. A coil which spans 
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Figure 4.19 (a) Schematic view of flux produced by a concentrated, 
full-pitch winding in a machine with a uniform air gap. (b) The air-gap 
mmf produced by current in this winding. 

180 electrical degrees is known as a full-pitch coil. The dots and crosses indicate cur- 
rent flow towards and away from the reader, respectively. For simplicity, a concentric 
cylindrical rotor is shown. The general nature of the magnetic field produced by the 
current in the coil is shown by the dashed lines in Fig. 4.19a. Since the permeability 
of the armature and field iron is much greater than that of air, it is sufficiently accurate 
for our present purposes to assume that all the reluctance of the magnetic circuit is 
in the air gap. From symmetry of the structure it is evident that the magnetic field 
intensity Hag in the air gap at angle 0a under one pole is the same in magnitude as that 
at angle 0a + zr under the opposite pole, but the fields are in the opposite direction. 

Around any of the closed paths shown by the flux lines in Fig. 4.19a the mmf is 
N i. The assumption that all the reluctance of this magnetic circuit is in the air gap 
leads to the result that the line integral of H inside the iron is negligibly small, and 
thus it is reasonable to neglect the mmf drops associated with portions of the magnetic 
circuit inside the iron. By symmetry we argued that the air-gap fields Hag on opposite 
sides of the rotor are equal in magnitude but opposite in direction. It follows that the 
air-gap mmf should be similarly distributed; since each flux line crosses the air gap 
twice, the mmf drop across the air gap must be equal to half of the total or Ni /2 .  

Figure 4.19b shows the air gap and winding in developed form, i.e., laid out 
flat. The air-gap mmf distribution is shown by the steplike distribution of amplitude 
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Ni/2. On the assumption of narrow slot openings, the mmfjumps abruptly by Ni in 
crossing from one side to the other of a coil. This mmf distribution is discussed again 
in Section 4.4, where the resultant magnetic fields are evaluated. 

4.3.1 AC Machines  

Fourier analysis can show that the air-gap mmf produced by a single coil such as the 
full-pitch coil of Fig. 4.19 consists of a fundamental space-harmonic component as 
well as a series of higher-order harmonic components. In the design of ac machines, 
serious efforts are made to distribute the coils making up the windings so as to 
minimize the higher-order harmonic components and to produce an air-gap mmf 
wave which consists predominantly of the space-fundamental sinusoidal component. 
It is thus appropriate here to assume that this has been done and to focus our attention 
on the fundamental component. 

The rectangular air-gap mmf wave of the concentrated two-pole, full-pitch coil of 
Fig. 4.19b can be resolved into a Fourier series comprising a fundamental component 
and a series of odd harmonics. The fundamental component . T a g l  is 

.)E'ag 1 - -  - -  COS Oa T 
(4.3) 

where 0a is measured from the magnetic axis of the stator coil, as shown by the dashed 
sinusoid in Fig. 4.19b. It is a sinusoidal space wave of amplitude 

( F a g l ) p e a k  - -  _ _  T 
(4.4) 

with its peak aligned with the magnetic axis of the coil. 
Now consider a distributed winding, consisting of coils distributed in several 

slots. For example, Fig. 4.20a shows phase a of the armature winding of a somewhat 
simplified two-pole, three-phase ac machine. Phases b and c occupy the empty slots. 
The windings of the three phases are identical and are located with their magnetic 
axes 120 degrees apart. We direct our attention to the air-gap mmf of phase a alone, 
postponing the discussion of the effects of all three phases until Section 4.5. The 
winding is arranged in two layers, each full-pitch coil of Nc turns having one side in 
the top of a slot and the other coil side in the bottom of a slot a pole pitch away. In 
a practical machine, this two-layer arrangement simplifies the geometric problem of 
getting the end turns of the individual coils past each other. 

Figure 4.20b shows one pole of this winding laid out fiat. With the coils connected 
in series and hence carrying the same current, the mmf wave is a series of steps each 
of height 2Ncia (equal to the ampere-turns in the slot), where ia is the winding current. 
Its space-fundamental component is shown by the sinusoid. It can be seen that the 
distributed winding produces a closer approximation to a sinusoidal mmf wave than 
the concentrated coil of Fig. 4.19. 

The amplitude of the fundamental-space-harmonic-component of the mmf wave 
of a distributed winding is less than the sum of the fundamental components of the 
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Figure 4.20 The mmf of one phase of a distributed two-pole, 
three-phase winding with full-pitch coils. 

individual coils because the magnetic axes of the individual coils are not aligned with 
the resultant. The modified form of Eq. 4.3 for a distributed multipole winding having 
Nph series turns per phase is 

4 (po,es) 
• ~"agl - -  - -  ia COS 0 a (4.5) 

:r poles 2 

in which the factor 4/7r arises from the Fourier-series analysis of the rectangular mmf 
wave of a concentrated full-pitch coil, as in Eq. 4.3, and the winding factor kw takes 
into account the distribution of the winding. This factor is required because the mmf's 
produced by the individual coils of any one phase group have different magnetic axes. 
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W h e n  they are connected  in series to form the phase winding,  their phasor  sum is then 

less than their numerica l  sum. (See Appendix  B for details.) For  most  three-phase 

windings,  kw typical ly falls in the range of  0.85 to 0.95. 

The factor kw Nph is the effective series turns per phase for the fundamenta l  mmf.  

The peak ampl i tude of  this m m f  wave is 

( f a g l ) p e a k  = - -  i a  ( 4 . 6 )  
Jr poles 

" X A M P L E  4. 

The phase-a two-pole armature winding of Fig. 4.20a can be considered to consist of 8 Nc-turn, 

full-pitch coils connected in series, with each slot containing two coils. There are a total of 24 

armature slots, and thus each slot is separated by 360°/24 = 15 °. Assume angle 0a is measured 

from the magnetic axis of phase a such that the four slots containing the coil sides labeled a 

are at 0a = 67.5 °, 82.5 °, 97.5 °, and 112.5 °. The opposite sides of each coil are thus found in 

the slots found at - 112.5 °, -97 .5  °, -82 .5  ° and -67 .5  °, respectively. Assume this winding to 

be carrying current ia. 

(a) Write an expression for the space-fundamental mmf produced by the two coils whose 

sides are in the slots at 0a = 112.5 ° and -67 .5  °. (b) Write an expression for the space- 

fundamental mmf produced by the two coils whose sides are in the slots at 0a -- 67.5 ° and 

-112.5  °. (c) Write an expression for the space-fundamental mmf of the complete armature 

winding. (d) Determine the winding factor kw for this distributed winding. 

I S o l u t i o n  
a. Noting that the magnetic axis of this pair of coils is at (9 a = (112.5 ° - 67.5°)/2 = 22.5 ° 

and that the total ampere-turns in the slot is equal to 2Ncia, the mmf produced by this pair 

of coils can be found from analogy with Eq. 4.3 to be 

4 ( 2 N c i a )  
( ,~ 'agl)22.5 o - -  - -  COS (0a -- 22.5 °) 

rr 2 

b. This pair of coils produces the same space-fundamental mmf as the pair of part (a) with 

the exception that this mmf is centered at 0a -- --22.5 °. Thus 

4 ( 2 N c i a )  
(,~L"agl)_22.5o = - -  COS ((9 a -Jr- 22.5 °) 

c. By analogy with parts (a) and (b), the total space-fundamental mmf can be written as 

(,~L-'agl)total = (,~E'agl)-22.5o "31-()L-'agl)-7.5o -Jr-(,~E'agl)7.5o + (,~E'agl)22.5o 

4 (2Nc)ia[COS(Oa+22.S°,+cos(Oa-k-7.5°) 

+ COS(0a -- 7.5 °) + COS (0a -- 22.5°)] 

4 (7"66Nc)iaCOSOa 
Jr 2 

-- 4.88Ncia c o s  (9 a 
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d. Recognizing that, for this winding Nph = 8Nc,  the total mmf of part (c) can be rewritten 
a s  

4 
()E'agl)total = - -  ia COS 0a 

zr 2 

Comparison with Eq. 4.5 shows that for this winding, the winding factor is kw = 0.958. 

Practice Problem 4. 

Calculate the winding factor of the phase-a winding of Fig. 4.20 if the number of turns in the 
four coils in the two outer pairs of slots is reduced to six while the number of turns in the four 
coils in the inner slots remains at eight. 

Solution 

kw = 0.962 

Equation 4.5 describes the space-fundamental component of the mmf wave pro- 
duced by current in phase a of a distributed winding. If the phase-a current is sinusoidal 
in time, e.g., ia = Im COS cot, the result will be an mmf wave which is stationary in 
space and varies sinusoidally both with respect to 0a and in time. In Section 4.5 we 
will study the effect of currents in all three phases and will see that the application of 
three-phase currents will produce a rotating mmf wave. 

In a directly analogous fashion, rotor windings are often distributed in slots to 
reduce the effects of space harmonics. Figure 4.21 a shows the rotor of a typical two- 
pole round-rotor generator. Although the winding is symmetric with respect to the 
rotor axis, the number of turns per slot can be varied to control the various harmonics. 
In Fig. 4.21b it can be seen that there are fewer turns in the slots nearest the pole 
face. In addition, the designer can vary the spacing of the slots. As for distributed 
armature windings, the fundamental air-gap mmf wave of a multipole rotor winding 
can be found from Eq. 4.5 in terms of the total number of series turns Nr, the winding 
current Ir and a winding factor kr as 

4 ( k r N r ) ( p o l e s  ) 
f'agl - -- Ir COS Or (4.7) 

Jr poles 2 

where Or is the spatial angle measured with respect to the rotor magnetic axis, as 
shown in Fig. 4.21 b. Its peak amplitude is 

4 
( F a g l ) p e a k  - -  - -  I r  

Jr poles 
(4.8) 

4 . 3 . 2  D C  M a c h i n e s  

Because of the restrictions imposed on the winding arrangement by the commu- 
tator, the mmf wave of a dc machine armature approximates a sawtooth waveform 
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Figure 4.21 The air-gap mmf of a distributed winding on the rotor of a round-rotor 
generator. 

more nearly than the sine wave of ac machines. For example, Fig. 4.22 shows 
diagrammatically in cross section the armature of a two-pole dc machine. (In practice, 
in all but the smallest of dc machines, a larger number of coils and slots would prob- 
ably be used.) The current directions are shown by dots and crosses. The armature 
winding coil connections are such that the armature winding produces a magnetic 
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Figure 4.22 Cross section of a two-pole dc machine. 

field whose axis is vertical and thus is perpendicular to the axis of the field winding. 
As the armature rotates, the coil connections to the external circuit are changed by 
the commutator such that the magnetic field of the armature remains vertical. Thus, 
the armature flux is always perpendicular to that produced by the field winding and 
a continuous unidirectional torque results. Commutator action is discussed in some 
detail in Section 7.2. 

Figure 4.23a shows this winding laid out flat. The mmf wave is shown in 
Fig. 4.23b. On the assumption of narrow slots, it consists of a series of steps. The 
height of each step equals the number of ampere-turns 2Ncic in a slot, where Nc is 
the number of turns in each coil and ic is the coil current, with a two-layer wind- 
ing and full-pitch coils being assumed. The peak value of the mmf wave is along the 
magnetic axis of the armature, midway between the field poles. This winding is equiv- 
alent to a coil of 12Ncic A.turns distributed around the armature. On the assumption 
of symmetry at each pole, the peak value of the mmf wave at each armature pole is 
6Ncic A.turns. 

This mmf wave can be represented approximately by the sawtooth wave drawn in 
Fig. 4.23b and repeated in Fig. 4.23c. For a more realistic winding with a larger number 
of armature slots per pole, the triangular distribution becomes a close approximation. 
This mmf wave would be produced by a rectangular distribution of current density at 
the armature surface, as shown in Fig. 4.23c. 

For our preliminary study, it is convenient to resolve the mmf waves of distributed 
windings into their Fourier series components. The fundamental component of the 
sawtooth mmf wave of Fig. 4.23c is shown by the sine wave. Its peak value is 8/rr 2 = 
0.81 times the height of the sawtooth wave. This fundamental mmf wave is that which 
would be produced by the fundamental space-harmonic component of the rectangular 
current-density distribution of Fig. 4.23c. This sinusoidally-distributed current sheet 
is shown dashed in Fig. 4.23c. 
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Figure 4 .23  (a) Developed sketch of the dc machine of Fig. 4.22; (b) mmf wave; 
(c) equivalent sawtooth mmf wave, its fundamental component, and equivalent 
rectangular current sheet. 

Note that the air-gap mmf  distribution depends on only the winding arrangement 
and symmetry of the magnetic structure at each pole. The air-gap flux density, however, 
depends not only on the mmf but also on the magnetic boundary conditions, primarily 
the length of the air gap, the effect of the slot openings, and the shape of the pole 
face. The designer takes these effects into account by means of detailed analyses, but 
these details need not concern us here. 

DC machines often have a magnetic structure with more than two poles. For 
example, Fig. 4.24a shows schematically a four-pole dc machine. The field winding 
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Figure 4.24 (a) Cross section of a four-pole dc machine; (b) development of 
current sheet and mmf wave. 

produces alternate north-south-north-south polarity, and the armature conductors are 
distributed in four belts of slots carrying currents alternately toward and away from the 
reader, as symbolized by the cross-hatched areas. This machine is shown in laid-out 
form in Fig. 4.24b. The corresponding sawtooth armature-mmf wave is also shown. 
On the assumption of symmetry of the winding and field poles, each successive pair 
of poles is like every other pair of poles. Magnetic conditions in the air gap can 
then be determined by examining any pair of adjacent poles, that is, 360 electrical 
degrees. 

The peak value of the sawtooth armature mmf wave can be written in terms of 
the total number of conductors in the armature slots as 

/ ) (fag)peak --  2m ~poles ia A .  turns/pole (4.9) 

where 

Ca = total number of conductors in armature winding 

m = number of parallel paths through armature winding 

ia = armature current, A 

This equation takes into account the fact that in some cases the armature may be 
wound with multiple current paths in parallel. It is for this reason that it is often 
more convenient to think of the armature in terms of the number of conductors (each 
conductor corresponding to a single current-carrying path within a slot). Thus ia/m 
is the current in each conductor. This equation comes directly from the line integral 
around the dotted closed path in Fig. 4.24b which crosses the air gap twice and 
encloses Ca/poles conductors, each carrying current ia/m in the same direction. In 
more compact form, 

( N a ) i  a (4.10) 
(Fag)peak = poles 
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where Na = Ca/(2m) is the number of series armature turns. From the Fourier series 
for the sawtooth mmf wave of Fig. 4.24b, the peak value of the space fundamental is 
given by 

8 
(fagl)peak -- ~ poles (4.11) 

4.4  M A G N E T I C  F IELDS IN ROTATING 
M A C H I N E R Y  

We base our preliminary investigations of both ac and dc machines on the assumption 
of sinusoidal spatial distributions of mmf. This assumption will be found to give very 
satisfactory results for most problems involving ac machines because their windings 
are commonly distributed so as to minimize the effects of space harmonics. Because of 
the restrictions placed on the winding arrangement by the commutator, the mmf waves 
of dc machines inherently approach more nearly a sawtooth waveform. Nevertheless, 
the theory based on a sinusoidal model brings out the essential features of dc machine 
theory. The results can readily be modified whenever necessary to account for any 
significant discrepancies. 

It is often easiest to begin by examination of a two-pole machine, in which the 
electrical and mechanical angles and velocities are equal. The results can immediately 
be extrapolated to a multipole machine when it is recalled that electrical angles and 
angular velocities are related to mechanical angles and angular velocities by a factor 
of poles/2 (see, for example, Eq. 4.1). 

The behavior of electric machinery is determined by the magnetic fields created 
by currents in the various windings of the machine. This section discusses how these 
magnetic fields and currents are related. 

4.4.1 Machines with Uniform Air Gaps 

Figure 4.25a shows a single full-pitch, N-turn coil in a high-permeability magnetic 
structure (/z --+ c~), with a concentric, cylindrical rotor. The air-gap mmf.Tag of this 
configuration is shown plotted versus angle 0a in Fig. 4.25b. For such a structure, with 
a uniform air gap of length g at radius rr (very much larger than g), it is quite accurate 
to assume that the magnetic field I-I in the air gap is directed only radially and has 
constant magnitude across the air gap. 

The air-gap mmf distribution of Fig. 4.25b is equal to the line integral of Hag 
across the air gap. For this case of constant radial Hag, this integral is simply equal 
to the product of the air-gap radial magnetic field Hag times the air-gap length g, and 
thus Hag can be found simply by dividing the air-gap mmf by the air-gap length: 

.Fag 
Hag = (4.12) 

g 
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F i g u r e  4 . 2 5  The air-gap mmf and radial component of Hag for a 
concentrated full-pitch winding. 

Thus, in Fig. 4.25c, the radial Hag field and mmf can be seen to be identical in form, 
simply related by a factor of 1/g. 

The fundamental space-harmonic component of Hag can be found directly from 
the fundamental component .T'ag~, given by Eq. 4.3. 

Hag 1 - -  = - -  c o s  0a (4.13) 
g Jr 
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It is a sinusoidal space wave of amplitude 

(nagl)peak --  _ _  
(4.14) 

For a distributed winding such as that of Fig. 4.20, the air-gap magnetic field 
intensity is easily found once the air-gap mmf is known. Thus the fundamental com- 
ponent of Hag can be found by dividing the fundamental component of the air-gap 
mmf (Eq. 4.5) by the air-gap length g 

4 ( kwNph ) g . p o ~ e  ( p o l e s )  Hagl = -- ------~-s iaCOS 0a (4.15) 
zr 2 

This equation has been written for the general case of a multipole machine, and Nph 
is the total number of series tums per phase. 

Note that the space-fundamental air-gap mmf.T'agl and air-gap magnetic field Hag1 
produced by a distributed winding of winding factor kw and Nph/poles series tums per 
pole is equal to that produced by a concentrated, full pitch winding of (kw Npn)/poles 
tums per pole. In the analysis of machines with distributed windings, this result is 
useful since in considering space-fundamental quantities it permits the distributed 
solution to be obtained from the single N-turn, full-pitch coil solution simply by 
replacing N by the effective number of turns, kw Nph, of the distributed winding. 

A four-pole synchronous ac generator with a smooth air gap has a distributed rotor winding 
with 263 series turns, a winding factor of 0.935, and an air gap of length 0.7 mm. Assuming 
the mmf drop in the electrical steel to be negligible, find the rotor-winding current required to 
produce a peak, space-fundamental magnetic flux density of 1.6 T in the machine air gap. 

II S o l u t i o n  

The space-fundamental air-gap magnetic flux density can be found by multiplying the air-gap 
magnetic field by the permeability of free space/.to, which in turn can be found from the space- 
fundamental component of the air-gap mmf by dividing by the air-gap length g. Thus, from 
Eq. 4.8 

(Bagl)peak_ /A0(OL"agl)peak 4/Xo ( krNr ) 
-- g = :rrg ~,poles lr 

and Ir can be found from 

Ir = (:n'g: poles ) 
~k 4/z0krNr (Bagl)peak 

( Zr X 0.0007 × 4 ) 
= 4 x 4n" x 10 .7 x 0.935 x 263 1.6 

-- 11.4A 

E X A M P L E  4 . 2  
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A 2-pole synchronous machine has an air-gap length of 2.2 cm and a field winding with a 
total of 830 series turns. When excited by a field current of 47 A, the peak, space-fundamental 
magnetic flux density in the machine air-gap is measured to be 1.35 T. 

Based upon the measured flux density, calculate the field-winding winding factor kr. 

Solution 

kr ~- 0.952 

4.4.2 Machines with Nonuniform Air Gaps 

Figure 4.26a shows the structure of a typical dc machine, and Fig. 4.26b shows 
the structure of a typical salient-pole synchronous machine. Both machines con- 
sist of magnetic structures with extremely nonuniform air gaps. In such cases the 
air-gap magnetic-field distribution is more complex than that of uniform-air-gap 
machines. 

Detailed analysis of the magnetic field distributions in such machines requires 
complete solutions of the field problem. For example, Fig. 4.27 shows the magnetic 
field distribution in a salient-pole dc generator (obtained by a finite-element solution). 
However, experience has shown that through various simplifying assumptions, ana- 
lytical techniques which yield reasonably accurate results can be developed. These 
techniques are illustrated in later chapters, where the effects of saliency on both dc 
and ac machines are discussed. 

Field 
coil 

Field 
coil 

(a) (b) 

Figure 4.26 Structure of typical salient-pole machines: (a) dc machine and (b) salient-pole 
synchronous machine. 
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Figure 4.27 Finite-element solution of the magnetic field distribution in a salient-pole 
dc generator. Field coils exci ted no current in armature coils. (General Electric 
Company.) 

4.5  R O T A T I N G  MMF W A V E S  IN AC M A C H I N E S  
To understand the theory and operation of polyphase ac machines, it is necessary to 
study the nature of the mmf wave produced by a polyphase winding. Attention will be 
focused on a two-pole machine or one pair of a multipole winding. To develop insight 
into the polyphase situation, it is helpful to begin with an analysis of a single-phase 
winding. 

4.5.1 M M F  Wave  of a S ing le .Phase  Winding 

Figure 4.28a shows the space-fundamental mmf distribution of a single-phase wind- 
ing, where, from Eq. 4.5, 

4 (kwNph) ( p o l e s )  
.T'agl = -- ia cos 0a (4.16) 

Zr poles 2 

When this winding is excited by a sinusoidally varying current in time at electrical 
frequency (D e 

ia -- Ia COS COet (4.17) 
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Figure 4.28 Single-phase-winding space-fundamental air-gap mmf: (a) mmf 
distribution of a single-phase winding at various times (b) total mmf f'agl decomposed 
into two traveling waves .U- and .~'+ (c) phasor decomposition of .Uagl • 

the mmf distribution is given by 

(poleSoa) cOSCOet f'agl = Fmax cos 2 

= Fmax cos (0ae) cos Oget (4.18) 

Equation 4.18 has been written in a form to emphasize the fact that the result is 
an mmf distribution of maximum amplitude. 

4 
Fmax = -- Ia (4.19) 

Jr poles 
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This mmf distribution remains fixed in space with an amplitude that varies sinusoidally 
in time at frequency We, as shown in Fig. 4.28a. Note that, to simplify the notation, 
Eq. 4.1 has been used to express the mmf distribution of Eq. 4.18 in terms of the 
electrical angle 0ae. 

Use of a common trigonometric identity 1 permits Eq. 4.18 to be rewritten in the 
form 

1 j 
.~C'ag 1 = fma x cos (Oae -- Wet) + -~ cos (Oae + Wet) (4.20) 

which shows that the mmf of a single-phase winding can be resolved into two rotating 
mmf waves each of amplitude one-half the maximum amplitude of -~'agl with one, 
.~'a+l, traveling in the +Oa direction and the other, ~/gl, traveling in the -Oa direction, 
both with electrical angular velocity O) e (equal to a mechanical angular velocity of 
2We/poles): 

1 
• ~L"a~ 1 "-- ~ Fmax c o s  (0ae - -  Oget) ( 4 . 2 1 )  

1 
• ~'agl --" ~ Fmax c o s  (0ae + O)et) ( 4 . 2 2 )  

This decomposition is shown graphically in Fig. 4.28b and in a phasor representation 
in Fig. 4.28c. 

The fact that the air-gap mmf of a single-phase winding excited by a source of 
alternating current can be resolved into rotating traveling waves is an important con- 
ceptual step in understanding ac machinery. As shown in Section 4.5.2, in polyphase 
ac machinery the windings are equally displaced in space phase, and the winding cur- 
rents are similarly displaced in time phase, with the result that the negative-traveling 
flux waves of the various windings sum to zero while the positive-traveling flux waves 
reinforce, giving a single positive-traveling flux wave. 

In single-phase ac machinery, the positive-traveling flux wave produces useful 
torque while the negative-traveling flux wave produces both negative and pulsating 
torque as well as losses. These machines are designed so as to minimize the effects 
of the negative-traveling flux wave, although, unlike in the case of polyphase machin- 
ery, these effects cannot be totally eliminated. 

4.5.2 MMF Wave of a Polyphase Winding 

In this section we study the mmf distributions of three-phase windings such as those 
found on the stator of three-phase induction and synchronous machines. The analyses 
presented can be readily extended to a polyphase winding with any number of phases. 
Once again attention is focused on a two-pole machine or one pair of poles of a 
multipole winding. 

In a three-phase machine, the windings of the individual phases are displaced 
from each other by 120 electrical degrees in space around the airgap circumference, 
as shown by coils a, - a ,  b, - b ,  and c, - c  in Fig. 4.29. The concentrated full-pitch 

1 COS Or COS/~ = 1 COS (Or --/~) + 1 COS (Or "+-/~) 
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Figure 4.29 Simplified two-pole 
three-phase stator winding. 

coils shown here may be considered to represent distributed windings producing si- 
nusoidal mmf waves centered on the magnetic axes of the respective phases. The 
space-fundamental sinusoidal mmf waves of the three phases are accordingly dis- 
placed 120 electrical degrees in space. Each phase is excited by an alternating current 
which varies in magnitude sinusoidally with time. Under balanced three-phase con- 
ditions, the instantaneous currents are 

ia = lm COS (.Oet (4.23) 

ib - -  Im COS (a)et --  120 °) (4.24) 

ic = Im cos (Wet + 120 °) (4.25) 

where Im is the maximum value of the current and the time origin is arbitrarily taken 
as the instant when the phase-a current is a positive maximum. The phase sequence 
is assumed to be abc. The instantaneous currents are shown in Fig. 4.30. The dots 
and crosses in the coil sides (Fig. 4.29) indicate the reference directions for positive 
phase currents. 

The mmf of phase a has been shown to be 

• ~'al - -  "~'a~ -~- "~"M (4.26) 

where 
1 

• ~"+ = ~ Fmax c o s  (0ae - O)et) (4 .27 )  

and 

1 
.~"~ = ~ Fma x cos  (0ae -q- (-Oet) (4 .28 )  

4 
Fmax = -- Im 

7r poles 
(4.29) 
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Figure 4 .30  Instantaneous phase 
currents under balanced three-phase 
conditions. 

O)et 

Note that to avoid excessive notational complexity, the subscript ag has been dropped; 
here the subscript al indicates the space-fundamental component of the phase-a air- 
gap mmf. 

Similarly, for phases b and c, whose axes are at 0a = 120 ° and 0a = - 1 2 0  °, 
respectively, 

and 

~-bl = ~'+ + ~'ffi (4.30) 

1 
~'+ -- ~ Fmax cos (0ae - -  O)et) (4.31) 

1 
.T'~ -- ~ Fmax cos (0ae - ~ -  COet + 120 °) (4.32) 

• ~"cl = -)~"~ n t- .~"~ (4.33) 
1 

-T "+ - -  ~ fmax c o s  (0ae - O)et) ( 4 . 3 4 )  

1 
.T'~ - -  ~ Fmax c o s  (0ae -Jr- (-Oet -- 120 °) ( 4 . 3 5 )  

The total mmf is the sum of the contributions from each of the three phases 

• ~ '(0ae,  t )  - -  .~'al -t- .~"bl -Jr- .)L"cl ( 4 . 3 6 )  

This summation can be performed quite easily in terms of the positive- and negative- 
traveling waves. The negative-traveling waves sum to zero 

.)c'- (0ae, t )  --- .)t"~ + ~ ' ~  nt- .~'c- i 

1 
= ~ Fma x [cos  (0ae -~- COet) -a t- c o s  (0ae -Jr- COet -- 120 °) 

+ COS (0ae n t- O)et + 120°)] 

= 0  (4.37) 
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while the positive-traveling waves reinforce 

.~"+(0ae, t) = .~ "+ d- .~'~1 -+- .~'+ 

3 
= ~ Fmax cos (0ae - O)et) (4.38) 

Thus, the result of displacing the three windings by 120 ° in space phase and 
displacing the winding currents by 120 ° in time phase is a single positive-traveling 
mmf wave 

3 
• ~"(0ae, t) = ~ Fmax cos (0ae - Wet) 

= -  ( ( p o l e s ) )  
3 Fmax cos 0a - Wet (4.39) 
2 2 

The air-gap mmf wave described by Eq. 4.39 is a space-fundamental sinu- 
soidal function of the electrical space angle 0ae (and hence of the space angle 0a = 
(2/poles)0ae). It has a constant amplitude of (3/2)Fmax, i.e., 1.5 times the amplitude 
of the air-gap mmf wave produced by the individual phases alone. It has a positive 
peak at angle 0a = (2/poles)wet. Thus, under balanced three-phase conditions, the 
three-phase winding produces an air-gap mmf wave which rotates at synchronous 
angular velocity Ws 

(2) 
Ws= poles We (4.40) 

where 

0 9  e " - -  angular frequency of the applied electrical excitation [rad/sec] 

Ws = synchronous spatial angular velocity of the air-gap mmf wave [rad/sec] 

The corresponding synchronous speed ns in r/min can be expressed in terms of 
the applied electrical frequency fe = we/(2zr) in Hz as 

(120) 
ns = poles fe r/min (4.41) 

In general, a rotating field of constant amplitude will be produced by a q-phase 
winding excited by balanced q-phase currents of frequency fe when the respective 
phase axes are located 2rr/q electrical radians apart in space. The amplitude of this 
flux wave will be q/2 times the maximum contribution of any one phase, and the 
synchronous angular velocity 2 will remain COs = ( ~ ) W e  radians per second. 

In this section, we have seen that a polyphase winding excited by balanced 
polyphase currents produces a rotating mmf wave. Production of a rotating mmf 
wave and the corresponding rotating magnetic flux is key to the operation of polyphase 
rotating electrical machinery. It is the interaction of this magnetic flux wave with that 
of the rotor which produces torque. Constant torque is produced when rotor-produced 
magnetic flux rotates in sychronism with that of the stator. 
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4.5.3 Graphical Analysis of Polyphase MMF 

For balanced three-phase currents as given by Eqs. 4.23 to 4.25, the production of 
a rotating mmf can also be shown graphically. Consider the state of affairs at t = 0 
(Fig. 4.30), the moment when the phase-a current is at its maximum value Im. The mmf 
of phase a then has its maximum value Fmax, as shown by the vector Fa = Fmax drawn 
along the magnetic axis of phase a in the two-pole machine shown schematically in 
Fig. 4.31a. At this moment, currents ib and ic are both lm/2 in the negative direction, 
as shown by the dots and crosses in Fig. 4.31 a indicating the actual instantaneous di- 
rections. The corresponding mmf's of phases b and c are shown by the vectors Fb and 
Fc, both of magnitude Fmax/2 drawn in the negative direction along the magnetic axes 
of phases b and c, respectively. The resultant, obtained by adding the individual con- 

3 Fmax centered on the axis tributions of the three phases, is a vector of magnitude F = 
of phase a. It represents a sinusoidal space wave with its positive peak centered on the 
axis of phase a and having an amplitude 3 times that of the phase-a contribution alone. 

At a later time COet = rr/3 (Fig. 4.30), the currents in phases a and b are a positive 
half maximum, and that in phase c is a negative maximum. The individual mmf 
components and their resultant are now shown in Fig. 4.3 lb. The resultant has the same 
amplitude as at t = 0, but it has now rotated counterclockwise 60 electrical degrees in 
space. Similarly, at COet = 2re/3 (when the phase-b current is a positive maximum and 
the phase-a and phase-c currents are a negative half maximum) the same resultant mmf 
distribution is again obtained, but it has rotated counterclockwise 60 electrical degrees 
still farther and is now aligned with the magnetic axis of phase b (see Fig. 4.31 c). As 
time passes, then, the resultant mmf wave retains its sinusoidal form and amplitude 
but rotates progressively around the air gap; the net result can be seen to be an mmf 
wave of constant amplitude rotating at a uniform angular velocity. 

In one cycle the resultant mmf must be back in the position of Fig. 4.3 l a. The 
mmf wave therefore makes one revolution per electrical cycle in a two-pole machine. 
In a multipole machine the mmf wave travels one pole-pair per electrical cycle and 
hence one revolution in poles/2 electrical cycles. 

~b h F = 3_ Fmax 
~b 

X~F = 3 7 Fmax 

3 
[Fmax 

--IP'- a 

c c 

(a) (b) (c) 

Figure 4.31 The production of a rotating magnetic field by means of three-phase currents. 
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E X A M P L E  4 . 3  

Consider a three-phase stator excited with balanced, 60-Hz currents. Find the synchronous 
angular velocity in rad/sec and speed in r/min for stators with two, four, and six poles. 

I1 So lut ion  
For a frequency of fe = 60 Hz, the electrical angular frequency is equal to 

we = 2zrfe = 120zr ~, 377 rad/sec 

Using Eqs. 4.40 and 4.41, the following table can be constructed: 

Poles ns (r/lnin) ~:s (rad/sec) 

2 3600 1207r ~ 377 
4 1800 60zc 
6 1200 407r 

) r a c t i c e  P r o b l e m  4.: 

Repeat Example 4.3 for a three-phase stator excited by balanced 50-Hz currents. 

S o l u t i o n  

Poles n~ (r/min) ~s (rad/see) 

2 3000 100Jr 
4 1500 50zr 
6 1000 100Jr/3 

4 . 6  G E N E R A T E D  V O L T A G E  

The general nature of the induced voltage has already been discussed in Section 4.2. 
Quantitative expressions for the induced voltage will now be determined. 

4.6.1 AC Machines 

An elementary ac machine is shown in cross section in Fig. 4.32. The coils on both the 
rotor and the stator have been shown as concentrated, multiple-turn, full-pitch coils. 
As we have seen, a machine with distributed windings can be represented in this form 
simply by multiplying the number of series turns in the winding by a winding factor. 
Under the assumption of a small air gap, the field winding can be assumed to produce 
radial space-fundamental air-gap flux of peak flux density Bpeak. Although Fig. 4.32 
shows a two-pole machine, the analysis presented here is for the general case of a 
multipole machine. As is derived in Example 4.2, if the air gap is uniform, Bpeak can 
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Phase b 
magnetic axis N-turn coil 

.winding 
',tic axis 

a 

• .tic axis 

Phase c 
magnetic axis 

Figure 4.32 Cross-sectional view of an 
elementary three-phase ac machine. 

be found from 

where 

g = air-gap length 

4 .0  ( kfNf ) 
Bpeak --  7rg \poles If 

Nf - total series turns in the field winding 

kf -- field-winding winding factor 

If = field current 

(4.42) 

poles ) 
B = Bpeak COS 2 Or (4.43) 

~p can be found as the integral of the flux density over the pole area 

~P i f+Jr/poles ( p o l e s )  
-- Bpeak COS Or r dOr 

,J -zr/poles 2 

poles) 2Bpeaklr (4.44) 

When the rotor poles are in line with the magnetic axis of a stator phase, the flux 
linkage with a stator phase winding is kwNph~p, where ~p is the air-gap flux per pole 
[Wb]. For the assumed sinusoidal air-gap flux-density 
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E X A M P L E  4 . 4  

Here, 

Or = angle measured from the rotor magnetic axis 

r = radius to air gap 

1 = axial length of the stator/rotor iron 

As the rotor turns, the flux linkage varies cosinusoidally with the angle between 
the magnetic axes of the stator coil and rotor. With the rotor spinning at constant 
angular velocity tom, the flux linkage with the phase-a stator coil is 

~a = kwNph~p COs ( (P°12eS) oJm t) 

~--- kw Nph (I)p cos COmet (4.45) 

where time t is arbitrarily chosen as zero when the peak of the flux-density wave 
coincides with the magnetic axis of phase a. Here, 

( o,es) 
COme = 2 COrn (4.46) 

is the mechanical rotor velocity expressed in electrical rad/sec. 
By Faraday's law, the voltage induced in phase a is 

d~.a __ kwNphdC~p ea = dt - - ~  cos COmet 

-COmekw Nph (I)p sin COmet (4.47) 

The polarity of this induced voltage is such that if the stator coil were short- 
circuited, the induced voltage would cause a current to flow in the direction that 
would oppose any change in the flux linkage of the stator coil. Although Eq. 4.47 is 
derived on the assumption that only the field winding is producing air-gap flux, the 
equation applies equally well to the general situation where (I)p is the net air-gap flux 
per pole produced by currents on both the rotor and the stator. 

The first term on the fight-hand side of Eq. 4.47 is a transformer voltage and 
is present only when the amplitude of the air-gap flux wave changes with time. The 
second term is the speed voltage generated by the relative motion of the air-gap 
flux wave and the stator coil. In the normal steady-state operation of most rotating 
machines, the amplitude of the air-gap flux wave is constant; under these conditions 
the first term is zero and the generated voltage is simply the speed voltage. The term 
electromotive force (abbreviated emf) is often used for the speed voltage. Thus, for 
constant air-gap flux, 

ea -- -COmekw Nph (l)p sin COmet (4.48) 

The so-called cutting-of-flux equation states that the voltage v induced in a wire of length I (in 
the frame of the wire) moving with respect to a constant magnetic field with flux density of 
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magnitude B is given by 

v = I v z B  

where v± is the component of the wire velocity perpendicular to the direction of the magnetic 

flux density. 

Consider the two-pole elementary three-phase machine of Fig. 4.32. Assume the rotor- 

produced air-gap flux density to be of the form 

Bag(0r) ~-- Bpeak sin Or 

and the rotor to rotate at constant angular velocity We. (Note that since this is a two-pole machine, 

Wm -- We). Show that if one assumes that the armature-winding coil sides are in the air gap and 

not in the slots, the voltage induced in a full-pitch, N-turn concentrated armature phase coil 

can be calculated from the cutting-of-flux equation and that it is identical to that calculated 

using Eq. 4.48. Let the average air-gap radius be r and the air-gap length be g (g << r). 

am Solution 
We begin by noting that the cutting-of-flux equation requires that the conductor be moving 

and the magnetic field to be nontime varying. Thus in order to apply it to calculating the stator 

magnetic field, we must translate our reference frame to the rotor. 

In the rotor frame, the magnetic field is constant and the stator coil sides, when moved 

to the center of the air gap at radius r, appear to be moving with velocity COmer which is 

perpendicular to the radially-directed air-gap flux. If the rotor and phase-coil magnetic axes 

are assumed to be aligned at time t --- 0, the location of a coil side as a function of time will be 

given by Or = --COmet. The voltage induced in one side of one turn can therefore be calculated as 

el = lvj_ Bag (Or) "-- lO)mer Bpeak sin (-COmet) 

There are N turns per coil and two sides per turn. Thus the total coil voltage is given by 

e = 2 N e l  = - 2 N l w m e r  Bpe~ sin COmet 

From Eq. 4.48, the voltage induced in the full-pitched, 2-pole stator coil is given by 

e = -(_omeN (I)p sin COme/ 

S u b s t i t u t i n g  (I)p = 2Bpeaklr from Eq. 4.44 gives 

e = -(.omeN ( 2 B p e J r )  sin COmet 

which is identical to the voltage determined using the cutting-of-flux equation. 

In the normal  s teady-state  operat ion of  ac machines ,  we  are usual ly  interested in 

the rms values of  vol tages  and currents  rather  than their  ins tantaneous  values. F r o m  

Eq. 4.48 the m a x i m u m  value of  the induced vol tage is 

Emax --- Ogmekw Nph ~p = 2~fmekw Nph ~p  (4.49) 
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Its rms value is 

2zr fm~kw Nph ~p = ~ zrfm~kw Nph ~p (4.50) Erms = ~/~ 

where fme is the electrical speed of the rotor measured in Hz, which is also equal to the 
electrical frequency of the generated voltage. Note that these equations are identical 
in form to the corresponding emf equations for a transformer. Relative motion of a coil 
and a constant-amplitude spatial flux-density wave in a rotating machine produces 
voltage in the same fashion as does a time-varying flux in association with stationary 
coils in a transformer. Rotation introduces the element of time variation and transforms 
a space distribution of flux density into a time variation of voltage. 

The voltage induced in a single winding is a single-phase voltage. For the pro- 
duction of a set of balanced, three-phase voltages, it follows that three windings 
displaced 120 electrical degrees in space must be used, as shown in elementary form 
in Fig. 4.12. The machine of Fig. 4.12 is shown to be Y-connected and hence each 
winding voltage is a phase-neutral voltage. Thus, Eq. 4.50 gives the rms line-neutral 
voltage produced in this machine when Nph is the total series turns per phase. For a 
A-connected machine, the voltage winding voltage calculated from Eq. 4.50 would 
be the machine line-line voltage. 

E X A M P L E  4 . 5  

A two-pole, three-phase, Y-connected 60-Hz round-rotor synchronous generator has a field 
winding with Nf distributed turns and winding factor kf. The armature winding has Na turns 
per phase and winding factor ka. The air-gap length is g, and the mean air-gap radius is r. The 
armature-winding active length is I. The dimensions and winding data are 

Nf = 68 series turns kf = 0.945 

Na = 18 series turns/phase ka = 0.933 

r = 0.53 m g = 4.5 cm 

l = 3 . 8 m  

The rotor is driven by a steam turbine at a speed of 3600 r/min. For a field current 
of If = 720 A dc, compute (a) the peak fundamental mmf (Fag~)p~ak produced by the field 
winding, (b) the peak fundamental flux density (Bagl)peak in the air gap, (c) the fundamental 
flux per pole ~p, and (d) the rms value of the open-circuit voltage generated in the armature. 

I I  S o l u t i o n  

a. From Eq. 4.8 

4 / 4 (0945 x68) 
(Fagl)peak = -- 720 7r ~ I f = - -  zr 2 

4 
= --(32.1)720 = 2.94 x 10 4 A. turns/pole 

7l" 
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b. Using Eq. 4.12, we get 

/£0(Fagl)peak 4zr × 10 -7 X 2.94 × 104 
(Bagl)peak = = = 0 . 8 2 1  T 

g 4.5 × 10 -2 

Because of the effect of the slots containing the armature winding, most of the air-gap flux 
is confined to the stator teeth. The flux density in the teeth at a pole center is higher than 
the value calculated in part (b), probably by a factor of about 2. In a detailed design this 
flux density must be calculated to determine whether the teeth are excessively saturated. 

c. From Eq. 4.44 

dpp - -  2 ( B a g l ) p e a k l r  " -  2(0.821)(3.8)(0.53) = 3 .31  W b  

d. From Eq. 4.50 with fme = 60 Hz 

Erms,li . . . . . .  tral = ~ 2"( fmekaNaf~p  - -  ~ zr(60)(0.933)(18)(3.31) 

= 14.8 kV rms 

The line-line voltage is thus 

Erms,line-line = "v/-~ ( 1 4 . 8  kV) = 25.7 kV rms 

) r a c t i c e  P r o b l e m  4., 

The rotor of the machine of Example 4.5 is to be rewound. The new field winding will have a 
total of 76 series turns and a winding factor of 0.925. (a) Calculate the field current which will 
result in a peak air-gap flux density of 0.83 T. (b) Calculate the corresponding rms line-line 
open-circuit voltage which will result if this modified machine is operated at this value of field 

current and 3600 rpm. 

S o l u t i o n  

a. If = 6 9 6  A 

b. E . . . .  line-line = 26.0 kV rms 

4.6 .2  DC Machines  

In a dc machine, although the ultimate objective is the generation of dc voltage, ac 
voltages are produced in the armature-winding coils as these coils rotate through the 
dc flux distribution of the stationary field winding. The armature-winding alternat- 
ing voltage must therefore be rectified. Mechanical rectification is provided by the 
commutator as has been discussed in Section 4.2.2. 

Consider the single N-turn armature coil of the elementary, two-pole dc machine 
of Fig. 4.17. The simple two-segment commutator provides full-wave rectification of 
the coil voltage. Although the spatial distribution of the air-gap flux in dc machines 
is typically far from sinusoidal, we can approximate the magnitude of the generated 
voltage by assuming a sinusoidal distribution. As we have seen, such a flux distribution 
will produce a sinusoidal ac voltage in the armature coil. The rectification action of 
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e 
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0 Jr 2n" cot 

Figure 4.33 Voltage between the 
brushes in the elementary dc machine 
of Fig. 4.17. 

the commutator will produce a dc voltage across the brushes as in Fig. 4.33. The 
average, or dc, value of this voltage can be found from taking the average of Eq. 4.48, 

lf0  2 Ea -- -- OgmeN~p sin (O)met) d(o)met) --- --OgmeN~p (4.51) 
7f 

For dc machines it is usually more convenient to express the voltage Ea in terms 
of the mechanical speed 09 m (rad/sec) or n (r/min). Substitution of Eq. 4.46 in Eq. 4.51 
for a multipole machine then yields 

( ) (n) 
E a  - -  polesTr N~p(_Om = poles N~p 3-0 (4.52) 

The single-coil dc winding implied here is, of course, unrealistic in the practi- 
cal sense, and it will be essential later to examine the action of commutators more 
carefully. Actually, Eq. 4.52 gives correct results for the more practical distributed 
ac armature windings as well, provided N is taken as the total number of turns in 
series between armature terminals. Usually the voltage is expressed in terms of the 
total number of active conductors Ca and the number m of parallel paths through the 
armature winding. Because it takes two coil sides to make a turn and 1/m of these 
are connected in series, the number of series turns is Na = Ca/(2m). Substitution in 
Eq. 4.52 then gives 

_ { poles 
27r ) ( - - ~ )  ~pO)m= (po les  60 ) ( - - ~ ) * p n  (4.53) Ea 

4.7 TORQUE IN NONSALIENT-POLE 
M A C H I N E S  

The behavior of any electromagnetic device as a component in an electromechanical 
system can be described in terms of its electrical-terminal equations and its displace- 
ment and electromechanical torque. The purpose of this section is to derive the voltage 
and torque equations for an idealized elementary machine, results which can be read- 
ily extended later to more complex machines. We derive these equations from two 
viewpoints and show that basically they stem from the same ideas. 

The first viewpoint is essentially the same as that of Section 3.6. The machine will 
be regarded as a circuit element whose inductances depend on the angular position 
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of the rotor. The flux linkages ~. and magnetic field coenergy will be expressed in 
terms of the currents and inductances. The torque can then be found from the partial 
derivative of the energy or coenergy with respect to the rotor position and the terminal 
voltages from the sum of the resistance drops Ri and the Faraday-law voltages d~./dt. 
The result will be a set of nonlinear differential equations describing the dynamic 
performance of the machine. 

The second viewpoint regards the machine as two groups of windings producing 
magnetic flux in the air gap, one group on the stator, and the other on the rotor. By 
making suitable assumptions regarding these fields (similar to those used to derive an- 
alytic expressions for the inductances), simple expressions can be derived for the flux 
linkages and the coenergy in the air gap in terms of the field quantities. The torque and 
generated voltage can then be found from these expressions. In this fashion, torque can 
be expressed explicitly as the tendency for two magnetic fields to align, in the same 
way that permanent magnets tend to align, and generated voltage can be expressed in 
terms of the relative motion between a field and a winding. These expressions lead to 
a simple physical picture of the normal steady-state behavior of rotating machines. 

4.7.1 Coupled.Circuit Viewpoint 

Consider the elementary smooth-air-gap machine of Fig. 4.34 with one winding on 
the stator and one on the rotor and with 0m being the mechanical angle between the 
axes of the two windings. These windings are distributed over a number of slots so 
that their mmf waves can be approximated by space sinusoids. In Fig. 4.34a the coil 
sides s , - s  and r , - r  mark the positions of the centers of the belts of conductors 
comprising the distributed windings. An alternative way of drawing these windings is 
shown in Fig. 4.34b, which also shows reference directions for voltages and currents. 
Here it is assumed that current in the arrow direction produces a magnetic field in the 
air gap in the arrow direction, so that a single arrow defines reference directions for 
both current and flux. 

(a) (b) 

Figure 4.34 Elementary two-pole machine with smooth air gap: (a) winding 
distribution and (b) schematic representation. 
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The stator and rotor are concentric cylinders, and slot openings are neglected. 
Consequently, our elementary model does not include the effects of salient poles, 
which are investigated in later chapters. We also assume that the reluctances of the 
stator and rotor iron are negligible. Finally, although Fig. 4.34 shows a two-pole 
machine, we will write the derivations that follow for the general case of a multipole 
machine, replacing 0m by the electrical rotor angle 

( p o l e s )  
0me -- 2 0m (4.54) 

Based upon these assumptions, the stator and rotor self-inductances Lss and Lrr 
can be seen to be constant, but the stator-to-rotor mutual inductance depends on the 
electrical angle 0me between the magnetic axes of the stator and rotor windings. The 
mutual inductance is at its positive maximum when 0me--0 or 2re, is zero when 
0me = 4-zr/2, and is at its negative maximum when 0me = +Jr. On the assumption of 
sinusoidal mmf waves and a uniform air gap, the space distribution of the air-gap flux 
wave is sinusoidal, and the mutual inductance will be of the form 

£~sr(0me) = t s r  cos  (0me) (4.55)  

where the script letter E denotes an inductance which is a function of the electrical 
angle 0me. The italic capital letter L denotes a constant value. Thus Lsr is the magnitude 
of the mutual inductance; its value when the magnetic axes of the stator and rotor are 
aligned (0me = 0) .  In terms of the inductances, the stator and rotor flux linkages )~s 
and ~,r are 

~.s = Lssis +/~sr(0me)ir = Lssis + Lsr cos  (0me)ir (4.56) 

~,r = /~sr(0me)is + Lrrir = Lsr cos  (0me)is q- Lrrir (4.57)  

where the inductances can be calculated as in Appendix B. In matrix notation 

[,ks] Lss /~sr(0me) ] [ is ] (4.58) 
~.r : £sr(0me) Lrr ir 

The terminal voltages Vs and l)r are 

d~.s 
Vs = Rsis + (4.59) 

dt 

d~.r 
Vr = Rrir + (4 .60)  

dt 

where Rs and Rr are the resistances of the stator and rotor windings respectively. 
When the rotor is revolving, 0me must be treated as a variable. Differentiation of 

Eqs. 4.56 and 4.57 and substitution of the results in Eqs. 4.59 and 4.60 then give 

dis dir dome (4.61) 
Vs = Rsis + Lss-d- 7 + Lsr cos  ( 0 m e ) ~ -  - Lsrir sin (0me) 

d---~ 

dir dir dome (4.62) 
Vr = Rrir + L ~ - r -  + Lsr cos (0me)--7- - -  Lsris sin (0me) 

d---~ tl t tl t 
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where 

dome 
dt 

poles) 
~- O)me - -  2 O)m (4.63) 

is the instantaneous speed in electrical radians per second. In a two-pole machine (such 
as that of Fig. 4.34), 0me and COme are equal to the instantaneous shaft angle 0m and 
the shaft speed 09 m respectively. In a multipole machine, they are related by Eqs. 4.54 
and 4.46. The second and third terms on the fight-hand sides of Eqs. 4.61 and 4.62 are 
L(d i /d t )  induced voltages like those induced in stationary coupled circuits such as 
the windings of transformers. The fourth terms are caused by mechanical motion and 
are proportional to the instantaneous speed. These are the speed voltage terms which 
correspond to the interchange of power between the electric and mechanical systems. 

The electromechanical torque can be found from the coenergy. From Eq. 3.70 

1 .2 1 Lrri 2 + Lsrisir COS Ome W i l d - -  -~ t ss l s '~" -~ 

, ( ( p o l e s ) )  
-- 1Lssi2 + Lrri 2 + LsrisirCOS Om (4.64) 
- - 2  2 2 

Note that the coenergy of Eq. 4.64 has been expressed specifically in terms of the 
shaft angle 0m because the torque expression of Eq. 3.68 requires that the torque be 
obtained from the derivative of the coenergy with respect to the spatial angle 0rn and 
not with respect to the electrical angle 0me. Thus, from Eq. 3.68 

OWl~d(is, ir, Orn) 
~0m is, ir 

_ _ (poles 
2 ) Lsrisir 

 srisirSinOme 

sin ( p ~ e s  0m) Z 

(4.65) 

where T is the electromechanical torque acting to accelerate the rotor (i.e., a positive 
torque acts to increase 0m). The negative sign in Eq. 4.65 means that the electrome- 
chanical torque acts in the direction to bring the magnetic fields of the stator and rotor 
into alignment. 

Equations 4.61, 4.62, and 4.65 are a set of three equations relating the electrical 
variables Vs, is, Vr, ir and the mechanical variables T and 0m. These equations, together 
with the constraints imposed on the electrical variables by the networks connected to 
the terminals (sources or loads and external impedances) and the constraints imposed 
on the rotor (applied torques and inertial, frictional, and spring torques), determine the 
performance of the device and its characteristics as a conversion device between the 
external electrical and mechanical systems. These are nonlinear differential equations 
and are difficult to solve except under special circumstances. We are not specifically 
concerned with their solution here; rather we are using them merely as steps in the 
development of the theory of rotating machines. 
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E X A M P L E  4 . 6  

Consider the elementary two-pole, two-winding machine of Fig. 4.34. Its shaft is coupled to a 

mechanical device which can be made to absorb or deliver mechanical torque over a wide range 

of speeds. This machine can be connected and operated in several ways. For this example, let 

us consider the situation in which the rotor winding is excited with direct current Ir and the 

stator winding is connected to an ac source which can either absorb or deliver electric power. 

Let the stator current be 

is - Is cos (Det 

where t - 0 is arbitrarily chosen as the moment when the stator current has its peak value. 

a. Derive an expression for the magnetic torque developed by the machine as the speed is 

varied by control of the mechanical device connected to its shaft. 

b. Find the speed at which average torque will be produced if the stator frequency is 60 Hz. 

c. With the assumed current-source excitations, what voltages are induced in the stator and 

rotor windings at synchronous speed ((Dm = (De)? 

II S o l u t i o n  

a. From Eq. 4.65 for a two-pole machine 

T = -Lsrisir sin 0 m 

For the conditions of this problem, with 0 m = (Dmt + 8 

T = -Lsrlsl~ cos (Det sin ((Dmt + 8) 

where (Dm is the clockwise angular velocity impressed on the rotor by the mechanical 

drive and 8 is the angular position of the rotor at t -- 0. Using a trigonometric identity, 2 we 

have 

1 
T = - -Lsr l s l r{s in[ (Wm + We)t + 8] + sin [((Dm -- we)t + 8]} 

2 

The torque consists of two sinusoidally time-varying terms of frequencies (_D m + (D e 

and (Dm - -  (De" AS shown in Section 4.5, ac current applied to the two-pole, single-phase 

stator winding in the machine of Fig. 4.34 creates two flux waves, one traveling in the 

positive 0m direction with angular velocity (De and the second traveling in the negative 0m 

direction also with angular velocity (De. It is the interaction of the rotor with these two 

flux waves which results in the two components of the torque expression. 

Except when (Dm = "]-(De, the torque averaged over a sufficiently long time is zero. But if 

(Dm "-- (De, the rotor is traveling in synchronism with the positive-traveling stator flux wave, 

and the torque becomes 

1 
T = --Lsr ls lr[s in(2(Det  + 8) + sinS] 

2 

2 sina cos/3 = l[sin (ct +/3) + sin (ct -/3)] 
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The first sine term is a double-frequency component whose average value is zero. The 

second term is the average torque 

1 
Tavg = --~Lsrlslrsin6 

A nonzero average torque will also be produced when (Dm = - - (De which merely means 

rotation in the counterclockwise direction; the rotor is now traveling in synchronism with 

the negative-traveling stator flux wave. The negative sign in the expression for Tavg means 

that a positive value of Tavg acts to reduce 6. 

This machine is an idealized single-phase synchronous machine. With a stator 

frequency of 60 Hz, it will produce nonzero average torque for speeds of -'[-(Dm = (De = 

27r60 rad/sec, corresponding to speeds of 4-3600 r/min as can be seen from Eq. 4.41. 

c. From the second and fourth terms of Eq. 4.61 (with 0e --- 0m -- (Dmt + 6), the voltage 

induced in the stator when (Dm = (De is 

es = -(DeLss/s sin (Det -- (DeLsr/r sin ((Det + ~) 

From the third and fourth terms of Eq. 4.62, the voltage induced in the rotor is 

er = --(DoLsr/s[sin (Det COS ((Det -q- ~) + COS (Dst sin ((Det + ~)] 

= --(DeLsrls sin (2(Det -k- S) 

The backwards-rotating component of the stator flux induces a double-frequency voltage 

in the rotor, while the forward-rotating component, which is rotating in sychronism with 

the rotor, appears as a dc flux to the rotor, and hence induces no voltage in the rotor 

winding. 

Now consider a uniform-air-gap machine with several stator and rotor windings. 

The same general principles that apply to the elementary model  of Fig. 4.34 also 

apply to the mult iwinding machine. Each winding has its own self-inductance as 

well as mutual inductances with other windings. The self-inductances and mutual 

inductances between pairs of windings on the same side of the air gap are constant 

on the assumption of a uniform gap and negligible magnetic saturation. However, 

the mutual inductances between pairs of stator and rotor windings vary as the cosine 

of the angle between their magnetic axes. Torque results from the tendency of the 

magnetic field of the rotor windings to line up with that of the stator windings. It can 

be expressed as the sum of terms like that of Eq. 4.65. 

Consider a 4-pole, three-phase synchronous machine with a uniform air gap. Assume the 

armature-winding self- and mutual inductances to be constant 

Laa --  Lbb ~- Lcc 

Lab - -  Lbc - -  Lca 

E X A M P L E  4 . 7  ...... 
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Similarly, assume the field-winding self-inductance Lf to be constant while the mutual 

inductances between the field winding and the three armature phase windings will vary with 

the angle 0m between the magnetic axis of the field winding and that of phase a 

~af ~ Laf COS 20m 

~bf - -  LafCOS (20m -- 120 °) 

/~cf "-- LafcOs  (20m + 120 °) 

Show that when the field is excited with constant current If and the armature is excited by 

balanced-three-phase currents of the form 

ia - -  la COS (09et + 3) 

ib --" la COS (O)et -- 120  ° + 3) 

ic = Ia COS (Wet + 120 ° + 3) 

the torque will be constant when the rotor travels at synchronous speed Ws as given by Eq. 4.40. 

I I  So lu t ion  
The torque can be calculated from the coenergy as described in Section 3.6. This particular 

machine is a four-winding system and the coenergy will consist of four terms involving 1/2 

the self-inductance multiplied by the square of the corresponding winding current as well as 

product-terms consisting of the mutual inductances between pairs of windings multiplied by the 

corresponding winding currents. Noting that only the terms involving the mutual inductances 

between the field winding and the three armature phase windings will contain terms that vary 

with 0m, we can write the coenergy in the form 

Wfld(ia, ib, ic, if, 0m) --- (constant terms) +/~afiaif +/~bf ib i f  + /~cficif 

= (constant terms) + L a f l a l f  [cos  20m COS (o&t + 3) 

+ COS (20m -- 120 °) COS (W~t -- 120 ° + 6) 

+ COS (20m + 120 °) COS (Wet + 120 ° + 3)] 

3 
= (constant terms) + ~ Laf/alfcos (20m -- w , t  -- 3) 

The torque can now be found from the partial derivative of W~d with respect to 0rn 

T - -  aW6~ 
00 . . . . .  

ta,tb,tc,t f 

= -3Laf/alf sin (20m - oo~t - 6) 

From this expression, we see that the torque will be constant when the rotor rotates at syn- 

chronous velocity Ws such that 

Om --Wst = - ~  t 

in which case the torque will be equal to 

T = 3 L a f l a l f  sin 8 
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Note that unlike the case of the single-phase machine of Example 4.6, the torque for this 
three-phase machine operating at synchronous velocity under balanced-three-phase conditions 
is constant. As we have seen, this is due to the fact that the stator mmf wave consists of a 
single rotating flux wave, as opposed to the single-phase case in which the stator phase current 
produces both a forward- and a backward-rotating flux wave. This backwards flux wave is not 
in synchronism with the rotor and hence is responsible for the double-frequency time-varying 
torque component seen in Example 4.6. 

For the four-pole machine of Example 4.7, find the synchronous speed at which a constant 
torque will be produced if the rotor currents are of the form 

ia - -  /a COS (¢Oet + 8) 

ib = /a COS (Wet + 120 ° + 8) 

ic = /a COS (wet -- 120 ° + 8) 

Solution 

OOs = - - (09e /2 )  

In Example 4.7 we found that, under balanced conditions, a four-pole syn- 
chronous machine will produce constant torque at a rotational angular velocity equal to 
half of the electrical excitation frequency. This result can be generalized to show that, 
under balanced operating conditions, a multiphase, multipole synchronous machine 
will produce constant torque at a rotor speed, at which the rotor rotates in synchronism 
with the rotating flux wave produced by the stator currents. Hence, this is known as 
the synchronous speed of the machine. From Eqs. 4.40 and 4.41, the synchronous 
speed is equal to ms = (2/poles)tOe in rad/sec or ns = (120/poles)fe in r/min. 

4.7.2 Magnet ic Field Viewpoint  

In the discussion of Section 4.7.1 the characteristics of a rotating machine as viewed 
from its electric and mechanical terminals have been expressed in terms of its winding 
inductances. This viewpoint gives little insight into the physical phenomena which 
occur within the machine. In this section, we will explore an alternative formulation 
in terms of the interacting magnetic fields. 

As we have seen, currents in the machine windings create magnetic flux in the 
air gap between the stator and rotor, the flux paths being completed through the stator 
and rotor iron. This condition corresponds to the appearance of magnetic poles on 
both the stator and the rotor, centered on their respective magnetic axes, as shown 
in Fig. 4.35a for a two-pole machine with a smooth air gap. Torque is produced by 
the tendency of the two component magnetic fields to line up their magnetic axes. A 
useful physical picture is that this is quite similar to the situation of two bar magnets 
pivoted at their centers on the same shaft; there will be a torque, proportional to the 
angular displacement of the bar magnets, which will act to align them. In the machine 
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F r 

Fs 

(a) 

. . . . .  F r  

F s s in  t~sr x / _ ;ns'iSn,r ',, , , '  

(b) 

Figure 4.35 Simplified two-pole machine: (a) elementary model and 
(b) vector diagram of mmf waves. Torque is produced by the tendency of the 
rotor and stator magnetic fields to align. Note that these figures are drawn with 
~sr positive, i.e., with the rotor mmf wave Fr leading that of the stator Fs. 

of Fig. 4.35a, the resulting torque is proportional to the product of the amplitudes of 
the stator and rotor mmf waves and is also a function of the angle 8sr measured from 
the axis of the stator mmf wave to that of the rotor. In fact, we will show that, for a 
smooth-air-gap machine, the torque is proportional to sin ~sr. 

In a typical machine, most of the flux produced by the stator and rotor windings 
crosses the air gap and links both windings; this is termed the mutual flux, directly 
analogous to the mutual or magnetizing flux in a transformer. However, some of the 
flux produced by the rotor and stator windings does not cross the air gap; this is 
analogous to the leakage flux in a transformer. These flux components are referred 
to as the rotor leakage flux and the stator leakage flux. Components of this leakage 
flux include slot and toothtip leakage, end-turn leakage, and space harmonics in the 
air-gap field. 

Only the mutual flux is of direct concern in torque production. The leakage 
fluxes do affect machine performance however, by virtue of the voltages they induce 
in their respective windings. Their effect on the electrical characteristics is accounted 
for by means of leakage inductances, analogous to the use of inclusion of leakage 
inductances in the transformer models of Chapter 2. 

When expressing torque in terms of the winding currents or their resultant mmf's, 
the resulting expressions do not include terms containing the leakage inductances. 
Our analysis here, then, will be in terms of the resultant mutual flux. We shall derive 
an expression for the magnetic coenergy stored in the air gap in terms of the stator 
and rotor mmfs and the angle t~sr between their magnetic axes. The torque can then 
be found from the partial derivative of the coenergy with respect to angle 3sr. 

For analytical simplicity, we will assume that the radial length g of the air gap 
(the radial clearance between the rotor and stator) is small compared with the radius 
of the rotor or stator. For a smooth-air-gap machine constructed from electrical steel 
with high magnetic permeability, it is possible to show that this will result in air-gap 
flux which is primarily radially directed and that there is relatively little difference 
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between the flux density at the rotor surface, at the stator surface, or at any intermediate 
radial distance in the air gap. The air-gap field then can be represented as a radial 
field Hag or Bag whose intensity varies with the angle around the periphery. The line 
integral of Hag across the gap then is simply Hagg and equals the resultant air-gap 
mmff'sr produced by the stator and rotor windings; thus 

Hagg --  S'sr (4 .66)  

where the script ~ denotes the mmf wave as a function of the angle around the 
periphery. 

The mmf waves of the stator and rotor are spatial sine waves with 6sr being the 
phase angle between their magnetic axes in electrical degrees. They can be represented 
by the space vectors Fs and Fr drawn along the magnetic axes of the stator- and rotor- 
mmf waves respectively, as in Fig. 4.35b. The resultant mmf Fsr acting across the air 
gap, also a sine wave, is their vector sum. From the trigonometric formula for the 
diagonal of a parallelogram, its peak value is found from 

F 2 = F 2 + F 2 + 2FsFr cos 6sr (4.67) 

in which the F 's  are the peak values of the mmf waves. The resultant radial Hag field 
is a sinusoidal space wave whose peak value Hag,pea k is, from Eq. 4.66, 

Fsr 
(Hag)pea k = (4.68) 

g 

Now consider the magnetic field coenergy stored in the air gap. From Eq. 3.49, 
the coenergy density at a point where the magnetic field intensity is H is (/x0/2) H 2 in 
SI units. Thus, the coenergy density averaged over the volume of the air gap is/z0/2 
times the average value of H2g. The average value of the square of a sine wave is half 
its peak value. Hence, 

/z0 (Hag)peak /z0 (4.69) Average coenergy density = ~ 2 - - 4  

The total coenergy is then found as 

Wt~ d --" (average coenergy density)(volume of air gap) 

. 0  4 --g- rcDlg- ixorcDll 4g Fs2r (4.70) 

where I is the axial length of the air gap and D is its average diameter. 
From Eq. 4.67 the coenergy stored in the air gap can now be expressed in terms 

of the peak amplitudes of the stator- and rotor-mmf waves and the space-phase angle 
between them; thus 

W~ d = ~0  ~ D l  4g (F2 + F2 + 2FsFr cos 6sr) (4.71) 

Recognizing that holding mmf constant is equivalent to holding current constant, 
an expression for the electromechanical torque T can now be obtained in terms of the 
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interacting magnetic fields by taking the partial derivative of the field coenergy with 
respect to angle. For a two-pole machine 

T = = - F~ Fr sin 8sr (4.72) 
O~sr Fs,Fr 2g 

The general expression for the torque for a multipole machine is 

T =  (po l e s )  (/z0yr D / )  
- 2 2g Fs Fr sin 8sr (4.73) 

In this equation, 8sr is the electrical space-phase angle between the rotor and stator 
mmf waves and the torque T acts in the direction to accelerate the rotor. Thus when 
8sr is positive, the torque is negative and the machine is operating as a generator. 
Similarly, a negative value of 6sr corresponds to positive torque and, correspondingly, 
motor action. 

This important equation states that the torque is proportional to the peak values of 
the stator- and rotor-mmf waves Fs and Fr and to the sine of the electrical space-phase 
angle 8sr between them. The minus sign means that the fields tend to align themselves. 
Equal and opposite torques are exerted on the stator and rotor. The torque on the stator 
is transmitted through the frame of the machine to the foundation. 

One can now compare the results of Eq. 4.73 with that of Eq. 4.65. Recognizing 
that Fs is proportional to is and Fr is proportional to ir, one sees that they are similar in 
form. In fact, they must be equal, as can be verified by substitution of the appropriate 
expressions for Fs, Fr (Section 4.3.1), and Lsr (Appendix B). Note that these results 
have been derived with the assumption that the iron reluctance is negligible. However, 
the two techniques are equally valid for finite iron permeability. 

On referring to Fig. 4.35b, it can be seen that Fr sin ~sr is the component of the Fr 
wave in electrical space quadrature with the Fs wave. Similarly Fs sin 8sr is the com- 
ponent of the Fs wave in quadrature with the Fr wave. Thus, the torque is proportional 
to the product of one magnetic field and the component of the other in quadrature 
with it, much like the cross product of vector analysis. Also note that in Fig. 4.35b 

Fs sin ~sr = Fsr sin ~r (4.74) 

and 

Fr sin ~sr = Fsr  sin 6s (4.75) 

where, as seen in Fig. 4.35, t~ r is the angle measured from the axis of the resultant 
mmf wave to the axis of the rotor mmf wave. Similarly, 8s is the angle measured from 
the axis of the stator mmf wave to the axis of the resultant mmf wave. 

The torque, acting to accelerate the rotor, can then be expressed in terms of the 
resultant mmf wave Fsr by substitution of either Eq. 4.74 or Eq. 4.75 in Eq. 4.73; thus 

(po l e s )  (/z0yr D I )  
T = - 2 2g fs Fsr sin ~s (4.76) 

(p°les)(lz°rrDl)FrFsrsin'r (4.77) 
T - - -  2 2g 
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Comparison of Eqs. 4.73, 4.76, and 4.77 shows that the torque can be expressed in 
terms of the component magnetic fields due to each current acting alone, as in Eq. 4.73, 
or in terms of the resultant field and either of the components, as in Eqs. 4.76 and 
4.77, provided that we use the corresponding angle between the axes of the fields. 
Ability to reason in any of these terms is a convenience in machine analysis. 

In Eqs. 4.73, 4.76, and 4.77, the fields have been expressed in terms of the peak 
values of their mmf waves. When magnetic saturation is neglected, the fields can, 
of course, be expressed in terms of the peak values of their flux-density waves or in 
terms of total flux per pole. Thus the peak value Bag of the field due to a sinusoidally 
distributed mmf wave in a uniform-air-gap machine is lZOFag,peak/g, where Fag,peak 
is the peak value of the mmf wave. For example, the resultant mmf Fsr produces a 
resultant flux-density wave whose peak value is Bsr =/z0 Fsr//g. Thus, Fsr = g Bsr//Z0 
and substitution in Eq. 4.77 gives 

T - - - (  p°les2 ) ( ~ - ~ )  BsrFrsinrr (4.78) 

One of the inherent limitations in the design of electromagnetic apparatus is the 
saturation flux density of magnetic materials. Because of saturation in the armature 
teeth the peak value Bsr of the resultant flux-density wave in the air gap is limited 
to about 1.5 to 2.0 T. The maximum permissible value of the winding current, and 
hence the corresponding mmf wave, is limited by the temperature rise of the winding 
and other design requirements. Because the resultant flux density and mmf appear 
explicitly in Eq. 4.78, this equation is in a convenient form for design purposes and 
can be used to estimate the maximum torque which can be obtained from a machine 
of a given size. 

An 1800-r/min, four-pole, 60-Hz synchronous motor has an air-gap length of 1.2 mm. The 
average diameter of the air-gap is 27 cm, and its axial length is 32 cm. The rotor winding has 
786 turns and a winding factor of 0.976. Assuming that thermal considerations limit the rotor 
current to 18 A, estimate the maximum torque and power output one can expect to obtain from 
this machine. 

I I  S o l u t i o n  

First, we can determine the maximum rotor mmf from Eq. 4.8 

4 / k r N r )  4 (0.976 x 786) 
(Fr)max = zr \poles (Ir)max = --71. 4 18 = 4395 A 

Assuming that the peak value of the resultant air-gap flux is limited to 1.5 T, we can estimate the 
maximum torque from Eq. 4.78 by setting ~r equal to -re~2 (recognizing that negative values 
of 6r, with the rotor mmf lagging the resultant mmf, correspond to positive, motoring torque) 

Tmax=(Ple-----~s)( reD1 - - - ~ )  Bsr (fr)max 

( ~ )  ( z r x 0 " 2 7 x 0 " 3 2 )  l . 5 x 4 4 0 0 = 1 7 9 0 N  m 
2 

E X A M P L E  4 .8  
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For a synchronous speed of 1800 r/min, O) m = ns (zr/30) = 1800 (re/30) = 60zr rad/sec, 
and thus the corresponding power can be calculated as Pmax - °)mTmax - -  337 kW. 

Practice P r o b l e m  4.1 

Repeat Example 4.8 for a two-pole, 60-Hz synchronous motor with an air-gap length of 1.3 mm, 
an average air-gap diameter of 22 cm and an axial length of 41 cm. The rotor winding has a 
900 turns and a winding factor of 0.965. The maximum rotor current is 22 A. 

Solu t ion  

Tma x = 2585 N. m and e m a x  = 975 kW 

Alternative forms of the torque equation arise when it is recognized that the 
resultant flux per pole is 

(I)p = (average value of B over a pole)(pole area) (4.79) 

and that the average value of a sinusoid over one-half wavelength is 2/rr times its 
peak value. Thus 

( ] )p  - -  _ _  B p e a k  Jr poles \ poles BReak (4.80) 

where Bpeak is the peak value of the corresponding flux-density wave. For example, 
using the peak value of the resultant flux Bsr and substitution of Eq. 4.80 into Eq. 4.78 
gives 

zr ( p ° l e s )  2 
T = 2 2 ( I ) s rFr  sin ~r ( 4 . 8 1 )  

where ~sr is the resultant flux per pole produced by the combined effect of the stator 
and rotor mmf's.  

To recapitulate, we now have several forms in which the torque of a uniform- 
air-gap machine can be expressed in terms of its magnetic fields. All are merely 
statements that the torque is proportional to the product of the magnitudes of the 
interacting fields and to the sine of the electrical space angle between their magnetic 
axes. The negative sign indicates that the electromechanical torque acts in a direction 
to decrease the displacement angle between the fields. In our preliminary discussion 
of machine types, Eq. 4.81 will be the preferred form. 

One further remark can be made concerning the torque equations and the thought 
process leading to them. There was no restriction in the derivation that the mmf wave 
or flux-density wave remain stationary in space. They may remain stationary, or they 
may be traveling waves, as discussed in Section 4.5. As we have seen, if the magnetic 
fields of the stator and rotor are constant in amplitude and travel around the air gap 
at the same speed, a steady torque will be produced by the tendency of the stator and 
rotor fields to align themselves in accordance with the torque equations. 
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4.8  L I N E A R  M A C H I N E S  
In general, each of the machine types discussed in this book can be produced in linear 
versions in addition to the rotary versions which are commonly found and which are 
discussed extensively in the following chapters. In fact, for clarity of discussion, many 
of the machine types discussed in this book are drawn in their developed (Cartesian 
coordinate) form, such as in Fig. 4.19b. 

Perhaps the most widely known use of linear motors is in the transportation 
field. In these applications, linear induction motors are used, typically with the ac 
"stator" on the moving vehicle and with a conducting stationary "rotor" constituting 
the rails. In these systems, in addition to providing propulsion, the induced currents in 
the rail may be used to provide levitation, thus offering a mechanism for high-speed 
transportation without the difficulties associated with wheel-rail interactions on more 
conventional rail transport. 

Linear motors have also found application in the machine tool industry and 
in robotics where linear motion (required for positioning and in the operation of 
manipulators) is a common requirement. In addition, reciprocating linear machines 
are being constructed for driving reciprocating compressors and alternators. 

The analysis of linear machines is quite similar to that of rotary machines. In 
general, linear dimensions and displacements replace angular ones, and forces replace 
torques. With these exceptions, the expressions for machine parameters are derived 
in an analogous fashion to those presented here for rotary machines, and the results 
are similar in form. 

Consider the linear winding shown in Fig. 4.36. This winding, consisting of N 
turns per slot and carrying a current i, is directly analogous to the rotary winding 
shown in developed form in Fig. 4.25. In fact, the only difference is that the angular 
position 0a is replaced by the linear position z. 

The fundamental component of the mmf wave of Fig. 4.36 can be found directly 
from Eq. 4.13 simply by recognizing that this winding has a wavelength equal to fl 
and that the fundamental component of this mmf wave varies as cos (2rcz/fl). Thus 
replacing the angle 0a in Eq. 4.13 by 2zrz/fl, we can find the fundamental component 
of the mmf wave directly as 

4 ( N _ ~ ~ ) ( 2 z r z )  
Hag1 -- -- cos (4.82) 

If an actual machine has a distributed winding (similar to its rotary counterpart, 
shown in Fig. 4.20) consisting of a total of Nph turns distributed over p periods in z 
(i.e., over a length of pfl), the fundamental component of Hag can be found by analogy 
with Eq. 4.15 

4(kwNphi ) (2rcz)  
-- cos (4.83) Magi-- 7/" 2pg --fl 

where kw is the winding factor. 
In a fashion analogous to the discussion of Section 4.5.2, a three-phase linear 

winding can be made from three windings such as those of Fig. 4.31, with each phase 
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Figure 4 .36  The mmf and H field of a concentrated full-pitch 
linear winding. 

displaced in position by a distance fl/3 and with each phase excited by balanced 
three-phase currents of angular frequency tOe 

ia -- Im cos Oget (4.84) 

ib = lm COS (OOet -- 120 °) (4.85) 

ic -- lm COS (Wet + 120 °) (4.86) 

Following the development of Eqs. 4.26 through 4.38, we can see that there will 
be a single positive-traveling mmf which can be written directly from Eq. 4.38 simply 
by replacing 0a by 2rcz/fl as 

.T "+ (z, t) - ~ Fmax cos T - COet (4.87) 

where Fmax is given by 

4 
Fmax -- -- Im 

Jr 2p  
(4.88) 
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From Eq. 4.87 we see that the result  is an m m f  which travels in the z direct ion 

with a l inear  veloci ty  

O)e/~ 
v = = fe/3 (4.89) 

2zr 

where  fe is the exci t ing f requency in hertz. 

E X A M P L E  4 .9  

A three-phase linear ac motor has a winding with a wavelength of fl = 0.5 m and an air gap of 

1.0 cm in length. A total of 45 tums, with a winding factor kw = 0.92, are distributed over a total 

winding length of 3/3 = 1.5 m. Assume the windings to be excited with balanced three-phase 

currents of peak amplitude 700 A and frequency 25 Hz. Calculate (a) the amplitude of the 

resultant mmf wave, (b) the corresponding peak air-gap flux density, and (c) the velocity of 

this traveling mmf wave. 

II S o l u t i o n  

a. From Eqs. 4.87 and 4.88, the amplitude of the resultant mmf wave is 

4 
Fpeak "- ~ ~- 2p Im 

= 3 4  ( 0 " 9 2 x 4 5 )  7 0 0 2 z r  2 x 3  

= 8.81 x 103 A/m 

b. The peak air-gap flux density can be found from the result of part (a) by dividing by the 

air-gap length and multiplying by/z0: 

/Zo Fpeak 
Bpe ~ = 

g 

(4zr x 10-7)(8.81 × 103) 

0.01 

= 1.11T 

c. Finally, the velocity of the traveling wave can be determined from Eq. 4.89: 

v = fe/3 = 25 x 0.5 = 12.5 m/s 

A three-phase linear synchronous motor has a wavelength of 0.93 m. It is observed to be 

traveling at speed of 83 km/hr. Calculate the frequency of the electrical excitation required 

under this operating condition. 

S o l u t i o n  

f = 24.8 Hz 
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Linear machines are not discussed specifically in this book. Rather, the reader is 
urged to recognize that the fundamentals of their performance and analysis correspond 
directly to those of their rotary counterparts. One major difference between these two 
machine types is that linear machines have end effects, corresponding to the magnetic 
fields which "leak" out of the air gap ahead of and behind the machine. These effects 
are beyond the scope of this book and have been treated in detail in the published 
literature. 3 

4.9 M A G N E T I C  SATURATION 
The characteristics of electric machines depend heavily upon the use of magnetic 
materials. These materials are required to form the magnetic circuit and are used by 
the machine designer to obtain specific machine characteristics. As we have seen in 
Chapter 1, magnetic materials are less than ideal. As their magnetic flux is increased, 
they begin to saturate, with the result that their magnetic permeabilities begin to 
decrease, along with their effectiveness in contributing to the overall flux density in 
the machine. 

Both electromechanical torque and generated voltage in all machines depend on 
the winding flux linkages. For specific mmf's in the windings, the fluxes depend on the 
reluctances of the iron portions of the magnetic circuits and on those of the air gaps. 
Saturation may therefore appreciably influence the characteristics of the machines. 

Another aspect of saturation, more subtle and more difficult to evaluate without 
experimental and theoretical comparisons, concerns its influence on the basic premises 
from which the analytic approach to machinery is developed. Specifically, relations 
for the air-gap mmf are typically based on the assumption of negligible reluctance in 
the iron. When these relations are applied to practical machines with varying degrees 
of saturation in the iron, significant errors in the analytical results can be expected. To 
improve these analytical relationships, the actual machine can be replaced for these 
considerations by an equivalent machine, one whose iron has negligible reluctance 
but whose air-gap length is increased by an amount sufficient to absorb the magnetic- 
potential drop in the iron of the actual machine. 

Similarly, the effects of air-gap nonuniformities such as slots and ventilating 
ducts are also incorporated by increasing the effective air-gap length. Ultimately, 
these various approximate techniques must be verified and confirmed experimentally. 
In cases where such simple techniques are found to be inadequate, detailed analyses, 
such as those employing finite-element or other numerical techniques, can be used. 
However, it must be recognized that the use of these techniques represents a significant 
increase in modeling complexity. 

Saturation characteristics of rotating machines are typically presented in the 
form of an open-circuit characteristic, also called a magnetization curve or saturation 

3 See, for example, S. Yamamura, Theory of Linear Induction Motors, 2d ed., Halsted Press, 1978. Also, 
S. Nasar and I. Boldea, Linear Electric Motors: Theory, Design and Practical Applications, 
Prentice-Hall, 1987. 
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Figure 4.37 Typical open-circuit 
characteristic and air-gap line. 

curve. An example is shown in Fig. 4.37. This characteristic represents the magnetiza- 
tion curve for the particular iron and air geometry of the machine under consideration. 
For a synchronous machine, the open-circuit saturation curve is obtained by operating 
the machine at constant speed and measuring the open-circuit armature voltage as a 
function of the field current. The straight line tangent to the lower portion of the curve 
is the air-gap line, corresponding to low levels of flux within the machine. Under 
these conditions the reluctance of the machine iron is typically negligible, and the 
mmf required to excite the machine is simply that required to overcome the reluc- 
tance of the air gap. If it were not for the effects of saturation, the air-gap line and 
open-circuit characteristic would coincide. Thus, the departure of the curve from the 
air-gap line is an indication of the degree of saturation present. In typical machines 
the ratio at rated voltage of the total mmf to that required by the air gap alone usually 
is between 1.1 and 1.25. 

At the design stage, the open-circuit characteristic can be calculated from design 
data techniques such as finite-element analyses. A typical finite-element solution for 
the flux distribution around the pole of a salient-pole machine is shown in Fig. 4.38. 
The distribution of the air-gap flux found from this solution, together with the funda- 
mental and third-harmonic components, is shown in Fig. 4.39. 

In addition to saturation effects, Fig. 4.39 clearly illustrates the effect of a nonuni- 
form air gap. As expected, the flux density over the pole face, where the air gap is 
small, is much higher than that away from the pole. This type of detailed analysis is 
of great use to a designer in obtaining specific machine properties. 

As we have seen, the magnetization curve for an existing synchronous machine 
can be determined by operating the machine as an unloaded generator and measuring 
the values of terminal voltage corresponding to a series of values of field current. 
For an induction motor, the machine is operated at or close to synchronous speed (in 
which case very little current will be induced in the rotor windings), and values of the 
magnetizing current are obtained for a series of values of impressed stator voltage. 
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Figure 4.38 Finite-element solution for the flux distribution around a 
salient pole. (General Electric Company.) 
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It should be emphasized, however, that saturation in a fully loaded machine occurs 
as a result of the total mmf acting on the magnetic circuit. Since the flux distribution 
under load generally differs from that of no-load conditions, the details of the machine 
saturation characteristics may vary from the open-circuit curve of Fig. 4.37. 

4 .10  LEAKAGE FLUXES 
In Section 2.4 we showed that in a two-winding transformer the flux created by 
each winding can be separated into two components. One component consists of flux 
which links both windings, and the other consists of flux which links only the winding 
creating the flux. The first component, called mutual flux, is responsible for coupling 
between the two coils. The second, known as leakage flux, contributes only to the 
self-inductance of each coil. 

Note that the concept of mutual and leakage flux is meaningful only in the context 
of a multiwinding system. For systems of three or more windings, the bookkeeping 
must be done very carefully. Consider, for example, the three-winding system of 
Fig. 4.40. Shown schematically are the various components of flux created by a 
current in winding 1. Here ~Ple3 is clearly mutual flux that links all three windings, 
and qgll is clearly leakage flux since it links only winding 1. However, ~ole is mutual 
flux with respect to winding 2 yet is leakage flux with respect to winding 3, while ~013 
mutual flux with respect to winding 3 and leakage flux with respect to winding 2. 

Electric machinery often contains systems of multiple windings, requiting careful 
bookkeeping to account for the flux contributions of the various windings. Although 
the details of such analysis are beyond the scope of this book, it is useful to discuss 
these effects in a qualitative fashion and to describe how they affect the basic machine 
inductances. 

Air-Gap Space-Harmonic Fluxes In this chapter we have seen that although sin- 
gle distributed coils create air-gap flux with a significant amount of space-harmonic 
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Figure 4.40 Three-coil system showing 
components of mutual and leakage flux produced by 
current in coil 1. 
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content, it is possible to distribute these windings so that the space-fundamental com- 
ponent is emphasized while the harmonic effects are greatly reduced. As a result, we 
can neglect harmonic effects and consider only space-fundamental fluxes in calculat- 
ing the self and mutual-inductance expressions of Eqs. B.26 and B.27. 

Though often small, the space-harmonic components of air-gap flux do exist. In 
dc machines they are useful torque-producing fluxes and therefore can be counted as 
mutual flux between the rotor and stator windings. In ac machines, however, they may 
generate time-harmonic voltages or asynchronously rotating flux waves. These effects 
generally cannot be rigorously accounted for in most standard analyses. Nevertheless, 
it is consistent with the assumptions basic to these analyses to recognize that these 
fluxes form a part of the leakage flux of the individual windings which produce 
them. 

Slot-Leakage Flux Figure 4.41 shows the flux created by a single coil side in a slot. 
Notice that in addition to flux which crosses the air gap, contributing to the air-gap 
flux, there are flux components which cross the slot. Since this flux links only the 
coil that is producing it, it also forms a component of the leakage inductance of the 
winding producing it. 

End-Turn Fluxes Figure 4.42 shows the stator end windings on an ac machine. 
The magnetic field distribution created by end turns is extremely complex. In general 
these fluxes do not contribute to useful rotor-to-stator mutual flux, and thus they, too, 
contribute to leakage inductance. 

From this discussion we see that the self-inductance expression of Eq. B.26 must, 
in general, be modified by an additional term LI, which represents the winding leakage 
inductance. This leakage inductance corresponds directly to the leakage inductance 
of a transformer winding as discussed in Chapter 1. Although the leakage inductance 
is usually difficult to calculate analytically and must be determined by approximate 
or empirical techniques, it plays an important role in machine performance. 

kir gap 

carrying 
1to paper 

Figure 4.41 Flux created by a single 
coil side in a slot. 
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Figure 4 . 4 2  End view of the stator of a 26-kV 908-MVA 3600 r/min turbine 
generator with water-cooled windings. Hydraulic connections for coolant flow are 
provided for each winding end turn. (General Electric Company.) 

4.11 S U M M A R Y  
This chapter presents a brief and elementary description of three basic types of rotating 
machines: synchronous, induction, and dc machines. In all of them the basic principles 
are essentially the same. Voltages are generated by the relative motion of a magnetic 
field with respect to a winding, and torques are produced by the interaction of the 
magnetic fields of the stator and rotor windings. The characteristics of the various 
machine types are determined by the methods of connection and excitation of the 
windings, but the basic principles are essentially similar. 

The basic analytical tools for studying rotating machines are expressions for the 
generated voltages and for the electromechanical torque. Taken together, they express 
the coupling between the electric and mechanical systems. To develop a reasonably 
quantitative theory without the confusion arising from too much detail, we have made 
several simplifying approximations. In the study of ac machines we have assumed 
sinusoidal time variations of voltages and currents and sinusoidal space waves of 
air-gap flux density and mmf. On examination of the mmf produced by distributed ac 
windings we found that the space-fundamental component is the most important. On 
the other hand, in dc machines the armature-winding mmf is more nearly a sawtooth 
wave. For our preliminary study in this chapter, however, we have assumed sinusoidal 
mmf distributions for both ac and dc machines. We examine this assumption more 
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thoroughly for dc machines in Chapter 7. Faraday's law results in Eq. 4.50 for the 
rms voltage generated in an ac machine winding or Eq. 4.53 for the average voltage 
generated between brushes in a dc machine. 

On examination of the mmf wave of a three-phase winding, we found that bal- 
anced three-phase currents produce a constant-amplitude air-gap magnetic field rotat- 
ing at synchronous speed, as shown in Fig. 4.31 and Eq. 4.39. The importance of this 
fact cannot be overstated, for it means that it is possible to operate such machines, ei- 
ther as motors or generators, under conditions of constant torque (and hence constant 
electrical power as is discussed in Appendix A), eliminating the double-frequency, 
time-varying torque inherently associated with single-phase machines. For example, 
imagine a multimegawatt single-phase 60-Hz generator subjected to multimegawatt 
instantaneous power pulsation at 120 Hz! The discovery of rotating fields led to the 
invention of the simple, rugged, reliable, self-starting polyphase induction motor, 
which is analyzed in Chapter 6. (A single-phase induction motor will not start; it 
needs an auxiliary starting winding, as shown in Chapter 9.) 

In single-phase machines, or in polyphase machines operating under unbalanced 
conditions, the backward-rotating component of the armature mmf wave induces 
currents and losses in the rotor structure. Thus, the operation of polyphase machines 
under balanced conditions not only eliminates the second-harmonic component of 
generated torque, it also eliminates a significant source of rotor loss and rotor heating. 
It was the invention of polyphase machines operating under balanced conditions that 
made possible the design and construction of large synchronous generators with 
ratings as large as 1000 MW. 

Having assumed sinusoidally-distributed magnetic fields in the air gap, we then 
derived expressions for the magnetic torque. The simple physical picture for torque 
production is that of two magnets, one on the stator and one on the rotor, as shown 
schematically in Fig. 4.35a. The torque acts in the direction to align the magnets. 
To get a reasonably close quantitative analysis without being hindered by details, we 
assumed a smooth air gap and neglected the reluctance of the magnetic paths in the 
iron parts, with a mental note that this assumption may not be valid in all situations 
and a more detailed model may be required. 

In Section 4.7 we derived expressions for the magnetic torque from two view- 
points, both based on the fundamental principles of Chapter 3. The first viewpoint 
regards the machine as a set of magnetically-coupled circuits with inductances which 
depend on the angular position of the rotor, as in Section 4.7.1. The second regards the 
machine from the viewpoint of the magnetic fields in the air gap, as in Section 4.7.2. 
It is shown that the torque can be expressed as the product of the stator field, the rotor 
field, and the sine of the angle between their magnetic axes, as in Eq. 4.73 or any of 
the forms derived from Eq. 4.73. The two viewpoints are complementary, and ability 
to reason in terms of both is helpful in reaching an understanding of how machines 
work. 

This chapter has been concerned with basic principles underlying rotating- 
machine theory. By itself it is obviously incomplete. Many questions remain unan- 
swered. How do we apply these principles to the determination of the characteristics 
of synchronous, induction, and dc machines? What are some of the practical problems 
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that arise from the use of iron, copper, and insulation in physical machines? What 
are some of the economic and engineering considerations affecting rotating-machine 
applications? What are the physical factors limiting the conditions under which a 
machine can operate successfully? Appendix D discusses some of these problems. 
Taken together, Chapter 4 along with Appendix D serve as an introduction to the more 
detailed treatments of rotating machines in the following chapters. 

4 .12  P R O B L E M S  
4.1 The rotor of a six-pole synchronous generator is rotating at a mechanical 

speed of 1200 r/min. 

a. Express this mechanical speed in radians per second. 

b. What is the frequency of the generated voltage in hertz and in radians per 
second? 

c. What mechanical speed in revolutions per minute would be required to 
generate voltage at a frequency of 50 Hz? 

4.2 The voltage generated in one phase of an unloaded three-phase synchronous 
generator is of the form v( t )  = Vo cos cot. Write expressions for the voltage in 
the remaining two phases. 

4.3 A three-phase motor is used to drive a pump. It is observed (by the use of a 
stroboscope) that the motor speed decreases from 898 r/min when the pump 
is unloaded to 830 r/min as the pump is loaded. 

a. Is this a synchronous or an induction motor? 

b. Estimate the frequency of the applied armature voltage in hertz. 

c. How many poles does this motor have? 

4.4 The object of this problem is to illustrate how the armature windings of 
certain machines, i.e., dc machines, can be approximately represented by 
uniform current sheets, the degree of correspondence growing better as the 
winding is distributed in a greater number of slots around the armature 
periphery. For this purpose, consider an armature with eight slots uniformly 
distributed over 360 electrical degrees (corresponding to a span of one pole 
pair). The air gap is of uniform length, the slot openings are very small, and 
the reluctance of the iron is negligible. 

Lay out 360 electrical degrees of the armature with its slots in developed 
form in the manner of Fig. 4.23a and number the slots 1 to 8 from left to right. 
The winding consists of eight single-turn coils, each carrying a direct current 
of 10 A. Coil sides placed in any of the slots 1 to 4 carry current directed into 
the paper; those placed in any of the slots 5 to 8 carry current out of the paper. 

a. Consider that all eight slots are placed with one side in slot 1 and the other 
in slot 5. The remaining slots are empty. Draw the rectangular mmf wave 
produced by these slots. 

b. Next consider that four coils have one side in slot 1 and the other in slot 5, 
while the remaining four coils have one side in slot 3 and the other in 
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slot 7. Draw the component rectangular mmf waves produced by each 
group of coils, and superimpose the components to give the resultant 
mmf wave. 

c. Now consider that two coils are placed in slots 1 and 5, two in slots 2 and 
6, two in 3 and 7, and two in 4 and 8. Again superimpose the component 
rectangular waves to produce the resultant wave. Note that the task can be 
systematized and simplified by recognizing that the mmf wave is 
symmetric about its axis and takes a step at each slot which is directly 
proportional to the number of ampere-conductors in that slot. 

d. Let the armature now consist of 16 slots per 360 electrical degrees with 
one coil side per slot. Draw the resultant mmf wave. 

4.5 A three-phase Y-connected ac machine is initially operating under balanced 
three-phase conditions when one of the phase windings becomes 
open-circuited. Because there is no neutral connection on the winding, this 
requires that the currents in the remaining two windings become equal and 
opposite. Under this condition, calculate the relative magnitudes of the 
resultant positive- and negative-traveling mmf waves. 

4.6 What is the effect on the rotating mmf and flux waves of a three-phase 
winding produced by balanced-three-phase currents if two of the phase 
connections are interchanges? 

4.7 In a balanced two-phase machine, the two windings are displaced 90 electrical 
degrees in space, and the currents in the two windings are phase-displaced 90 
electrical degrees in time. For such a machine, carry out the process leading 
to an equation for the rotating mmf wave corresponding to Eq. 4.39 (which is 
derived for a three-phase machine). 

4.8 This problem investigates the advantages of short-pitching the stator coils of 
an ac machine. Figure 4.43a shows a single full-pitch coil in a two-pole 
machine. Figure 4.43b shows a fractional-pitch coil for which the coil sides 
are fl radians apart, rather than zr radians (180 °) as is the case for the 
full-pitch coil. 

For an air-gap radial flux distribution of the form 

-- Z Bn cos nO Br 
n o d d  

where n = 1 corresponds to the fundamental space harmonic, n -- 3 to the 
third space harmonic, and so on, the flux linkage of each coil is the integral 
of Br over the surface spanned by that coil. Thus for the nth space harmonic, 
the ratio of the maximum fractional-pitch coil flux linkage to that of the 
full-pitch coil is 

f f /2  B,, cos nO dO f/~/2 fl/2 3-[3/2 COS nO dO 
= = Isin (nil~2)] 

f_~/2 Bn cos nO dO fzr/2 :rr/2 3-:rr/2 COS nO dO 

It is common, for example, to fractional-pitch the coils of an ac machine 
by 30 electrical degrees (/3 = 5zr/6 - 150°). For n -- 1, 3, 5 calculate the 
fractional reduction in flux linkage due to short pitching. 
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N-turn coil 

(a) (b) 

Figure 4.43 Problem 4.8 (a) full-pitch coil and 
(b) fractional-pitch coil. 

4.9 A six-pole, 60-Hz synchronous machine has a rotor winding with a total of 
138 series turns and a winding factor kr - 0.935. The rotor length is 1.97 m, 
the rotor radius is 58 cm, and the air-gap length = 3.15 cm. 

a. What is the rated operating speed in r/min? 

b. Calculate the rotor-winding current required to achieve a peak 
fundamental air-gap flux density of 1.23 T. 

c. Calculate the corresponding flux per pole. 

4.10 Assume that a phase winding of the synchronous machine of Problem 4.9 
consists of one full-pitch, 11-turn coil per pole pair, with the coils connected 
in series to form the phase winding. If the machine is operating at rated speed 
and under the operating conditions of Problem 4.9, calculate the rms 
generated voltage per phase. 

4.11 The synchronous machine of Problem 4.9 has a three-phase winding with 45 
series turns per phase and a winding factor kw -- 0.928. For the flux condition 
and rated speed of Problem 4.9, calculate the rms-generated voltage per phase. 

4.12 The three-phase synchronous machine of Problem 4.9 is to be moved to an 
application which requires that its operating frequency be reduced from 60 to 
50 Hz. This application requires that, for the operating condition considered 
in Problem 4.9, the rms generated voltage equal 13.0 kV line-to-line. As a 
result, the machine armature must be rewound with a different number of 
turns. Assuming a winding factor of kw = 0.928, calculate the required 
number of series turns per phase. 

4.13 Figure 4.44 shows a two-pole rotor revolving inside a smooth stator which 
carries a coil of 110 turns. The rotor produces a sinusoidal space distribution 
of flux at the stator surface; the peak value of the flux-density wave being 
0.85 T when the current in the rotor is 15 A. The magnetic circuit is linear. 
The inside diameter of the stator is 11 cm, and its axial length is 0.17 m. The 
rotor is driven at a speed of 50 r/sec. 
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Figure 4.44 Elementary 
generator for Problem 4.13. 

a. The rotor is excited by a current of 15 A. Taking zero time as the instant 
when the axis of the rotor is vertical, find the expression for the 
instantaneous voltage generated in the open-circuited stator coil. 

b. The rotor is now excited by a 50-Hz sinusoidal alternating currrent whose 
peak value is 15 A. Consequently, the rotor current reverses every half 
revolution; it is timed to be at its maximum just as the axis of the rotor is 
vertical (i.e., just as it becomes aligned with that of the stator coil). 
Taking zero time as the instant when the axis of the rotor is vertical, find 
the expression for the instantaneous voltage generated in the 
open-circuited stator coil. This scheme is sometimes suggested as a dc 
generator without a commutator; the thought being that if alternative half 
cycles of the alternating voltage generated in part (a) are reversed by 
reversal of the polarity of the field (rotor) winding, then a pulsating direct 
voltage will be generated in the stator. Discuss whether or not this scheme 
will work. 

4.14 A three-phase two-pole winding is excited by balanced three-phase 60-Hz 
currents as described by Eqs. 4.23 to 4.25. Although the winding distribution 
has been designed to minimize harmonics, there remains some third and fifth 
spatial harmonics. Thus the phase-a mmf can be written as 

• ~'a --" ia(A1 cOS0a + A3 cos 30a q- A5 cos 50a) 

Similar expressions can be written for phases b (replace 0a by 0a - 120 °) and 
c (replace 0a by 0a + 120 °). Calculate the total three-phase mmf. What is the 
angular velocity and rotational direction of each component of the mmf? 

4.15 The nameplate of a dc generator indicates that it will produce an output 
voltage of 24 V dc when operated at a speed of 1200 r/min. By what factor 
must the number of armature turns be changed such that, for the same 
field-flux per pole, the generator will produce an output voltage of 18 V dc at 
a speed of 1400 r/min? 
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4.16 The armature of a two-pole dc generator has a total of 320 series turns. When 
operated at a speed of 1800 ffmin, the open-circuit generated voltage is 240 V. 
Calculate ~p, the air-gap flux per pole. 

4.17 The design of a four-pole, three-phase, 230-V, 60-Hz induction motor is to be 
based on a stator core of length 21 cm and inner diameter 9.52 cm. The stator 
winding distribution which has been selected has a winding factor 
kw = 0.925. The armature is to be Y-connected, and thus the rated phase 
voltage will be 230/~/3 V. 

a. The designer must pick the number of armature turns so that the flux 
density in the machine is large enough to make efficient use of the 
magnetic material without being so large as to result in excessive 
saturation. To achieve this objective, the machine is to be designed with 
a peak fundamental air-gap flux density of 1.25 T. Calculate the required 
number of series turns per phase. 

b. For an air-gap length of 0.3 mm, calculate the self-inductance of an 
armature phase based upon the result of part (a) and using the inductance 
formulas of Appendix B. Neglect the reluctance of the rotor and stator 
iron and the armature leakage inductance. 

4.18 A two-pole, 60-Hz, three-phase, laboratory-size synchronous generator has a 
rotor radius of 5.71 cm, a rotor length of 18.0 cm, and an air-gap length of 
0.25 mm. The rotor field winding consists of 264 turns with a winding factor 
of kr - 0 .95.  The Y-connected armature winding consists of 45 turns per 
phase with a winding factor kw = 0.93. 

a. Calculate the flux per pole and peak fundamental air-gap flux density 
which will result in an open-circuit, 60-Hz armature voltage of 
120 V rms/phase (line-to-neutral). 

b. Calculate the dc field current required to achieve the operating condition 
of part (a). 

c. Calculate the peak value of the field-winding to armature-phase-winding 
mutual inductance. 

4.19 Write a MATLAB script which calculates the required total series field- and 
armature-winding turns for a three-phase, Y-connected synchronous motor 
given the following information: 

Rotor radius, R (meters) 
Air-gap length, g (meters) 
Electrical frequency, fe 
Field-winding factor, kf 

Rotor length, l (meters) 
Number of poles, poles 
Peak fundamental air-gap flux density, Bpeak 

Armature-winding factor, kw 
Rated rms open-circuit line-to-line terminal voltage, Vrated 
Field-current at rated-open-circuit terminal voltage, If 

4.20 A four-pole, 60-Hz synchronous generator has a rotor length of 5.2 m, 
diameter of 1.24 m, and air-gap length of 5.9 cm. The rotor winding consists 
of a series connection of 63 turns per pole with a winding factor of kr = 0.91. 
The peak value of the fundamental air-gap flux density is limited to 1.1 T and 
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the rotor winding current to 2700 A. Calculate the maximum torque (N.m) 
and power output (MW) which can be supplied by this machine. 

4.21 Thermal considerations limit the field-current of the laboratory-size 
synchronous generator of Problem 4.18 to a maximum value of 2.4 A. If the 
peak fundamental air-gap flux density is limited to a maximum of 1.3 T, 
calculate the maximum torque (N.m) and power (kW) which can be produced 
by this generator. 

4.22 Figure 4.45 shows in cross section a machine having a rotor winding f and 
two identical stator windings a and b whose axes are in quadrature. The 
self-inductance of each stator winding is Laa and of the rotor is Lff. The air 
gap is uniform. The mutual inductance between a stator winding depends on 
the angular position of the rotor and may be assumed to be of the form 

M a f  - -  M cos 00 M b f  = M sin 00 

where M is the maximum value of the mutual inductance. The resistance of 
each stator winding is Ra. 

a. Derive a general expression for the torque T in terms of the angle 00, the 
inductance parameters, and the instantaneous currents ia, Ib, and if. Does 
this expression apply at standstill? When the rotor is revolving? 

b. Suppose the rotor is stationary and constant direct currents la = I0, 
Ib = I0, and If = 210 are supplied to the windings in the directions 
indicated by the dots and crosses in Fig. 4.45. If the rotor is allowed to 
move, will it rotate continuously or will it tend to come to rest? If the 
latter, at what value of 00 ? 

Figure 4.45 Elementary 
cylindrical-rotor, two-phase 
synchronous machine for 
Problem 4.22. 
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c. The rotor winding is now excited by a constant direct current If while the 
stator windings carry balanced two-phase currents 

ia --- ~/21a COS cot ib ---- ~/21a sin cot 

The rotor is revolving at synchronous speed so that its instantaneous 
angular position is given by 00 = cot - 3 ,  where ~ is a phase angle 
describing the position of the rotor at t = 0. The machine is an elementary 
two-phase synchronous machine. Derive an expression for the torque 
under these conditions. 

d. Under the conditions of part (c), derive an expression for the 
instantaneous terminal voltages of stator phases a and b. 

4.23 Consider the two-phase synchronous machine of Problem 4.22. Derive an 
expression for the torque acting on the rotor if the rotor is rotating at constant 
angular velocity, such that 00 = cot + 3, and the phase currents become 
unbalanced such that 

ia "-- ~/~Ia cos cot ib = ~/2(Ia + I ' ) s in  cot 

What are the instantaneous and time-averaged torque under this condition? 
4.24 Figure 4.46 shows in schematic cross section a salient-pole synchronous 

machine having two identical stator windings a and b on a laminated steel 
core. The salient-pole rotor is made of steel and carries a field winding f 
connected to slip rings. 

Because of the nonuniform air gap, the self- and mutual inductances are 
functions of the angular position 00 of the rotor. Their variation with 00 can be 
approximated as: 

Laa -- L0 -F L2 cos 200 Lbb = L0 -- L2 cos 200 Mab = L2 sin 200 

Figure 4.46 Schematic two-phase, 
salient-pole synchronous machine for 
Problem 4.24. 
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where Lo and L2 are positive constants. The mutual inductance between the 
rotor and the stator windings are functions of 00 

Maf = M cos 00 Mbf = M sin 00 

where M is also a positive constant. The self-inductance of the field winding, 
Lff, is constant, independent of 00. 

Consider the operating condition in which the field winding is excited by 
direct current If and the stator windings are connected to a balanced 
two-phase voltage source of frequency co. With the rotor revolving at 
synchronous speed, its angular position will be given by 00 = cot. 

Under this operating condition, the stator currents will be of the form 

ia -- ~/21a COS (cot + 3) ib = ~/2Ia sin (cot + 6) 

a. Derive an expression for the electromagnetic torque acting on the rotor. 

b. Can the machine be operated as a motor and/or a generator? Explain. 

c. Will the machine continue to run if the field current If is reduced to zero? 

Support you answer with an expression for the torque and an explanation as 
to why such operation is or is not possible. 

4.25 A three-phase linear ac motor has an armature winding of wavelength 25 cm. 
A three-phase balanced set of currents at a frequency of 100 Hz is applied to 
the armature. 

a. Calculate the linear velocity of the armature mmf wave. 

b. For the case of a synchronous rotor, calculate the linear velocity of the 
rotor. 

c. For the case of an induction motor operating at a slip of 0.045, calculate 
the linear velocity of the rotor. 

4.26 The linear-motor armature of Problem 4.25 has a total active length of 
7 wavelengths, with a total of 280 turns per phase with a winding factor 
kw = 0.91. For an air-gap length of 0.93 cm, calculate the rms magnitude of 
the balanced three-phase currents which must be supplied to the armature to 
achieve a peak space-fundamental air-gap flux density of 1.45 T. 

4.27 A two-phase linear permanent-magnet synchronous motor has an air-gap of 
length 1.0 mm, a wavelength of 12 cm, and a pole width of 4 cm. The rotor is 
5 wavelengths in length. The permanent magnets on the rotor are arranged to 
produce an air-gap magnetic flux distribution that is uniform over the width 
of a pole but which varies sinusoidally in space in the direction of rotor travel. 
The peak density of this air-gap flux is 0.97 T. 

a. Calculate the net flux per pole. 

b. Each armature phase consists of 10 turns per pole, with all the poles 
connected in series. Assuming that the armature winding extends many 
wavelengths past either end of the rotor, calculate the peak flux linkages 
of the armature winding. 

c. If the rotor is traveling at a speed of 6.3 m/sec, calculate the rms voltage 
induced in the armature winding. 
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