Getting Started Guide
Is for quick commissioning with SDP and BOP.

Operating Instructions
Gives information about features of the MICROMASTER420, Installation, Commissioning, Control modes, System Parameter structure, Troubleshooting, Specifications and available options of the MICROMASTER420.

Parameter List
The Parameter list contains the description of all Parameters structured in functional order and a detailed description. The Parameter list also includes a series of function plans.

Catalogues
In the catalogue you will find all needs to select a certain inverter, as well as filters chokes, operator panels or communications options.
SIEMENS

MICROMASTER 420

Parameter List
User Documentation

Valid for

Issue 04/02

Converter Type
MICROMASTER 420

Software Version
V1.0
Warning
Please refer to all Definitions and Warnings contained in the Operating Instructions. You will find the Operating Instructions on the Docu CD delivered with your inverter. If the CD is lost, it can be ordered via your local Siemens department under the Order No. 6SE6400-5AB00-1AP0.

Further information can be obtained from Internet website:
http://www.siemens.de/micromaster

Approved Siemens Quality for Software and Training is to DIN ISO 9001, Reg. No. 2160-01

The reproduction, transmission or use of this document, or its contents is not permitted unless authorized in writing. Offenders will be liable for damages. All rights including rights created by patent grant or registration of a utility model or design are reserved.

© Siemens AG 2001. All Rights Reserved.

MICROMASTER® is a registered trademark of Siemens

Order number: 6SE6400-5BA00-0BP0
Printed in the Federal of Germany

Other functions not described in this document may be available. However, this fact shall not constitute an obligation to supply such functions with a new control, or when servicing.

We have checked that the contents of this document correspond to the hardware and software described. There may be discrepancies nevertheless, and no guarantee can be given that they are completely identical. The information contained in this document is reviewed regularly and any necessary changes will be included in the next edition. We welcome suggestions for improvement.

Siemens handbooks are printed on chlorine-free paper that has been produced from managed sustainable forests. No solvents have been used in the printing or binding process. Document subject to change without prior notice.
Parameters MICROMASTER 420

This Parameter List must only be used together with the Operating Instructions or the Reference Manual of the MICROMASTER 420. Please pay special attention to the Warnings, Cautions, Notices and Notes contained in these manuals.

Table of Contents

1 Parameters ... 7
1.1 Introduction to MICROMASTER 420 System Parameters ... 7
1.2 Quick commissioning (P0010=1) .. 9
1.3 Parameter Description ... 11
2 Function Diagrams .. 111
3 Faults and Alarms ... 135
3.1 MICROMASTER 420 fault messages ... 135
3.2 MICROMASTER 420 alarm messages ... 137
1 Parameters

1.1 Introduction to MICROMASTER 420 System Parameters

The layout of the parameter description is as follows.

<table>
<thead>
<tr>
<th>Par number [index]</th>
<th>Parameter name</th>
<th>3 CStat:</th>
<th>5 Datatype</th>
<th>7 Unit:</th>
<th>9 Min:</th>
<th>10 Def:</th>
<th>11 Max:</th>
<th>12 Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

1. Parameter number

Indicates the relevant parameter number. The numbers used are 4-digit numbers in the range 0000 to 9999. Numbers prefixed with an “r” indicate that the parameter is a “read-only” parameter, which displays a particular value but cannot be changed directly by specifying a different value via this parameter number (in such cases, dashes “-” are entered at the points “Unit”, “Min”, “Def” and “Max” in the header of the parameter description.

All other parameters are prefixed with a “P”. The values of these parameters can be changed directly in the range indicated by the “Min” and “Max” settings in the header.

[index] indicates that the parameter is an indexed parameter and specifies the number of indices available.

2. Parameter name

Indicates the name of the relevant parameter. Certain parameter names include the following abbreviated prefixes: BI, BO, CI, and CO followed by a colon. These abbreviations have the following meanings:

- **BI** = Binector input, i.e. parameter selects the source of a binary signal
- **BO** = Binector output, i.e. parameter connects as a binary signal
- **CI** = Connector input, i.e. parameter selects the source of an analog signal
- **CO** = Connector output, i.e. parameter connects as an analog signal
- **CO/BO** = Connector/Binector output, i.e. parameter connects as an analog signal and/or as a binary signal

To make use of BiCo you will need access to the full parameter list. At this level many new parameter settings are possible, including BiCo functionality. BiCo functionality is a different, more flexible way of setting and combining input and output functions. It can be used in most cases in conjunction with the simple, level 2 settings.

The BiCo system allows complex functions to be programmed. Boolean and mathematical relationships can be set up between inputs (digital, analog, serial etc.) and outputs (inverter current, frequency, analog output, relays, etc.).

3. CStat

Commissioning status of the parameter. Three states are possible:

- **Commissioning** C
- **Run** U
- **Ready to Run** T

This indicates when the parameter can be changed. One, two or all three states may be specified. If all three states are specified, this means that it is possible to change this parameter setting in all three inverter states.
4. **P-Group**
Indicates the functional group of the particular.

Note
Parameter P0004 (parameter filter) acts as a filter and focuses access to parameters according to the functional group selected.

5. **Datatype**
The data types available are shown in the table below.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>U16</td>
<td>16-bit unsigned</td>
</tr>
<tr>
<td>U32</td>
<td>32-bit unsigned</td>
</tr>
<tr>
<td>I16</td>
<td>16-bit integer</td>
</tr>
<tr>
<td>I32</td>
<td>32-bit integer</td>
</tr>
<tr>
<td>Float</td>
<td>Floating point</td>
</tr>
</tbody>
</table>

6. **Active**
Indicates whether
- ♦ Immediately changes to the parameter values take effective immediately after they have been entered, or
- ♦ Confirm the “P” button on the operator panel (BOP or AOP) must be pressed before the changes take effect.

7. **Unit**
Indicates the unit of measure applicable to the parameter values

8. **QuickComm**
Indicates whether or not (Yes or No) a parameter can only be changed during quick commissioning, i.e. when P0010 (parameter groups for commissioning) is set to 1 (quick commissioning).

9. **Min**
Indicates the minimum value to which the parameter can be set.

10. **Def**
Indicates the default value, i.e. the value which applies if the user does not specify a particular value for the parameter.

11. **Max**
Indicates the maximum value to which the parameter can be set.

12. **Level**
Indicates the level of user access. There are four access levels: Standard, Extended, Expert and Service. The number of parameters that appear in each functional group depends on the access level set in P0003 (user access level).

13. **Description**
The parameter description consists of the sections and contents listed below. Some of these sections and contents are optional and will be omitted on a case-to-case basis if not applicable.

<table>
<thead>
<tr>
<th>Description</th>
<th>What it is about the parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Brief explanation of the parameter function.</td>
</tr>
<tr>
<td>Diagram:</td>
<td>Where applicable, diagram to illustrate the effects of parameters on a characteristic curve, for example</td>
</tr>
<tr>
<td>Settings:</td>
<td>List of applicable settings. These include Possible settings, Most common settings, Index and Bitfields</td>
</tr>
<tr>
<td>Example:</td>
<td>Optional example of the effects of a particular parameter setting.</td>
</tr>
<tr>
<td>Dependency:</td>
<td>Any conditions that must be satisfied in connection with this parameter. Also any particular effects, which this parameter has on other parameter(s) or which other parameters have on this one.</td>
</tr>
<tr>
<td>Warning / Caution / Notice / Note:</td>
<td>Important information which must be heeded to prevent personal injury or damage to equipment / specific information which should be heeded in order to avoid problems / information which may be helpful to the user</td>
</tr>
<tr>
<td>More details:</td>
<td>Any sources of more detailed information concerning the particular parameter.</td>
</tr>
</tbody>
</table>
1.2 Quick commissioning (P0010=1)

The following parameters are necessary for quick commissioning (P0010=1).

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Access level</th>
<th>Cstat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0100</td>
<td>Europe / North America</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0300</td>
<td>Select motor type</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>P0304</td>
<td>Motor voltage rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0305</td>
<td>Motor current rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0307</td>
<td>Motor power rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0308</td>
<td>Motor cosPhi rating</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>P0309</td>
<td>Motor efficiency rating</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>P0310</td>
<td>Motor frequency rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0311</td>
<td>Motor speed rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0320</td>
<td>Motor magnetizing current</td>
<td>3</td>
<td>CT</td>
</tr>
<tr>
<td>P0335</td>
<td>Motor cooling</td>
<td>2</td>
<td>CT</td>
</tr>
<tr>
<td>P0640</td>
<td>Motor overload factor [%]</td>
<td>2</td>
<td>CUT</td>
</tr>
<tr>
<td>P0700</td>
<td>Selection of command source</td>
<td>1</td>
<td>CT</td>
</tr>
<tr>
<td>P1000</td>
<td>Selection of frequency setpoint</td>
<td>1</td>
<td>CT</td>
</tr>
<tr>
<td>P1080</td>
<td>Min. speed</td>
<td>1</td>
<td>CUT</td>
</tr>
<tr>
<td>P1082</td>
<td>Max. speed</td>
<td>1</td>
<td>CT</td>
</tr>
<tr>
<td>P1120</td>
<td>Ramp-up time</td>
<td>1</td>
<td>CUT</td>
</tr>
<tr>
<td>P1121</td>
<td>Ramp-down time</td>
<td>1</td>
<td>CUT</td>
</tr>
<tr>
<td>P1135</td>
<td>OFF3 ramp-down time</td>
<td>2</td>
<td>CUT</td>
</tr>
<tr>
<td>P1300</td>
<td>Control mode</td>
<td>2</td>
<td>CT</td>
</tr>
<tr>
<td>P1910</td>
<td>Select motor data identification</td>
<td>2</td>
<td>CT</td>
</tr>
<tr>
<td>P3900</td>
<td>End of quick commissioning</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

When P0010=1 is chosen, P0003 (user access level) can be used to select the parameters to be accessed. This parameter also allows selection of a user-defined parameter list for quick commissioning.

At the end of the quick commissioning sequence, set P3900 = 1 to carry out the necessary motor calculations and clear all other parameters (not included in P0010=1) to their default settings.

Note
This applies only in Quick Commissioning mode.

Reset to Factory default

To reset all parameters to the factory default settings; the following parameters should be set as follows:

Set P0010=30.

Set P0970=1.

Note
The reset process takes approximately 10 seconds to complete. Reset to Factory default
Seven-segment display

The seven-segment display is structured as follows:

```
Segment Bit 15 14 13 12 11 10 9 8
|     |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |
```

The significance of the relevant bits in the display is described in the status and control word parameters.
1.3 Parameter Description

Note:

Level 4 Parameters are not visible with BOP or AOP.

r0000 Drive display

<table>
<thead>
<tr>
<th>Min:</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Level: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: ALWAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays the user selected output as defined in P0005.

Note:

Pressing the "Fn" button for 2 seconds allows the user to view the values of DC link voltage, output frequency, output voltage, output current, and chosen r0000 setting (defined in P0005).

r0002 Drive state

<table>
<thead>
<tr>
<th>Min:</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays actual drive state.

Possible Settings:

0 Commissioning mode (P0010 != 0)
1 Drive ready
2 Drive fault active
3 Drive starting (DC-link precharging)
4 Drive running
5 Stopping (ramping down)

Dependency:

State 3 visible only while precharging DC link, and when externally powered communications board is fitted.

P0003 User access level

<table>
<thead>
<tr>
<th>Min: 0</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 1</th>
<th>Level: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: ALWAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines user access level to parameter sets. The default setting (standard) is sufficient for most simple applications.

Possible Settings:

0 User defined parameter list - see P0013 for details on use
1 Standard: Allows access into most frequently used parameters.
2 Extended: Allows extended access e.g. to inverter I/O functions.
3 Expert: For expert use only.
4 Service: Only for use by authorized service personal - password protected.

P0004 Parameter filter

<table>
<thead>
<tr>
<th>Min: 0</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
<th>Level: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: ALWAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Filters available parameters according to functionality to enable a more focussed approach to commissioning.

Possible Settings:

0 All parameters
2 Inverter
3 Motor
7 Commands, binary I/O
8 ADC and DAC
10 Setpoint channel / RFG
12 Drive features
13 Motor control
20 Communication
21 Alarms / warnings / monitoring
22 Technology controller (e.g. PID)

Example:

P0004 = 22 specifies that only PID parameters will be visible.

Dependency:

Parameters marked "Quick Comm: Yes" in the parameter header can only be set when P0010 = 1 (Quick Commissioning).
P0005 Display selection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>0</td>
<td>21</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>P-Group: FUNC</td>
<td>U16</td>
<td>21</td>
<td>4000</td>
<td>2</td>
</tr>
<tr>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selects display for parameter r0000 (drive display).

Common Settings:
- 21 Actual frequency
- 25 Output voltage
- 26 DC link voltage
- 27 Output current

Notice:
These settings refer to read only parameter numbers ("xxxx").

Details:
See relevant "xxxx" parameter descriptions.

P0006 Display mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>0</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P-Group: FUNC</td>
<td>U16</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines mode of display for r0000 (drive display).

Possible Settings:
- 0 In Ready state alternate between setpoint and output frequency. In run display output frequency
- 1 In Ready state display setpoint. In run display output frequency.
- 2 In Ready state alternate between P0005 value and r0020 value. In run display P0005 value
- 3 In Ready state alternate between r0002 value and r0020 value. In run display r0002 value
- 4 In all states just display P0005

Note:
When inverter is not running, the display alternates between the values for "Not Running" and "Running".

Per default, the setpoint and actual frequency values are displayed alternately.

P0007 Backlight delay time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>3</td>
</tr>
<tr>
<td>P-Group: FUNC</td>
<td>U16</td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines time period after which the backlight display turns off if no operator keys have been pressed.

Value:
- P0007 = 0: Backlight always on (default state).
- P0007 = 1 - 2000: Number of seconds after which the backlight will turn off.

P0010 Commissioning parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>P-Group: ALWAYS</td>
<td>U16</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Filters parameters so that only those related to a particular functional group are selected.

Possible Settings:
- 0 Ready
- 1 Quick commissioning
- 2 Inverter
- 29 Download
- 30 Factory setting

Dependency:
Reset to 0 for inverter to run.

P0003 (user access level) also determines access to parameters.

Note:
- P0010 = 1
 The inverter can be commissioned very quickly and easily by setting P0010 = 1. After that only the important parameters (e.g.: P0304, P0305, etc.) are visible. The value of these parameters must be entered one after the other. The end of quick commissioning and the start of internal calculation will be done by setting P3900 = 1 - 3. Afterward parameter P0010 will be reset to zero automatically.

- P0010 = 2
 For service purposes only.

- P0010 = 29
 To transfer a parameter file via PC tool (e.g.: DriveMonitor, STARTER) parameter P0010 will be set to 29 by the PC tool. When download has been finished PC tool resets parameter P0010 to zero.

- P0010 = 30
 When resetting the parameters of inverter P0010 must be set to 30. Resetting of the parameters will be started by setting parameter P0970 = 1. The inverter will automatically reset all its parameters to their default settings. This can prove beneficial if you experience problems during parameter setup and wish to start again. Duration of factory setting will take about 60 s.

If P3900 is not 0 (0 is the default value), this parameter is automatically reset to 0.
P0011 Lock for user defined parameter

<table>
<thead>
<tr>
<th>Min: 0</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** FUNC
- **Active:** first confirm
- **QuickComm:** No
- **Max:** 65535

Details:
See parameter P0013 (user defined parameter).

P0012 Key for user defined parameter

<table>
<thead>
<tr>
<th>Min: 0</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** FUNC
- **Active:** first confirm
- **QuickComm:** No
- **Max:** 65535

Details:
See parameter P0013 (user defined parameter).

P0013[20] User defined parameter

Defines a limited set of parameters to which the end user will have access.

Instructions for use:
1. Set P0003 = 3 (expert user)
2. Go to P0013 indices 0 to 16 (user list)
3. Enter into P0013 index 0 to 16 the parameters required to be visible in the user-defined list.
 - The following values are fixed and cannot be changed:
 - P0013 index 19 = 12 (key for user defined parameter)
 - P0013 index 18 = 10 (commissioning parameter filter)
 - P0013 index 17 = 3 (user access level)
4. Set P0003 = 0 to activate the user defined parameter.

Index:
- P0013[0]: 1st user parameter
- P0013[1]: 2nd user parameter
- P0013[2]: 3rd user parameter
- P0013[3]: 4th user parameter
- P0013[4]: 5th user parameter
- P0013[5]: 6th user parameter
- P0013[6]: 7th user parameter
- P0013[7]: 8th user parameter
- P0013[8]: 9th user parameter
- P0013[9]: 10th user parameter
- P0013[10]: 11th user parameter
- P0013[11]: 12th user parameter
- P0013[12]: 13th user parameter
- P0013[13]: 14th user parameter
- P0013[14]: 15th user parameter
- P0013[15]: 16th user parameter
- P0013[16]: 17th user parameter
- P0013[17]: 18th user parameter
- P0013[18]: 19th user parameter
- P0013[19]: 20th user parameter

Dependency:
First, set P0011 ("lock") to a different value than P0012 ("key") to prevent changes to user-defined parameter. Then, set P0003 to 0 to activate the user-defined list.

When locked and the user-defined parameter is activated, the only way to exit the user-defined parameter (and view other parameters) is to set P0012 ("key") to the value in P0011 ("lock").

Note:
Alternatively, set P0010 = 30 (commissioning parameter filter = factory setting) and P0970 = 1 (factory reset) to perform a complete factory reset.

The default values of P0011 ("lock") and P0012 ("key") are the same.

r0018 Firmware version

<table>
<thead>
<tr>
<th>Min: -</th>
<th>Level: 1</th>
</tr>
</thead>
</table>

- **Datatype:** Float
- **Unit:** -
- **Def:** -
- **Max:** -

P-Group: INVERTER

Displays version number of installed firmware.
r0019 CO/BO: BOP control word

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Displays status of operator panel commands.

The settings below are used as the "source" codes for keypad control when connecting to BICO input parameters.

Bitfields:

- **Bit00 ON/OFF1:** 0 NO, 1 YES
- **Bit01 OFF2: Electrical stop:** 0 YES, 1 NO
- **Bit08 JOG right:** 0 NO, 1 YES
- **Bit11 Reverse (setpoint inversion):** 0 NO, 1 YES
- **Bit13 Motor potentiometer MOP up:** 0 NO, 1 YES
- **Bit14 Motor potentiometer MOP down:** 0 NO, 1 YES

Note:
When BICO technology is used to allocate functions to panel buttons, this parameter displays the actual status of the relevant command.

The following functions can be "connected" to individual buttons:
- ON/OFF1,
- OFF2,
- JOG,
- REVERSE,
- INCREASE,
- DECREASE

r0020 CO: Freq. setpoint before RFG

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Displays actual frequency setpoint (output from ramp function generator).

r0021 CO: Act. frequency

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Displays actual inverter output frequency (r0024) excluding slip compensation, resonance damping and frequency limitation.

r0022 Act. filtered rotor speed

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: 1/min</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Displays calculated rotor speed based on inverter output frequency [Hz] x 120 / number of poles.

Note:
This calculation makes no allowance for load-dependent slip.

r0024 CO: Act. output frequency

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Displays actual output frequency (slip compensation, resonance damping and frequency limitation are included).

r0025 CO: Act. output voltage

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: V</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Displays [rms] voltage applied to motor.

r0026 CO: Act. filtered DC-link volt.

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: V</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Displays DC-link voltage.

r0027 CO: Act. output current

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: A</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Displays [rms] value of motor current [A].
r0034 CO: Motor temperature (i2t)

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

P-Group: MOTOR

Displays calculated motor temperature (I2T model) as [%] of the maximum permissible value.

Note:
A value of 100% means that the motor has reached its maximum permissible operating temperature. In this case, the motor will attempt to reduce the motor loading as defined in P0610 (motor I2T temperature reaction).

r0036 CO: Inverter overload utilization

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Level: 4</th>
</tr>
</thead>
</table>

P-Group: INVERTER

Displays inverter overload utilization calculated via I2T model.

The actual I2T value relative to the max. possible I2T value supplies utilization in [%].

If the nominal current of the inverter is not exceed, 0% utilization will be displayed.

If the current exceeds the threshold for P0294 (inverter I2T overload warning), alarm A0504 (inverter overtemperature) is generated and the output current of the inverter reduced via P0290 (inverter overload reaction).

If 100% utilization is exceeded, alarm F0005 (inverter I2T) is tripped.

r0037 CO: Inverter temperature [°C]

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: °C</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

P-Group: INVERTER

Displays internal inverter heatsink temperature.

r0039 CO: Energy consumpt. meter [kWh]

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: kWh</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

P-Group: INVERTER

Displays electrical energy used by inverter since display was last reset (see P0040 - reset energy consumption meter).

Dependency:
Value is reset when P0040 = 1 reset energy consumption meter.

P0040 Reset energy consumption meter

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

P-Group: INVERTER

Resets value of parameter r0039 (energy consumption meter) to zero.

Possible Settings:
0 No reset
1 Reset r0039 to 0

Dependency:
No reset until "P" is pressed.
CO/BO: Act. status word 1

<table>
<thead>
<tr>
<th>P-Group: COMMANDS</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Max: -</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays first active status word of inverter (bit format) and can be used to diagnose inverter status. The display segments for the status word are shown in the "Introduction to MICROMASTER System Parameters".

Bitfields:

- **Bit00** Drive ready
 - 0 NO
 - 1 YES
- **Bit01** Drive ready to run
 - 0 NO
 - 1 YES
- **Bit02** Drive running
 - 0 NO
 - 1 YES
- **Bit03** Drive fault active
 - 0 NO
 - 1 YES
- **Bit04** OFF2 active
 - 0 YES
 - 1 NO
- **Bit05** OFF3 active
 - 0 YES
 - 1 NO
- **Bit06** ON inhibit active
 - 0 NO
 - 1 YES
- **Bit07** Drive warning active
 - 0 NO
 - 1 YES
- **Bit08** Deviation setpoint / act. value
 - 0 YES
 - 1 NO
- **Bit09** PZD control
 - 0 NO
 - 1 YES
- **Bit10** Maximum frequency reached
 - 0 NO
 - 1 YES
- **Bit11** Warning: Motor current limit
 - 0 YES
 - 1 NO
- **Bit12** Motor holding brake active
 - 0 NO
 - 1 YES
- **Bit13** Motor overload
 - 0 YES
 - 1 NO
- **Bit14** Motor runs right
 - 0 NO
 - 1 YES
- **Bit15** Inverter overload
 - 0 YES
 - 1 NO

Note:

Output of Bit3 (Fault) will be inverted on digital output (Low = Fault, High = No Fault).
r0053 CO/BO: Act. status word 2

<table>
<thead>
<tr>
<th>P-Group: COMMANDS</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

Displays second status word of inverter (in bit format).

Bitfields:

- **Bit00** DC brake active
 - 0: NO
 - 1: YES
- **Bit01** f_act > P2167 (f_off)
 - 0: NO
 - 1: YES
- **Bit02** f_act > P1080 (f_min)
 - 0: NO
 - 1: YES
- **Bit03** Act. current r0027 >= P2170
 - 0: NO
 - 1: YES
- **Bit04** f_act > P2155 (f_1)
 - 0: NO
 - 1: YES
- **Bit05** f_act <= P2155 (f_1)
 - 0: NO
 - 1: YES
- **Bit06** f_act >= setpoint
 - 0: NO
 - 1: YES
- **Bit07** Act. Vdc r0026 < P2172
 - 0: NO
 - 1: YES
- **Bit08** Act. Vdc r0026 > P2172
 - 0: NO
 - 1: YES
- **Bit09** Ramping finished
 - 0: NO
 - 1: YES
- **Bit10** PID output r2294 == P2292 (PID_min)
 - 0: NO
 - 1: YES
- **Bit11** PID output r2294 == P2291 (PID_max)
 - 0: NO
 - 1: YES
- **Bit14** Download data set 0 from AOP
 - 0: NO
 - 1: YES
- **Bit15** Download data set 1 from AOP
 - 0: NO
 - 1: YES

Details:
See description of seven-segment display given in the "Introduction to MICROMASTER System Parameters" in this manual.

r0054 CO/BO: Act. control word 1

<table>
<thead>
<tr>
<th>P-Group: COMMANDS</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

Displays first control word of inverter and can be used to diagnose which commands are active.

Bitfields:

- **Bit00** ON/Off1
 - 0: NO
 - 1: YES
- **Bit01** OFF2: Electrical stop
 - 0: YES
 - 1: NO
- **Bit02** OFF3: Fast stop
 - 0: YES
 - 1: NO
- **Bit03** Pulse enable
 - 0: NO
 - 1: YES
- **Bit04** RFG enable
 - 0: NO
 - 1: YES
- **Bit05** RFG start
 - 0: NO
 - 1: YES
- **Bit06** Setpoint enable
 - 0: NO
 - 1: YES
- **Bit07** Fault acknowledge
 - 0: NO
 - 1: YES
- **Bit08** JOG right
 - 0: NO
 - 1: YES
- **Bit09** JOG left
 - 0: NO
 - 1: YES
- **Bit10** Control from PLC
 - 0: NO
 - 1: YES
- **Bit11** Reverse (setpoint inversion)
 - 0: NO
 - 1: YES
- **Bit13** Motor potentiometer MOP up
 - 0: NO
 - 1: YES
- **Bit14** Motor potentiometer MOP down
 - 0: NO
 - 1: YES
- **Bit15** Local / Remote
 - 0: NO
 - 1: YES

Details:
See description of seven-segment display given in the "Introduction to MICROMASTER System Parameters" in this manual.
r0055 CO/BO: Act. control word 2

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

P-Group: COMMANDS

Details:
Displays additional control word of inverter and can be used to diagnose which commands are active.

Bitfields:
- **Bit00** Fixed frequency Bit 0: NO 0, YES 1
- **Bit01** Fixed frequency Bit 1: NO 0, YES 1
- **Bit02** Fixed frequency Bit 2: NO 0, YES 1
- **Bit08** PID enabled: NO 0, YES 1
- **Bit09** DC brake enabled: NO 0, YES 1
- **Bit13** External fault 1: NO 0, YES 1

Details:
See description of seven-segment display given in the "Introduction to MICROMASTER System Parameters" in this handbook.

r0056 CO/BO: Status of motor control

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

P-Group: CONTROL

Details:
Displays status of motor control (MM420: V/f status), which can be used to diagnose inverter status.

Bitfields:
- **Bit00** Init. control finished: NO 0, YES 1
- **Bit01** Motor demagnetizing finished: NO 0, YES 1
- **Bit02** Pulses enabled: NO 0, YES 1
- **Bit03** Voltage soft start select: NO 0, YES 1
- **Bit04** Motor excitation finished: NO 0, YES 1
- **Bit05** Starting boost active: NO 0, YES 1
- **Bit06** Acceleration boost active: NO 0, YES 1
- **Bit07** Frequency is negative: NO 0, YES 1
- **Bit08** Field weakening active: NO 0, YES 1
- **Bit09** Volts setpoint limited: NO 0, YES 1
- **Bit10** Slip frequency limited: NO 0, YES 1
- **Bit11** P_out > F_max Freq. limited: NO 0, YES 1
- **Bit12** Phase reversal selected: NO 0, YES 1
- **Bit13** I-max controller active: NO 0, YES 1
- **Bit14** Vdc-max controller active: NO 0, YES 1
- **Bit15** KIB (Vdc-min control) active: NO 0, YES 1

Details:
See description of seven-segment display given in the introduction.

r0067 CO: Act. output current limit

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: A</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

P-Group: CONTROL

Details:
Displays valid maximum output current of inverter.

This value is influenced by P0640 (max. output current), the derating characteristics and the thermal motor and inverter protection.

Dependency:
P0610 (motor I2t temperature reaction) defines reaction when limit is reached.

Note:
Normally, current limit = rated motor current (P0305) x motor current limit (P0640). It is less than or equal to maximum inverter current.

The current limit may be reduced if the motor thermal model calculation indicates that overheating will occur.
MICROMASTER 420 Parameter List

r0071

CO: Max. output voltage

Datatype: Float Unit: V

| Min: - | Def: - | Max: - |

P-Group: CONTROL

Displays maximum output voltage.

\[V_{\text{max}} = f(V_{\text{dc}}, \text{MOD}_{\text{max}}) \]

(Inverter)

Actual maximum output voltage depends on the actual input supply voltage.

r0078

CO: Act. current Isq

Datatype: Float Unit: A

| Min: - | Def: - | Max: - |

P-Group: CONTROL

Displays component of torque generating current.

r0084

CO: Act. air gap flux

Datatype: Float Unit: %

| Min: - | Def: - | Max: - |

P-Group: CONTROL

Displays air gap flux in [%] relative to the rated motor flux.

r0086

CO: Act. active current

Datatype: Float Unit: A

| Min: - | Def: - | Max: - |

P-Group: CONTROL

Displays active (real part) of motor current.

Dependency:

Applies when V/f control is selected in P1300 (control mode); otherwise, the display shows the value zero.
P0100 Europe / North America

<table>
<thead>
<tr>
<th>Stat:</th>
<th>C</th>
<th>Datatype:</th>
<th>U16</th>
<th>Unit:</th>
<th>-</th>
<th>Def:</th>
<th>0</th>
<th>Max:</th>
<th>2</th>
</tr>
</thead>
</table>

Determine whether power settings (e.g. nominal rating plate power - P0307) are expressed in [kW] or [hp].

The default settings for the nominal rating plate frequency (P0310) and maximum motor frequency (P1082) are also set automatically here, in addition to reference frequency (P2000).

Possible Settings:
- 0 Europe [kW], frequency default 50 Hz
- 1 North America [hp], frequency default 60 Hz
- 2 North America [kW], frequency default 60 Hz

Dependency:

The setting of DIP switch 2 determines the validity of settings 0 and 1 for P0100 according to the diagram below:

Stop drive first (i.e. disable all pulses) before you change this parameter.
P0010 = 1 (commissioning mode) enables changes to be made.

Changing P0100 resets all rated motor parameters as well as other parameters that depend on the rated motor parameters (see P0340 - calculation of motor parameters).

Notice:

P0100 setting 2 (⇒ [kW], frequency default 60 [Hz]) is not overwritten by the setting of DIP switch 2 (see diagram above).
Act. power stack code number

<table>
<thead>
<tr>
<th>Code-No.</th>
<th>MM420 MLFB</th>
<th>Input Voltage & Frequency</th>
<th>CT Power kW</th>
<th>Internal Filter</th>
<th>Frame Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6SE6420-2UC11-2AAx</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>0,12</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6SE6420-2UC12-5AAx</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>0,25</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6SE6420-2UC13-7AAx</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>0,37</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6SE6420-2UC15-5AAx</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>0,55</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6SE6420-2UC17-5AAx</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>0,75</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6SE6420-2UC21-18Ax</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>1,1</td>
<td>no B</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6SE6420-2UC21-58Ax</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>1,5</td>
<td>no B</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6SE6420-2UC22-2BAx</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>2,2</td>
<td>no B</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6SE6420-2UC23-0CAx</td>
<td>1/3AC200-240V +10% -10% 47-63Hz</td>
<td>3</td>
<td>no C</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6SE6420-2UC24-0CAx</td>
<td>3AC200-240V +10% -10% 47-63Hz</td>
<td>4</td>
<td>no C</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6SE6420-2UC25-5CAx</td>
<td>3AC200-240V +10% -10% 47-63Hz</td>
<td>5,5</td>
<td>no C</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6SE6420-2AB11-2AAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>0,12</td>
<td>Q. A</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>6SE6420-2AB12-5AAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>0,25</td>
<td>Q. A</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>6SE6420-2AB13-7AAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>0,37</td>
<td>Q. A</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>6SE6420-2AB15-5AAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>0,55</td>
<td>Q. A</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>6SE6420-2AB17-5AAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>0,75</td>
<td>Q. A</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>6SE6420-2AB21-1BAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>1,1</td>
<td>Q. A</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td>6SE6420-2AB21-58Ax</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>1,5</td>
<td>Q. A</td>
<td>B</td>
</tr>
<tr>
<td>19</td>
<td>6SE6420-2AB22-2BAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>2,2</td>
<td>Q. A</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td>6SE6420-2AB23-0CAx</td>
<td>1AC200-240V +10% -10% 47-63Hz</td>
<td>3</td>
<td>Q. A</td>
<td>C</td>
</tr>
<tr>
<td>21</td>
<td>6SE6420-2AB23-1CAx</td>
<td>3AC200-240V +10% -10% 47-63Hz</td>
<td>3</td>
<td>Q. A</td>
<td>C</td>
</tr>
<tr>
<td>22</td>
<td>6SE6420-2AB24-0CAx</td>
<td>3AC200-240V +10% -10% 47-63Hz</td>
<td>4</td>
<td>Q. A</td>
<td>C</td>
</tr>
<tr>
<td>23</td>
<td>6SE6420-2AB25-0CAx</td>
<td>3AC200-240V +10% -10% 47-63Hz</td>
<td>5,5</td>
<td>Q. A</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>6SE6420-2UD13-7AAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>0,37</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6SE6420-2UD15-5AAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>0,55</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>6SE6420-2UD17-5AAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>0,75</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6SE6420-2UD21-1AAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>1,1</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6SE6420-2UD21-5AAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>1,5</td>
<td>no A</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6SE6420-2UD22-2BAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>2,2</td>
<td>no B</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6SE6420-2UD23-0BAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>3</td>
<td>no B</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6SE6420-2UD24-0BAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>4</td>
<td>no B</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6SE6420-2UD25-5CAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>5,5</td>
<td>no C</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6SE6420-2UD27-5CAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>7,5</td>
<td>no C</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>6SE6420-2UD31-1CAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>11</td>
<td>no C</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6SE6420-2AD22-2BAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>2,2</td>
<td>Cl. A</td>
<td>B</td>
</tr>
<tr>
<td>36</td>
<td>6SE6420-2AD23-0BAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>3</td>
<td>Cl. A</td>
<td>B</td>
</tr>
<tr>
<td>37</td>
<td>6SE6420-2AD24-0BAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>4</td>
<td>Cl. A</td>
<td>B</td>
</tr>
<tr>
<td>38</td>
<td>6SE6420-2AD25-5CAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>5,5</td>
<td>Cl. A</td>
<td>C</td>
</tr>
<tr>
<td>39</td>
<td>6SE6420-2AD27-5CAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>7,5</td>
<td>Cl. A</td>
<td>C</td>
</tr>
<tr>
<td>40</td>
<td>6SE6420-2AD31-1CAx</td>
<td>3AC380-480V +10% -10% 47-63Hz</td>
<td>11</td>
<td>Cl. A</td>
<td>C</td>
</tr>
</tbody>
</table>

Notice:
Parameter r0200 = 0 indicates that no power stack has been identified.

Power stack code number

<table>
<thead>
<tr>
<th>Code-No.</th>
<th>MM420 MLFB</th>
<th>Input Voltage & Frequency</th>
<th>CT Power kW</th>
<th>Internal Filter</th>
<th>Frame Size</th>
</tr>
</thead>
</table>

Notice:
Parameter r0200 = 0 indicates that no power stack has been identified.
r0203 Act. inverter type
 Datatype: U16 Unit: - Min: - Def: - Max: - Level: 3
 P-Group: INVERTER
Type number of actual inverter identified.
Possible Settings:
1 MICROMASTER 420
2 MICROMASTER 440
3 MICRO- / COMBIMASTER 411
4 MICROMASTER 410
5 Reserved
6 MICROMASTER 440 PX
7 MICROMASTER 430

r0204 Power stack features
 Datatype: U32 Unit: - Min: - Def: - Max: - Level: 3
 P-Group: INVERTER
Displays hardware features of power stack.
Bitfields:
Bit00 DC input voltage 0 NO 1 YES
Bit01 RFI filter 0 NO 1 YES
Note: Parameter r0204 = 0 indicates that no power stack has been identified.

r0206 Rated inverter power [kW] / [hp]
 Datatype: Float Unit: - Min: - Def: - Max: - Level: 2
 P-Group: INVERTER
Displays nominal rated motor power from inverter.
Dependency:
Value is displayed in [kW] or [hp] depending on setting for P0100 (operation for Europe / North America).

r0207 Rated inverter current
 Datatype: Float Unit: A Min: - Def: - Max: - Level: 2
 P-Group: INVERTER
Displays maximum continuous output current of inverter.

r0208 Rated inverter voltage
 Datatype: U32 Unit: V Min: - Def: - Max: - Level: 2
 P-Group: INVERTER
Displays nominal AC supply voltage of inverter.
Value:
r0208 = 230 : 200 - 240 V +/- 10 %
r0208 = 400 : 380 - 480 V +/- 10 %
r0208 = 575 : 500 - 600 V +/- 10 %

P0210 Supply voltage
 Datatype: U16 Unit: V Min: 0 Def: 230 Max: 1000 Level: 3
 P-Group: INVERTER
 CStat: CT
Optimizes Vdc controller, which extends the ramp-down time if regenerative energy from motor would otherwise cause DC link overvoltage trips.
Reducing the value enables controller to cut in earlier and reduce the risk of overvoltage.
Dependency:
Set P1254 ("Auto detect Vdc switch-on levels") = 0. Cut-in levels for Vdc-controller and compound braking are then derived directly from P0210 (supply voltage).

Vdc_max switch-on level = 1.15 \sqrt{2} \cdot P0210
Compound braking switch-on level = 1.13 \sqrt{2} \cdot P0210
Note:
If mains voltage is higher than value entered, automatic deactivation of the Vdc controller may occur to avoid acceleration of the motor. An alarm will be issued in this case (A0910).
Default value is dependant on inverter rated power.
r0231[2] Max. cable length

<table>
<thead>
<tr>
<th>Min:</th>
<th>-</th>
<th>Level:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>INVERTER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indexed parameter to display maximum allowable cable length between inverter and motor.

Index:
- r0231[0] : Max. allowed unscreened cable length
- r0231[1] : Max. allowed screened cable length

Notice:
For full EMC compliance, the screened cable must not exceed 25 m in length when an EMC filter is fitted.

P0290 Inverter overload reaction

<table>
<thead>
<tr>
<th>Min:</th>
<th>0</th>
<th>Level:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CT</td>
<td>Datatype: U16</td>
<td>-</td>
</tr>
<tr>
<td>P-Group:</td>
<td>INVERTER</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
</tr>
<tr>
<td>Max:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selects reaction of inverter to an internal over-temperature.

Following physical values influence the inverter overload protection (see diagram):

- heat sink temperature
- inverter \(i^2t \)

Possible Settings:
- 0 Reduce output frequency
- 1 Trip (F0004)
- 2 Reduce pulse frequency and output frequency
- 3 Reduce pulse frequency then trip (F0004)

Notice:
P0290 = 0:
Reduction of output frequency is usually only effective if the load is also reduced. This is for example valid for variable torque applications with a quadratic torque characteristic as pumps or fans.

A trip will always result eventually, if the action taken does not sufficiently reduce internal temperature.

The pulse frequency is normally reduced only if higher than 2 kHz (see P0291 - configuration of inverter protection).

P0291 Inverter protection

<table>
<thead>
<tr>
<th>Min:</th>
<th>0</th>
<th>Level:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CT</td>
<td>Datatype: U16</td>
<td>-</td>
</tr>
<tr>
<td>P-Group:</td>
<td>INVERTER</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
</tr>
<tr>
<td>Max:</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Control bit 0 for enabling/disabling automatic pulse frequency reduction at output frequencies below 2 Hz.

Bitfields:
- Bit00 Pulse frequency reduced below 2Hz 0 NO 1 YES

Details:
See P0290 (inverter overload reaction)

P0292 Inverter overload warning

<table>
<thead>
<tr>
<th>Min:</th>
<th>0</th>
<th>Level:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td>Datatype: U16</td>
<td>°C</td>
</tr>
<tr>
<td>P-Group:</td>
<td>INVERTER</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
</tr>
<tr>
<td>Max:</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines temperature difference (in °C) between inverter over-temperature trip and warning thresholds.
P0294 Inverter I2t overload warning

<table>
<thead>
<tr>
<th>Min: 10.0</th>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
</tr>
<tr>
<td>P-Group: INVERTER</td>
<td>Active: first confirm</td>
</tr>
</tbody>
</table>

Defines the [%] value at which alarm A0504 (inverter overtemperature) is generated.

Inverter I2t calculation is used to estimate a maximum tolerable period for inverter overload. The I2t calculation value is deemed = 100 % when this maximum tolerable period is reached.

Dependency:
Motor overload factor (P0640) reduced to 100 % at this point.

Note:
P0294 = 100 % corresponds to stationary nominal load.

P0300 Select motor type

<table>
<thead>
<tr>
<th>Min: 1</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: C</td>
<td>Datatype: U16</td>
</tr>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
</tr>
</tbody>
</table>

Selects motor type.

This parameter is required during commissioning to select motor type and optimize inverter performance. Most motors are asynchronous; if in doubt, use the formula below.

\[
\frac{(\text{rated motor frequency (P0310)} \times 60)}{\text{rated motor speed (P0311)}}
\]

If the result is a whole number, the motor is synchronous.

Possible Settings:
1. Asynchronous motor
2. Synchronous motor

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

If synchronous motor is selected, the following functions are not available:
- P0308 Power factor
- P0309 Motor efficiency
- P0346 Magnetization time
- P0347 Demagnetization time
- P1335 Slip compensation
- P1336 Slip limit
- P0320 Motor magnetizing current
- P0330 Rated motor slip
- P0331 Rated magnetization current
- P0332 Rated power factor
- P0384 Rotor time constant
- P1200, P1202, P1203 Flying start
- P1230, P1232, P1233 DC braking
P0304 Rated motor voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: C</td>
<td>Datatype: U16</td>
</tr>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
</tr>
</tbody>
</table>

Nominal motor voltage [V] from rating plate. Following diagram shows a typical rating plate with the locations of the relevant motor data.

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Note:
Default value is dependant on inverter rated power.

P0305 Rated motor current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: C</td>
<td>Datatype: Float</td>
</tr>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
</tr>
</tbody>
</table>

Nominal motor current [A] from rating plate - see diagram in P0304.

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Note:
For asynchronous motors, the maximum value is defined as the maximum inverter current.

For synchronous motors, the maximum value is defined as twice the maximum inverter current.

The minimum value is defined as 1/32 times inverter rated current (r0207).

When the relation of the nominal motor current p0305 and half of the maximal inverter current exceeds 1,5 an additional current derating is applied. This is necessary to protect the inverter from harmonic current waves.

Default value is dependant on inverter rated power.

P0307 Rated motor power

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: C</td>
<td>Datatype: Float</td>
</tr>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
</tr>
</tbody>
</table>

Nominal motor power [kW/hp] from rating plate.

Dependency:
If P0100 = 1, values will be in [hp] - see diagram P0304 (rating plate).

Changeable only when P0010 = 1 (quick commissioning).

Note:
Default value is dependant on inverter rated power.
P0308 Rated motor cosPhi

<table>
<thead>
<tr>
<th>CStat: C</th>
<th>Datatype: Float</th>
<th>Unit: -</th>
<th>Def: 0.000</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
<td>QuickComm. Yes</td>
<td>Max: 1.000</td>
<td></td>
</tr>
</tbody>
</table>

Nominal motor power factor (cosPhi) from rating plate - see diagram P0304.

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Visible only when P0100 = 0 or 2, (motor power entered in [kW]).

Setting 0 causes internal calculation of value (see r0332).

P0309 Rated motor efficiency

<table>
<thead>
<tr>
<th>CStat: C</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 0.0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
<td>QuickComm. Yes</td>
<td>Max: 99.9</td>
<td></td>
</tr>
</tbody>
</table>

Nominal motor efficiency [%] from rating plate.

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Visible only when P0100 = 1, (i.e. motor power entered in [hp]).

Setting 0 causes internal calculation of value (see r0332).

Note:
P0309 = 100 % corresponds to superconducting.

Details:
See diagram in P0304 (rating plate).

P0310 Rated motor frequency

<table>
<thead>
<tr>
<th>CStat: C</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 50.00</th>
<th>Level: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
<td>QuickComm. Yes</td>
<td>Max: 650.00</td>
<td></td>
</tr>
</tbody>
</table>

Nominal motor frequency [Hz] from rating plate.

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Details:
Pole pair number recalculated automatically if parameter is changed.

See diagram in P0304 (rating plate)

P0311 Rated motor speed

<table>
<thead>
<tr>
<th>CStat: C</th>
<th>Datatype: U16</th>
<th>Unit: 1/min</th>
<th>Def: 0</th>
<th>Level: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: MOTOR</td>
<td>Active: first confirm</td>
<td>QuickComm. Yes</td>
<td>Max: 40000</td>
<td></td>
</tr>
</tbody>
</table>

Nominal motor speed [rpm] from rating plate.

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Setting 0 causes internal calculation of value.

Required for vector control and V/f control with speed controller.

Slip compensation in V/f control requires rated motor speed for correct operation.

Pole pair number recalculated automatically if parameter is changed.

Note:
Default value is dependent on inverter rated power.

Details:
See diagram in P0304 (rating plate)

r0313 Motor pole pairs

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: MOTOR</td>
<td>Def: -</td>
<td>Max: -</td>
<td></td>
</tr>
</tbody>
</table>

Displays number of motor pole pairs that the inverter is currently using for internal calculations.

Value:
r0313 = 1 : 2-pole motor
r0313 = 2 : 4-pole motor
etc.

Dependency:
Recalculated automatically when P0310 (rated motor frequency) or P0311 (rated motor speed) is changed.
P0320 Motor magnetizing current

CStat: CT **Datatype:** Float **Unit:** % **Def:** 0.0

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td>3</td>
</tr>
</tbody>
</table>

Dependency:

Defines motor magnetization current in [%] relative to P0305 (rated motor current).

Dependency:

P0320 = 0:
Setting 0 causes calculation by P0340 = 1 (data entered from rating plate) or by P3900 = 1 - 3 (end of quick commissioning). The calculated value is displayed in parameter r0331.

r0330 Rated motor slip

Datatype: Float **Unit:** % **Def:** -

<table>
<thead>
<tr>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

P-Group: MOTOR

Displays nominal motor slip in [%] relative to P0310 (rated motor frequency) and P0311 (rated motor speed).

\[
\text{r0330} = \frac{\text{r0310} - \text{P0311} \cdot \text{P0330}}{100} \cdot \text{P0310}
\]

r0331 Rated magnetization current

Datatype: Float **Unit:** A **Def:** -

<table>
<thead>
<tr>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

P-Group: MOTOR

Displays calculated magnetizing current of motor in [A].

r0332 Rated power factor

Datatype: Float **Unit:** - **Def:** -

<table>
<thead>
<tr>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

P-Group: MOTOR

Displays power factor for motor

Dependency:

Value is calculated internally if P0308 (rated motor cosPhi) set to 0; otherwise, value entered in P0308 is displayed.

P0335 Motor cooling

Datatype: U16 **Unit:** **Def:** 0

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td>2</td>
</tr>
</tbody>
</table>

Selects motor cooling system used.

Possible Settings:

0 Self-cooled: Using shaft mounted fan attached to motor
1 Force-cooled: Using separately powered cooling fan

Notice:

Motors of series 1LA1 and 1LA8 have an internal fan. This internal motor fan must not be confused with the fan at the end of the motor shaft.

P0340 Calculation of motor parameters

Datatype: U16 **Unit:** **Def:** 0

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculates various motor parameters, including:

- P0344 Motor weight
- P0346 Magnetization time
- P0347 Demagnetization time
- P0350 Stator resistance
- P0611 Motor I2t time constant
- P1253 Vdc-controller output limitation
- P1316 Boost end frequency
- P2000 Reference frequency
- P2002 Reference current

Possible Settings:

0 No calculation
1 Complete parameterization

Note:

This parameter is required during commissioning to optimize inverter performance.

P0344 Motor weight

Datatype: Float **Unit:** kg **Def:** 9.4

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td>3</td>
</tr>
</tbody>
</table>

Note:

This value is used in the motor thermal model.

It is normally calculated automatically from P0340 (motor parameters) but can also be entered manually.

Default value is dependant on inverter rated power.
P0346 Magnetization time

Datatypes:
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 1.000
- **Max:** 20.000

Level: 3

Sets magnetization time [s], i.e. waiting time between pulse enable and start of ramp-up. Motor magnetization builds up during this time.

Magnetization time is normally calculated automatically from the motor data and corresponds to the rotor time constant \((r0384)\).

Note:
- If boost settings are higher than 100 %, magnetization may be reduced.
- Default value is dependant on inverter rated power.

Notice:
- An excessive reduction of this time can result in insufficient motor magnetization.

P0347 Demagnetization time

Datatypes:
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 1.000
- **Max:** 20.000

Level: 3

Changes time allowed after OFF2 / fault condition, before pulses can be re-enabled.

Note:
- The demagnetization time is approximately \(2.5 \times r0384\) in seconds.
- Default value is dependant on inverter rated power.

Notice:
- Not active following a normally completed ramp-down, e.g. after OFF1, OFF3 or JOG.
- Overcurrent trips will occur if the time is decreased excessively.

P0350 Stator resistance (line-to-line)

Datatypes:
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** Ohm
- **Def:** 4.0
- **Max:** 400.0

Level: 2

Stator resistance value in [Ohms] for connected motor (from line-to-line). The parameter value includes the cable resistance.

There are three ways to determine the value for this parameter:
1. Calculate using \(P0340 = 1\) (data entered from rating plate) or \(P0010 = 1, P3900 = 1,2 \text{ or } 3\) (end of quick commissioning).
2. Measure using \(P1910 = 1\) (motor data identification - value for stator resistance is overwritten).
3. Measure manually using an Ohmmeter.

Note:
- Since measured line-to-line, this value may appear to be higher (up to 2 times higher) than expected.
- The value entered in P0350 (stator resistance) is the one obtained by the method last used.
- Default value is dependant on inverter rated power.

r0370 Stator resistance [%]

Datatypes:
- **P-Group:** MOTOR
- **Datatype:** Float
- **Unit:** %
- **Def:** -
- **Max:** -

Level: 4

Displays standardized stator resistance of motor equivalent circuit (phase value) in [%].

Note:
- 100 % means \(Z_{\text{ratedmot}}\)

r0372 Cable resistance [%]

Datatypes:
- **P-Group:** MOTOR
- **Datatype:** Float
- **Unit:** %
- **Def:** -
- **Max:** -

Level: 4

Displays standardized cable resistance of motor equivalent circuit (phase value) in [%]. It is estimated to be 20 % of the stator resistance.

Note:
- 100 % means \(Z_{\text{ratedmot}}\)

r0373 Rated stator resistance [%]

Datatypes:
- **P-Group:** MOTOR
- **Datatype:** Float
- **Unit:** %
- **Def:** -
- **Max:** -

Level: 4

Displays rated stator resistance of the motor equivalent circuit (phase value) in [%].

Note:
- 100 % means \(Z_{\text{ratedmot}}\)
<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0374</td>
<td>Rotor resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays standardized rotor resistance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>100 % means : (Z_{\text{ratedmot}} \div P0304) (\div P0305)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0376</td>
<td>Rated rotor resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays rated rotor resistance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>100 % means : (Z_{\text{ratedmot}} \div P0304) (\div P0305)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0377</td>
<td>Total leakage reactance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays standardized total leakage reactance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>100 % means : (Z_{\text{ratedmot}} \div P0304) (\div P0305)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0382</td>
<td>Main reactance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays standardized main reactance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>100 % means : (Z_{\text{ratedmot}} \div P0304) (\div P0305)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0384</td>
<td>Rotor time constant</td>
<td>Float</td>
<td>ms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays calculated rotor time constant [ms].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0386</td>
<td>Total leakage time constant</td>
<td>Float</td>
<td>ms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays total leakage time constant of motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0395</td>
<td>CO: Total stator resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays stator resistance of motor as [%] of combined stator/cable resistance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>100 % means : (Z_{\text{ratedmot}} \div P0304) (\div P0305)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P0610 Motor I²t temperature reaction

- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def:** 2
- **P-Group:** MOTOR
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 2

Level: 3

Definitions:
- **Min:** 0
- **Max:** 2

Possible Settings:
- 0: No reaction, warning only
- 1: Warning and Imax reduction (results in reduced output frequency)
- 2: Warning and trip (F0011)

Dependency:
- Trip level = P0614 (motor I²t overload warning level) * 110 %

Note:
To calculate or measure the motor temperature and disable the inverter if the motor is in danger of overheating.

The motor temperature will be dependent on many factors, including the size of the motor, the ambient temperature, the previous history of the loading of the motor, and of course, the load current. (The square of the current actually determines the heating of the motor and the temperature rises with time - hence I²t).

Because most motors are cooled by built-in fans running at motor speed, the speed of the motor is also important. Clearly, a motor running at high current (maybe due to boost) and a low speed, will overheat more quickly than one running at 50 or 60 Hz, full load. The MM4 take account of these factors.

The drives also include inverter I²t protection (i.e. overheating protection, see P0290) in order to protect the units themselves. This operates independently of the motor I²t and is not described here.

I²t operation:
The measured motor current (r0027) is compared with the rated motor current (P0305), and other motor parameters (P0304, P0307, etc.), and the temperature of the motor calculated, a calculation which also includes the output frequency (motor speed) to account for fan cooling. If parameter P0335 is changed to indicate a forced cooled motor, the calculation is modified accordingly.

Where parameters are not entered by the user, such as P0344 (motor weight), a calculated value will be used based on a Siemens motor. If required, the motor time constant can be adjusted using P0611, in effect overwriting the calculated value.

The resulting temperature is displayed in % of maximum temperature in r0034. When this value reaches the value set in P0614 (default 100%), a warning A0511 occurs. If no action is taken and the temperature reaches 110%, then the inverter trips, showing F0011. The reaction to the warning can be changed from this default using P0610; for example, the drive can react as though a current limit has occurred, or a fault forced immediately. The warning level of P0614 can also be adjusted to raise and lower the warning or trip level as required.

Parameter r0034 is particularly useful to monitor if the calculated motor temperature is rising excessively.

P0611 Motor I²t time constant

- **CStat:** CT
- **Datatype:** U16
- **Unit:** s
- **Def:** 100
- **P-Group:** MOTOR
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 16000

Level: 2

Definitions:
- **Min:** 0
- **Max:** 16000

Notice:
A larger number increases the time taken for the calculated motor temperature to change.

Default value is dependant on inverter rated power.

P0614 Motor I²t overload warning level

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 100.0
- **P-Group:** MOTOR
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 400.0

Level: 2

Definitions:
- **Min:** 0.0
- **Max:** 400.0

Dependency:
A motor over-temperature trip (F0011) is produced at 110 % of this level.

P0640 Motor overload factor [%]

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 150.0
- **P-Group:** MOTOR
- **Active:** Immediately
- **QuickComm. Yes**
- **Max:** 400.0

Level: 2

Definitions:
- **Min:** 10.0
- **Max:** 400.0

Dependency:
Limited to maximum inverter current or to 400 % of rated motor current (P0305), whichever is the lower.

Details:
See function diagram for current limitation.
P0700 Selection of command source

<table>
<thead>
<tr>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- **CStat**: CT
- **Datatype**: U16
- **Unit**: -
- **Active**: first confirm
- **QuickComm**: Yes

Sets digital command source.

Possible Settings:
- 0: Factory default setting
- 1: BOP (keypad)
- 2: Terminal
- 4: USS on BOP link
- 5: USS on COM link
- 6: CB on COM link

Note:
Changing this parameter resets (to default) all settings on item selected.

For example:
Changing form 1 to 2 resets all digital inputs to default settings.

P0701 Function of digital input 1

<table>
<thead>
<tr>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat**: CT
- **Datatype**: U16
- **Unit**: -
- **Active**: first confirm
- **QuickComm**: No

Sets function of digital input 1.

Possible Settings:
- 0: Digital input disabled
- 1: ON/OFF1
- 2: ON reverse /OFF1
- 3: OFF2 - coast to standstill
- 4: OFF3 - quick ramp-down
- 9: Fault acknowledge
- 10: JOG right
- 11: JOG left
- 12: Reverse
- 13: MOP up (increase frequency)
- 14: MOP down (decrease frequency)
- 15: Fixed setpoint (Direct selection)
- 16: Fixed setpoint (Direct selection + ON)
- 17: Fixed setpoint (Binary coded selection + ON)
- 21: Local/remote
- 25: DC brake enable
- 29: External trip
- 33: Disable additional freq setpoint
- 99: Enable BICO parameterization

Dependency:
- Setting 99 (enable BICO parameterization) requires
 - P0700 command source or
 - P0010 = 1, P3900 = 1, 2 or 3 quick commissioning or
 - P0010 = 30, P0970 = 1 factory reset in order to reset.

Notice:
Setting 99 (BICO) for expert use only.

P0702 Function of digital input 2

<table>
<thead>
<tr>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat**: CT
- **Datatype**: U16
- **Unit**: -
- **Active**: first confirm
- **QuickComm**: No

Sets function of digital input 2.

Possible Settings:
- 0: Digital input disabled
- 1: ON/OFF1
- 2: ON reverse /OFF1
- 3: OFF2 - coast to standstill
- 4: OFF3 - quick ramp-down
- 9: Fault acknowledge
- 10: JOG right
- 11: JOG left
- 12: Reverse
- 13: MOP up (increase frequency)
- 14: MOP down (decrease frequency)
- 15: Fixed setpoint (Direct selection)
- 16: Fixed setpoint (Direct selection + ON)
- 17: Fixed setpoint (Binary coded selection + ON)
- 21: Local/remote
- 25: DC brake enable
- 29: External trip
- 33: Disable additional freq setpoint
- 99: Enable BICO parameterization

Details:
See P0701 (function of digital input1).
P0703 Function of digital input 3

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def:** 9
- **P-Group:** COMMANDS
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 99

Selects function of digital input 3.

Possible Settings:

- **0** Digital input disabled
- **1** ON/OFF1
- **2** ON reverse /OFF1
- **3** OFF2 - coast to standstill
- **4** OFF3 - quick ramp-down
- **9** Fault acknowledge
- **10** JOG right
- **11** JOG left
- **12** Reverse
- **13** MOP up (increase frequency)
- **14** MOP down (decrease frequency)
- **15** Fixed setpoint (Direct selection)
- **16** Fixed setpoint (Direct selection + ON)
- **17** Fixed setpoint (Binary coded selection + ON)
- **21** Local/remote
- **25** DC brake enable
- **29** External trip
- **33** Disable additional freq setpoint
- **99** Enable BICO parameterization

Details:

See P0701 (function of digital input 1).

P0704 Function of digital input 4

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** COMMANDS
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 99

Selects function of digital input 4 (via analog input).

Possible Settings:

- **0** Digital input disabled
- **1** ON/OFF1
- **2** ON reverse /OFF1
- **3** OFF2 - coast to standstill
- **4** OFF3 - quick ramp-down
- **9** Fault acknowledge
- **10** JOG right
- **11** JOG left
- **12** Reverse
- **13** MOP up (increase freq.)
- **14** MOP down (decrease freq.)
- **21** Local/remote
- **25** DC brake enable
- **29** External trip
- **33** Disable additional freq setpoint
- **99** Enable BICO parameterization

Details:

See P0701 (function of digital input 1).
Central switch to select control command source for inverter.

Switches command and setpoint source between freely programmable BICO parameters and fixed command/setpoint profiles. Command and setpoint sources can be changed independently.

The tens digit chooses the command source and the units digit chooses the setpoint source.

The two indices of this parameter are used for local/remote switching. The local/remote signal switches between these settings.

The default setting is 0 for the first index (i.e. normal parameterization is active).

The second index is for control via BOP (i.e. activating the local/remote signal will then switch to BOP).

Possible Settings:
- 0: Cmd = BICO parameter, Setpoint = BICO parameter
- 1: Cmd = BICO parameter, Setpoint = MOP setpoint
- 2: Cmd = BICO parameter, Setpoint = Analog setpoint
- 3: Cmd = BICO parameter, Setpoint = Fixed frequency
- 4: Cmd = BICO parameter, Setpoint = USS on BOP link
- 5: Cmd = BICO parameter, Setpoint = USS on COM link
- 6: Cmd = BICO parameter, Setpoint = CB on COM link
- 10: Cmd = BOP, Setpoint = BICO parameter
- 11: Cmd = BOP, Setpoint = MOP setpoint
- 12: Cmd = BOP, Setpoint = Analog setpoint
- 13: Cmd = BOP, Setpoint = Fixed frequency
- 15: Cmd = BOP, Setpoint = USS on COM link
- 16: Cmd = BOP, Setpoint = CB on COM link
- 40: Cmd = USS on BOP link, Setpoint = BICO parameter
- 41: Cmd = USS on BOP link, Setpoint = MOP setpoint
- 42: Cmd = USS on BOP link, Setpoint = Analog setpoint
- 43: Cmd = USS on BOP link, Setpoint = Fixed frequency
- 44: Cmd = USS on BOP link, Setpoint = USS on BOP link
- 45: Cmd = USS on BOP link, Setpoint = USS on COM link
- 46: Cmd = USS on BOP link, Setpoint = CB on COM link
- 50: Cmd = USS on COM link, Setpoint = BICO parameter
- 51: Cmd = USS on COM link, Setpoint = MOP setpoint
- 52: Cmd = USS on COM link, Setpoint = Analog setpoint
- 53: Cmd = USS on COM link, Setpoint = Fixed frequency
- 54: Cmd = USS on COM link, Setpoint = USS on BOP link
- 55: Cmd = USS on COM link, Setpoint = USS on COM link
- 56: Cmd = USS on COM link, Setpoint = CB on COM link
- 60: Cmd = CB on COM link, Setpoint = BICO parameter
- 61: Cmd = CB on COM link, Setpoint = MOP setpoint
- 62: Cmd = CB on COM link, Setpoint = Analog setpoint
- 63: Cmd = CB on COM link, Setpoint = Fixed frequency
- 64: Cmd = CB on COM link, Setpoint = USS on BOP link
- 65: Cmd = CB on COM link, Setpoint = USS on COM link
- 66: Cmd = CB on COM link, Setpoint = CB on COM link

BICO connections made previously remain unchanged.

Displays number of digital inputs.

Central switch to select control command source for inverter.

Switches command and setpoint source between freely programmable BICO parameters and fixed command/setpoint profiles. Command and setpoint sources can be changed independently.

The tens digit chooses the command source and the units digit chooses the setpoint source.

The two indices of this parameter are used for local/remote switching. The local/remote signal switches between these settings.

The default setting is 0 for the first index (i.e. normal parameterization is active).

The second index is for control via BOP (i.e. activating the local/remote signal will then switch to BOP).

Possible Settings:
- 0: Cmd = BICO parameter, Setpoint = BICO parameter
- 1: Cmd = BICO parameter, Setpoint = MOP setpoint
- 2: Cmd = BICO parameter, Setpoint = Analog setpoint
- 3: Cmd = BICO parameter, Setpoint = Fixed frequency
- 4: Cmd = BICO parameter, Setpoint = USS on BOP link
- 5: Cmd = BICO parameter, Setpoint = USS on COM link
- 6: Cmd = BICO parameter, Setpoint = CB on COM link
- 10: Cmd = BOP, Setpoint = BICO parameter
- 11: Cmd = BOP, Setpoint = MOP setpoint
- 12: Cmd = BOP, Setpoint = Analog setpoint
- 13: Cmd = BOP, Setpoint = Fixed frequency
- 15: Cmd = BOP, Setpoint = USS on COM link
- 16: Cmd = BOP, Setpoint = CB on COM link
- 40: Cmd = USS on BOP link, Setpoint = BICO parameter
- 41: Cmd = USS on BOP link, Setpoint = MOP setpoint
- 42: Cmd = USS on BOP link, Setpoint = Analog setpoint
- 43: Cmd = USS on BOP link, Setpoint = Fixed frequency
- 44: Cmd = USS on BOP link, Setpoint = USS on BOP link
- 45: Cmd = USS on BOP link, Setpoint = USS on COM link
- 46: Cmd = USS on BOP link, Setpoint = CB on COM link
- 50: Cmd = USS on COM link, Setpoint = BICO parameter
- 51: Cmd = USS on COM link, Setpoint = MOP setpoint
- 52: Cmd = USS on COM link, Setpoint = Analog setpoint
- 53: Cmd = USS on COM link, Setpoint = Fixed frequency
- 54: Cmd = USS on COM link, Setpoint = USS on BOP link
- 55: Cmd = USS on COM link, Setpoint = USS on COM link
- 56: Cmd = USS on COM link, Setpoint = CB on COM link
- 60: Cmd = CB on COM link, Setpoint = BICO parameter
- 61: Cmd = CB on COM link, Setpoint = MOP setpoint
- 62: Cmd = CB on COM link, Setpoint = Analog setpoint
- 63: Cmd = CB on COM link, Setpoint = Fixed frequency
- 64: Cmd = CB on COM link, Setpoint = USS on BOP link
- 65: Cmd = CB on COM link, Setpoint = USS on COM link
- 66: Cmd = CB on COM link, Setpoint = CB on COM link

BICO connections made previously remain unchanged.

Displays number of digital inputs.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0722</td>
<td>CO/BO: Binary input values</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays status of digital inputs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitfields:</td>
<td>Bit00 Digital input 1</td>
<td>0 OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit01 Digital input 2</td>
<td>0 OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit02 Digital input 3</td>
<td>0 OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit03 Digital input 4 (via ADC)</td>
<td>0 OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: Segment is lit when signal is active.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0724</td>
<td>Debounce time for digital inputs</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CStat: CT</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Def: 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-Group: COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defines debounce time (filtering time) used for digital inputs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible Settings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 No debounce time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2.5 ms debounce time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 8.2 ms debounce time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 12.3 ms debounce time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0725</td>
<td>PNP / NPN digital inputs</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CStat: CT</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Def: 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-Group: COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switches between active high (PNP) and active low (NPN). This is valid for all digital inputs simultaneously.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following is valid by using the internal supply:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible Settings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 NPN mode ==> low active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 PNP mode ==> high active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPN: Terminals 5/6/7 must be connected via terminal 9 (0 V).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PNP: Terminals 5/6/7 must be connected via terminal 8 (24 V).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0730</td>
<td>Number of digital outputs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays number of digital outputs (relays).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Defines source of digital output 1.

Common Settings:

- 52.0 Drive ready
- 52.1 Drive ready to run
- 52.2 Drive running
- 52.3 Drive fault active
- 52.4 OFF2 active
- 52.5 OFF3 active
- 52.6 Switch on inhibit active
- 52.7 Drive warning active
- 52.8 Deviation setpoint/actual value
- 52.9 PZD control (Process Data Control)
- 52.A Maximum frequency reached
- 52.B Warning: Motor current limit
- 52.C Motor holding brake (MHB) active
- 52.D Motor overload
- 52.E Motor running direction right
- 52.F Inverter overload
- 53.0 DC brake active
- 53.1 Act. freq. f_act > P2167 (f_off)
- 53.2 Act. freq. f_act > P1080 (f_min)
- 53.3 Act. current r0027 >= P2170
- 53.4 Act. freq. f_act > P2155 (f_1)
- 53.5 Act. freq. f_act <= P2155 (f_1)
- 53.6 Act. freq. f_act >= setpoint
- 53.7 Act. Vdc r0026 < P2172
- 53.8 Act. Vdc r0026 > P2172
- 53.A PID output r2294 == P2292 (PID_min)
- 53.B PID output r2294 == P2291 (PID_max)

Displays status of digital outputs (also includes inversion of digital outputs via P0748).

Bitfields:

- Bit00 Digital output 1 energized
 - 0: NO
 - 1: YES

Dependency:

- Bit 0 = 0: Relay de-energized / contacts open
- Bit 0 = 1: Relay energized / contacts closed

Defines high and low states of relay for a given function.

Bitfields:

- Bit00 Invert digital output 1
 - 0: NO
 - 1: YES

Displays number of analog inputs available.

Displays status of analog input.

Bitfields:

- Bit00 Signal lost on ADC
 - 0: NO
 - 1: YES

Displays smoothed analog input value in volts before the characteristic block.
P0753 Smooth time ADC

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CUT

Datatype: U16

Unit: ms

Def: 3

P-Group: TERMINAL

Active: first confirm

QuickComm. No

Max: 10000

Defines filter time (PT1 filter) in [ms] for analog input.

Note:
Increasing this time (smooth) reduces jitter but slows down response to the analog input.

P0753 = 0 : No filtering

r0754 Act. ADC value after scaling [%]

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Datatype: Float

Unit: %

Def: -

P-Group: TERMINAL

Max: -

Shows smoothed value of analog input in [%] after scaling block.

Dependency:
P0757 to P0760 define range (ADC scaling).

r0755 CO: Act. ADC after scal. [4000h]

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Datatype: I16

Unit: -

Def: -

P-Group: TERMINAL

Max: -

Displays analog input, scaled using ASPmin and ASPmax.

Analog setpoint (ASP) from the analog scaling block can vary from min. analog setpoint (ASPmin) to a max. analog setpoint (ASPmax) as shown in P0757 (ADC scaling).

The largest magnitude (value without sign) of ASPmin and ASPmax defines the scaling of 16384.

Example:

ASPmin = 300 %, ASPmax = 100 % then 16384 represents 300 %.

This parameter will vary from 5461 to 16384

ASPmin = -200 %, ASPmax = 100 % then 16384 represents 200 %.

This parameter will vary from -16384 to +8192

Note:
This value is used as an input to analog BICO connectors.

ASPmax represents the highest analog setpoint (this may be at 10 V).

ASPmin represents the lowest analog setpoint (this may be at 0 V).

Details:
See parameters P0757 to P0760 (ADC scaling)

P0756 Type of ADC

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

CStat: CT

Datatype: U16

Unit: -

Def: 0

P-Group: TERMINAL

Active: first confirm

QuickComm. No

Max: 1

Defines type of analog input and also enables analog input monitoring.

Possible Settings:

0 Unipolar voltage input (0 to +10 V)

1 Unipolar voltage input with monitoring (0 to 10 V)

Dependency:
Function disabled if analog scaling block programmed to output negative setpoints (see P0757 to P0760).

Notice:
When monitoring is enabled and a deadband defined (P0761), a fault condition will be generated (F0080) if the analog input voltage falls below 50 % of the deadband voltage.

Details:
See P0757 to P0760 (ADC scaling).
P0757 Value x1 of ADC scaling [V]
CStat: CUT Datatype: Float Unit: V Def: 0
P-Group: TERMINAL Active: first confirm QuickComm. No Max: 10

Parameters P0757 - P0760 configure the input scaling as shown in the diagram:

P0761 = 0

Where:
- Analog setpoints represent a [%] of the normalized frequency in P2000.
- Analog setpoints may be larger than 100 %.
- ASPmax represents highest analog setpoint (this may be at 10 V).
- ASPmin represents lowest analog setpoint (this may be at 0 V).
- Default values provide a scaling of 0 V = 0 %, and 10 V = 100 %.

Notice: The value x2 of ADC scaling P0759 must be greater than the value x1 of ADC scaling P0757.

P0758 Value y1 of ADC scaling
CStat: CUT Datatype: Float Unit: % Def: 0.0
P-Group: TERMINAL Active: first confirm QuickComm. No Max: 99999.9

Sets value of Y1 in [%] as described in P0757 (ADC scaling)

Dependency: Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0759 Value x2 of ADC scaling [V]
CStat: CUT Datatype: Float Unit: V Def: 10
P-Group: TERMINAL Active: first confirm QuickComm. No Max: 10

Sets value of X2 as described in P0757 (ADC scaling).

Notice: The value x2 of ADC scaling P0759 must be greater than the value x1 of ADC scaling P0757.

P0760 Value y2 of ADC scaling
CStat: CUT Datatype: Float Unit: % Def: 100.0
P-Group: TERMINAL Active: first confirm QuickComm. No Max: 99999.9

Sets value of Y2 in [%] as described in P0757 (ADC scaling).

Dependency: Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.
P0761 Width of ADC deadband [V]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: first confirm</td>
</tr>
</tbody>
</table>

Min: 0, **Def:** 0, **Max:** 10

Level: 2

Defines width of deadband on analog input. The diagrams below explain its use.

Example:

ADC value 2 to 10 V (0 to 50 Hz)
The below example produces a 2 to 10 V analog input (0 to 50 Hz):
- P2000 = 50 Hz
- P0759 = 8 V, P0760 = 75 %
- P0757 = 2 V, P0758 = 0 %
- P0761 = 2 V

P0756 = 0 or 1

P0761 > 0

0 < P0758 < P0760 || 0 > P0758 > P0760

ADC value 0 to 10 V (-50 to +50 Hz):
The below example produces a 0 to 10 V analog input (-50 to +50 Hz) with center zero and a "holding point" 0.2 V wide (0.1 V to each side of center).
- P2000 = 50 Hz
- P0759 = 8 V, P0760 = 75 %
- P0757 = 2 V, P0758 = -75 %
- P0761 = 0.1 V

P0756 = 0 or 1

P0761 > 0

P0758 < 0 < P0760

Note:

P0761[x] = 0 : No deadband active.

Notice:
Deadband starts from 0 V to value of P0761, if both values of P0758 and P0760 (y coordinates of ADC scaling) are positive or negative respectively. However, deadband is active in both directions from point of intersection (x axis with ADC scaling curve), if sign of P0758 and P0760 are opposite.

Min. frequency P1080 should be zero when using center zero setup. There is no hysteresis at the end of the deadband.

P0762 Delay for loss of signal action

<table>
<thead>
<tr>
<th>CStat:</th>
<th>DATATYPE: U16</th>
<th>UNIT: ms</th>
<th>MIN: 0</th>
<th>Def: 10</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 10000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines time delay between loss of analog setpoint and appearance of fault code F0080.

Note:
Expert users can choose the desired reaction to F0080 (default is OFF2).

r0770 Number of DACs

<table>
<thead>
<tr>
<th>DATATYPE: U16</th>
<th>UNIT: -</th>
<th>MIN: -</th>
<th>Def: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of analog outputs available.

P0771 CI: DAC

<table>
<thead>
<tr>
<th>CStat:</th>
<th>DATATYPE: U32</th>
<th>UNIT: -</th>
<th>MIN: 0:0</th>
<th>Def: 21:0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 4000:0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines function of the 0 - 20 mA analog output.

Common Settings:
21 CO: Act. frequency (scaled to P2000)
24 CO: Act. output frequency (scaled to P2000)
25 CO: Act. output voltage (scaled to P2001)
26 CO: Act. DC-link voltage (scaled to P2001)
27 CO: Act. output current (scaled to P2002)

P0773 Smooth time DAC

<table>
<thead>
<tr>
<th>CStat:</th>
<th>DATATYPE: U16</th>
<th>UNIT: ms</th>
<th>MIN: 0</th>
<th>Def: 2</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines smoothing time [ms] for analog output signal. This parameter enables smoothing for DAC using a PT1 filter.

Dependency:
P0773 = 0: Deactivates filter.

r0774 Act. DAC value [mA]

<table>
<thead>
<tr>
<th>DATATYPE: Float</th>
<th>UNIT: -</th>
<th>MIN: -</th>
<th>Def: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shows value of analog output in [mA] after filtering and scaling.

P0776 Type of DAC

<table>
<thead>
<tr>
<th>DATATYPE: U16</th>
<th>UNIT: -</th>
<th>MIN: 0</th>
<th>Def: 0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 0</td>
<td></td>
</tr>
</tbody>
</table>

Defines type of analog output.

Possible Settings:
0 Current output

Note:
The analog output is designed as a current output with a range of 0...20 mA.

For a voltage output with a range of 0...10 V an external resistor of 500 Ohms has to be connected at the terminals (12/13).
P0777 Value x1 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>-99999.0</td>
<td>2</td>
</tr>
<tr>
<td>Datatype</td>
<td>Float</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>TERMINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>99999.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines x1 output characteristic in [%]. Scaling block is responsible for adjustment of output value defined in P0771 (DAC connector input).

Parameters of DAC scaling block (P0777 ... P0781) work as follows:

- **Output signal (mA)**
 - **P0780**
 - **P0778**
 - **P0777**
 - **P0779**
 - **P0779**

Where:
- Points P1 (x1, y1) and P2 (x2, y2) can be chosen freely.

Example:
- The default values of the scaling block provide a scaling of:
 - P1: 0.0 % = 0 mA
 - P2: 100.0 % = 20 mA

Dependency:
- Affects P2000 to P2003 (referency frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0778 Value y1 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Datatype</td>
<td>Float</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>TERMINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines y1 of output characteristic.

P0779 Value x2 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>-99999.0</td>
<td>2</td>
</tr>
<tr>
<td>Datatype</td>
<td>Float</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>TERMINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>99999.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines x2 of output characteristic in [%].

Dependency:
- Affects P2000 to P2003 (referency frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0780 Value y2 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Datatype</td>
<td>Float</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>TERMINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines y2 of output characteristic.
P0781 Width of DAC deadband

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

CStat: CUT **Datatype:** Float **Unit:** - **Def:** 0

P-Group: TERMINAL **Active:** first confirm **QuickComm. No** **Max:** 20

Sets width of dead-band in [mA] for analog output.

![Graph showing width of DAC deadband](image)

P0800 BI: Download parameter set 0

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CT **Datatype:** U32 **Unit:** - **Def:** 0:0

P-Group: COMMANDS **Active:** first confirm **QuickComm. No** **Max:** 4000:0

Defines source of command to start download of parameter set 0 from attached AOP. The first three digits describe the parameter number of the command source, the last digit refers to the bit setting for that parameter.

Common Settings:

722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

Note:
- Signal of digital input:
 - 0 = No download
 - 1 = Start download parameter set 0 from AOP.

P0801 BI: Download parameter set 1

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CT **Datatype:** U32 **Unit:** - **Def:** 0:0

P-Group: COMMANDS **Active:** first confirm **QuickComm. No** **Max:** 4000:0

Defines sources of command to start download of parameter set 1 from attached AOP. The first three digits describe the parameter number of the command source, the last digit refers to the bit setting for that parameter.

Common Settings:

722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

Note:
- Signal of digital input:
 - 0 = No download
 - 1 = Start download parameter set 1 from AOP.

P0840 BI: ON/OFF1

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CT **Datatype:** U32 **Unit:** - **Def:** 722:0

P-Group: COMMANDS **Active:** first confirm **QuickComm. No** **Max:** 4000:0

Allows ON/OFF1 command source to be selected using BICO. The first three digits describe the parameter number of the command source; the last digit denotes the bit setting for that parameter.

Common Settings:

722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
19.0 = ON/OFF1 via BOP

Dependency:
- Active only when P0719 = 0 (remote selection of command/setpoint source).

BICO requires P0700 set to 2 (enable BICO).

The default setting (ON right) is digital input 1 (722.0). Alternative source possible only when function of digital input 1 is changed (via P0701) before changing value of P0840.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0842 BI: ON reverse/OFF1</td>
<td>Allows ON/OFF1 reverse command source to be selected using BICO. The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.</td>
<td>0:0</td>
<td>3</td>
</tr>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
<td>Def: 0:0</td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm: No</td>
<td>Max: 4000:0</td>
</tr>
</tbody>
</table>

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

19.0 = ON/OFF1 via BOP

Dependency:
Active only when P0719 = 0 (remote selection of command/setpoint source).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0844 BI: 1. OFF2</td>
<td>Defines first source of OFF2 when P0719 = 0 (BICO). The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.</td>
<td>0:0</td>
<td>3</td>
</tr>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
<td>Def: 1:0</td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm: No</td>
<td>Max: 4000:0</td>
</tr>
</tbody>
</table>

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

19.0 = ON/OFF1 via BOP
19.1 = OFF2: Electrical stop via BOP

Dependency:
Active only when P0719 = 0 (remote selection of command/setpoint source).

If one of the digital inputs is selected for OFF2, the inverter will not run unless the digital input is active.

Note:
OFF2 means immediate pulse-disabling; the motor is coasting.
OFF2 is low-active, i.e.:
- 0 = Pulse disabling.
- 1 = Operating condition.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0845 BI: 2. OFF2</td>
<td>Defines second source of OFF2. The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.</td>
<td>0:0</td>
<td>3</td>
</tr>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
<td>Def: 19:1</td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm: No</td>
<td>Max: 4000:0</td>
</tr>
</tbody>
</table>

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

19.0 = ON/OFF1 via BOP

Dependency:
In contrast to P0844 (first source of OFF2), this parameter is always active, independent of P0719 (selection of command and frequency setpoint).

If one of the digital inputs is selected for OFF2, the inverter will not run unless the digital input is active.

Note:
OFF2 means immediate pulse-disabling; the motor is coasting.
OFF2 is low-active, i.e.:
- 0 = Pulse disabling.
- 1 = Operating condition.
P0848 BI: 1. OFF3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td>Unit: -</td>
<td>Def: 1:0</td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm. No Max: 4000:0</td>
</tr>
</tbody>
</table>

Defines first source of OFF3 when P0719 = 0 (BICO). The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP

Dependency:
Active only when P0719 = 0 (remote selection of command/setpoint source).

If one of the digital inputs is selected for OFF3, the inverter will not run unless the digital input is active.

Note:
- OFF3 means fast ramp-down to 0.
- OFF3 is low-active, i.e.
 0 = Ramp-down,
 1 = Operating condition.

P0849 BI: 2. OFF3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td>Unit: -</td>
<td>Def: 1:0</td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm. No Max: 4000:0</td>
</tr>
</tbody>
</table>

Defines second source of OFF3. The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP

Dependency:
In contrast to P0848 (first source of OFF3), this parameter is always active, independent of P0719 (selection of command and frequency setpoint).

If one of the digital inputs is selected for OFF3, the inverter will not run unless the digital input is active.

Note:
- OFF3 means fast ramp-down to 0.
- OFF3 is low-active, i.e.
 0 = Ramp-down,
 1 = Operating condition.

P0852 BI: Pulse enable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td>Unit: -</td>
<td>Def: 1:0</td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm. No Max: 4000:0</td>
</tr>
</tbody>
</table>

Defines source of pulse enable/disable signal.

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

Dependency:
Active only when P0719 = 0 (remote selection of command/setpoint source).

P0918 CB address

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Def: 3</td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Active: first confirm</td>
<td>QuickComm. No Max: 65535</td>
</tr>
</tbody>
</table>

Defines address of CB (communication board) or address of the other option modules.

There are two ways to set the bus address:
1 via DIP switches on the PROFIBUS module
2 via a user-entered value

Note:
Possible PROFIBUS settings:
1 ... 125
0, 126, 127 are not allowed

The following applies when a PROFIBUS module is used:
DIP switch = 0 Address defined in P0918 (CB address) is valid
DIP switch not = 0 DIP switch setting has priority and P0918 indicates DIP switch setting.
P0927

Parameter changeable via

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: 0</th>
<th>Def: 15</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifies the interfaces which can be used to change parameters.

Bitfields:

- **Bit00** PROFIBUS / CB
 - 0 NO
 - 1 YES
- **Bit01** BOP
 - 0 NO
 - 1 YES
- **Bit02** USS on BOP link
 - 0 NO
 - 1 YES
- **Bit03** USS on COM link
 - 0 NO
 - 1 YES

Example:

- "b - n n" (bits 0, 1, 2 and 3 set) in the default setting means that parameters can be changed via any interface.
- "b - r n" (bits 0, 1 and 3 set) would specify that parameters can be changed via PROFIBUS/CB, BOP and USS on COM link (RS485 USS) but not via USS on BOP link (RS232).

Details:

The seven-segment display is explained in the "Introduction to MICROMASTER System Parameters" in this handbook.

r0947[8]

Last fault code

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: ALARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays fault history according to the diagram below.

Where:

- "F1" is the first active fault (not yet acknowledged).
- "F2" is the second active fault (not yet acknowledged).
- "F1e" is the occurrence of the fault acknowledgement for F1 & F2.

This moves the value in the 2 indices down to the next pair of indices, where they are stored. Indices 0 & 1 contain the active faults. When faults are acknowledged, indices 0 & 1 are reset to 0.

Example:

If the inverter trips on undervoltage and then receives an external trip before the undervoltage is acknowledged, you will obtain:

- **r0947[0]** = 3 Undervoltage (F0003)
- **r0947[1]** = 85 External trip (F0085)

Whenever a fault in index 0 is acknowledged (F1e), the fault history shifts as indicated in the diagram above.

Dependency:

Index 1 used only if second fault occurs before first fault is acknowledged.

Details:

See "Faults and Warnings"
r0948[12] Fault time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0948[0]</td>
<td>Recent fault trip --, fault time seconds+minutes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[1]</td>
<td>Recent fault trip --, fault time hours+days</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[2]</td>
<td>Recent fault trip --, fault time month+year</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[3]</td>
<td>Recent fault trip -1, fault time seconds+minutes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[4]</td>
<td>Recent fault trip -1, fault time hours+days</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[5]</td>
<td>Recent fault trip -1, fault time month+year</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[6]</td>
<td>Recent fault trip -2, fault time seconds+minutes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[7]</td>
<td>Recent fault trip -2, fault time hours+days</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[8]</td>
<td>Recent fault trip -2, fault time month+year</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[9]</td>
<td>Recent fault trip -3, fault time seconds+minutes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[10]</td>
<td>Recent fault trip -3, fault time hours+days</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0948[11]</td>
<td>Recent fault trip -3, fault time month+year</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Index:
- r0948[0] : Recent fault trip --, fault time seconds+minutes
- r0948[1] : Recent fault trip --, fault time hours+days
- r0948[2] : Recent fault trip --, fault time month+year
- r0948[3] : Recent fault trip -1, fault time seconds+minutes
- r0948[4] : Recent fault trip -1, fault time hours+days
- r0948[5] : Recent fault trip -1, fault time month+year
- r0948[6] : Recent fault trip -2, fault time seconds+minutes
- r0948[7] : Recent fault trip -2, fault time hours+days
- r0948[8] : Recent fault trip -2, fault time month+year
- r0948[9] : Recent fault trip -3, fault time seconds+minutes
- r0948[10]: Recent fault trip -3, fault time hours+days
- r0948[11]: Recent fault trip -3, fault time month+year

Example:
The time is taken from P2115 if this parameter has been updated with the real time. If not, P2114 is used.

Note:
P2115 can be updated via AOP, Starter, DriveMonitor, etc.

r0949[8] Fault value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0949[0]</td>
<td>Recent fault trip --, fault value 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0949[1]</td>
<td>Recent fault trip --, fault value 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0949[2]</td>
<td>Recent fault trip -1, fault value 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0949[3]</td>
<td>Recent fault trip -1, fault value 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0949[4]</td>
<td>Recent fault trip -2, fault value 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0949[5]</td>
<td>Recent fault trip -2, fault value 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0949[6]</td>
<td>Recent fault trip -3, fault value 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0949[7]</td>
<td>Recent fault trip -3, fault value 8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

Index:
- r0949[0] : Recent fault trip --, fault value 1
- r0949[1] : Recent fault trip --, fault value 2
- r0949[2] : Recent fault trip -1, fault value 3
- r0949[3] : Recent fault trip -1, fault value 4
- r0949[4] : Recent fault trip -2, fault value 5
- r0949[5] : Recent fault trip -2, fault value 6
- r0949[6] : Recent fault trip -3, fault value 7
- r0949[7] : Recent fault trip -3, fault value 8

Displays drive fault values. It is for service purposes and indicate the type of fault reported. The values are not documented. They are listed in the code where faults are reported.

P0952 Total number of faults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0952</td>
<td>Total number of faults</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

Index:
- P0952 : Total number of faults

Displays number of faults stored in P0947 (last fault code).

Dependency:
- Setting 0 resets fault history. (changing to 0 also resets parameter r0948 - fault time).

r0964[5] Firmware version data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0964[0]</td>
<td>Company (Siemens)</td>
<td>42</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>r0964[1]</td>
<td>Product type</td>
<td>1001</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>r0964[2]</td>
<td>Firmware version</td>
<td>1002</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>r0964[3]</td>
<td>Firmware date (year)</td>
<td>1003</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>r0964[4]</td>
<td>Firmware date (day/month)</td>
<td>1004</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Firmware version data.

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0964[0]</td>
<td>42</td>
<td>SIEMENS</td>
</tr>
<tr>
<td>r0964[1]</td>
<td>1001</td>
<td>MICROMASTER 420</td>
</tr>
<tr>
<td></td>
<td>1002</td>
<td>MICROMASTER 440</td>
</tr>
<tr>
<td></td>
<td>1003</td>
<td>MICRO / COMBIMASTER 411</td>
</tr>
<tr>
<td></td>
<td>1004</td>
<td>MICROMASTER 410</td>
</tr>
<tr>
<td></td>
<td>1005</td>
<td>reserved</td>
</tr>
<tr>
<td></td>
<td>1006</td>
<td>MICROMASTER 440 PX</td>
</tr>
<tr>
<td></td>
<td>1007</td>
<td>MICROMASTER 430</td>
</tr>
<tr>
<td>r0964[2]</td>
<td>105</td>
<td>Firmware V1.05</td>
</tr>
<tr>
<td>r0964[4]</td>
<td>2710</td>
<td></td>
</tr>
</tbody>
</table>
r0967 Control word 1

<table>
<thead>
<tr>
<th>Bitfields</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0967</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays control word 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit00 ON/OFF1</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit01 OFF2: Electrical stop</td>
<td>0 YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit02 OFF3: Fast stop</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit03 Pulse enable</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit04 RFG enable</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit05 RFG start</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit06 Setpoint enable</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit07 Fault acknowledge</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit08 JOG right</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit09 JOG left</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit10 Control from PLC</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit11 Reverse (setpoint inversion)</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit12 Motor potentiometer MOP up</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit13 Motor potentiometer MOP down</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit14 Local / Remote</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r0968 Status word 1

<table>
<thead>
<tr>
<th>Bitfields</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0968</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays active status word of inverter (in binary) and can be used to diagnose which commands are active.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit00 Drive ready</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit01 Drive ready to run</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit02 Drive running</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit03 Drive fault active</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit04 OFF2 active</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit05 OFF3 active</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit06 ON inhibit active</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit07 Drive warning active</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit08 Deviation setpoint / act. value</td>
<td>0 YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit09 PZD control</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit10 Maximum frequency reached</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit11 Warning: Motor current limit</td>
<td>0 YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit12 Motor holding brake active</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit13 Motor overload</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit14 Motor runs right</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit15 Inverter overload</td>
<td>0 NO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P0970 Factory reset

<table>
<thead>
<tr>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Stat: C
Datatype: U16
Unit: -
P-Group: PAR_RESET
Active: first confirm
QuickComm: No

Possible Settings:
- 0: Disabled
- 1: Parameter reset

Dependency:
First set P0010 = 30 (factory settings).

Note:
Stop drive (i.e. disable all pulses) before you can reset parameters to default values.

P0970 = 1 resets all parameters to their default values.

- 0 Disabled
- 1 Parameter reset

P0971 Transfer data from RAM to EEPROM

<table>
<thead>
<tr>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Stat: CUT
Datatype: U16
Unit: -
P-Group: COMM
Active: first confirm
QuickComm: No

Possible Settings:
- 0: Disabled
- 1: Start transfer

Note:
All values in RAM are transferred to EEPROM.

Parameter is automatically reset to 0 (default) after successful transfer.

Transfers values from RAM to EEPROM when set to 1.
P1000 Selection of frequency setpoint

Min: 0 Level: 1

CStat: CT Datatype: U16 Unit: - Def: 2
P-Group: SETPOINT Active: first confirm QuickComm: Yes Max: 66

Selects frequency setpoint source. In the table of possible settings below, the main setpoint is selected from the least significant digit (i.e., 0 to 6) and any additional setpoint from the most significant digit (i.e., x0 through to x6).

Possible Settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No main setpoint</td>
</tr>
<tr>
<td>1</td>
<td>MOP setpoint</td>
</tr>
<tr>
<td>2</td>
<td>Analog setpoint</td>
</tr>
<tr>
<td>3</td>
<td>Fixed frequency</td>
</tr>
<tr>
<td>4</td>
<td>USS on BOP link</td>
</tr>
<tr>
<td>5</td>
<td>USS on COM link</td>
</tr>
<tr>
<td>6</td>
<td>CB on COM link</td>
</tr>
<tr>
<td>10</td>
<td>No main setpoint + MOP setpoint</td>
</tr>
<tr>
<td>11</td>
<td>MOP setpoint + MOP setpoint</td>
</tr>
<tr>
<td>12</td>
<td>Analog setpoint + MOP setpoint</td>
</tr>
<tr>
<td>13</td>
<td>Fixed frequency + MOP setpoint</td>
</tr>
<tr>
<td>14</td>
<td>USS on BOP link + MOP setpoint</td>
</tr>
<tr>
<td>15</td>
<td>USS on COM link + MOP setpoint</td>
</tr>
<tr>
<td>16</td>
<td>CB on COM link + MOP setpoint</td>
</tr>
<tr>
<td>20</td>
<td>No main setpoint + Analog setpoint</td>
</tr>
<tr>
<td>21</td>
<td>MOP setpoint + Analog setpoint</td>
</tr>
<tr>
<td>22</td>
<td>Analog setpoint + Analog setpoint</td>
</tr>
<tr>
<td>23</td>
<td>Fixed frequency + Analog setpoint</td>
</tr>
<tr>
<td>24</td>
<td>USS on BOP link + Analog setpoint</td>
</tr>
<tr>
<td>25</td>
<td>USS on COM link + Analog setpoint</td>
</tr>
<tr>
<td>26</td>
<td>CB on COM link + Analog setpoint</td>
</tr>
<tr>
<td>30</td>
<td>No main setpoint + Fixed frequency</td>
</tr>
<tr>
<td>31</td>
<td>MOP setpoint + Fixed frequency</td>
</tr>
<tr>
<td>32</td>
<td>Analog setpoint + Fixed frequency</td>
</tr>
<tr>
<td>33</td>
<td>Fixed frequency + Fixed frequency</td>
</tr>
<tr>
<td>34</td>
<td>USS on BOP link + Fixed frequency</td>
</tr>
<tr>
<td>35</td>
<td>USS on COM link + Fixed frequency</td>
</tr>
<tr>
<td>36</td>
<td>CB on COM link + Fixed frequency</td>
</tr>
<tr>
<td>40</td>
<td>No main setpoint + USS on BOP link</td>
</tr>
<tr>
<td>41</td>
<td>MOP setpoint + USS on BOP link</td>
</tr>
<tr>
<td>42</td>
<td>Analog setpoint + USS on BOP link</td>
</tr>
<tr>
<td>43</td>
<td>Fixed frequency + USS on BOP link</td>
</tr>
<tr>
<td>44</td>
<td>USS on BOP link + USS on BOP link</td>
</tr>
<tr>
<td>45</td>
<td>USS on COM link + USS on BOP link</td>
</tr>
<tr>
<td>46</td>
<td>CB on COM link + USS on BOP link</td>
</tr>
<tr>
<td>50</td>
<td>No main setpoint + USS on COM link</td>
</tr>
<tr>
<td>51</td>
<td>MOP setpoint + USS on COM link</td>
</tr>
<tr>
<td>52</td>
<td>Analog setpoint + USS on COM link</td>
</tr>
<tr>
<td>53</td>
<td>Fixed frequency + USS on COM link</td>
</tr>
<tr>
<td>54</td>
<td>USS on BOP link + USS on COM link</td>
</tr>
<tr>
<td>55</td>
<td>USS on COM link + USS on COM link</td>
</tr>
<tr>
<td>60</td>
<td>No main setpoint + CB on COM link</td>
</tr>
<tr>
<td>61</td>
<td>MOP setpoint + CB on COM link</td>
</tr>
<tr>
<td>62</td>
<td>Analog setpoint + CB on COM link</td>
</tr>
<tr>
<td>63</td>
<td>Fixed frequency + CB on COM link</td>
</tr>
<tr>
<td>64</td>
<td>USS on BOP link + CB on COM link</td>
</tr>
<tr>
<td>66</td>
<td>CB on COM link + CB on COM link</td>
</tr>
</tbody>
</table>

Example:
Setting 12 selects main setpoint (2) derived from analog input with additional setpoint (1) taken from the motor potentiometer.

Example P1000 = 12 :

<table>
<thead>
<tr>
<th>P1000 = 12</th>
<th>P1070 = 755</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1070</td>
<td>Cl: Main setpoint</td>
</tr>
<tr>
<td>r0755</td>
<td>CO: Act. ADC after scal. [4000h]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1000 = 12</th>
<th>P1075 = 1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1075</td>
<td>Cl: Additional setpoint</td>
</tr>
<tr>
<td>r1050</td>
<td>CO: Act. Output freq. of the MOP</td>
</tr>
</tbody>
</table>
Note:
Single digits denote main setpoints that have no additional setpoint.

P1001 Fixed frequency 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1001</td>
<td>-650.00</td>
<td>0.00</td>
<td>650.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 1.

There are 3 types of fixed frequencies:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

1. Direct selection (P0701 - P0703 = 15):
 In this mode of operation 1 digital input selects 1 fixed frequency.
 If several inputs are active together, the selected frequencies are summed.
 E.g.: FF1 + FF2 + FF3.

2. Direct selection + ON command (P0701 - P0703 = 16):
 The fixed frequency selection combines the fixed frequencies with an ON command.
 In this mode of operation 1 digital input selects 1 fixed frequency.
 If several inputs are active together, the selected frequencies are summed.
 E.g.: FF1 + FF2 + FF3.

3. Binary coded selection + ON command (P0701 - P0703 = 17):
 Up to 7 fixed frequencies can be selected using this method.
 The fixed frequencies are selected according to the following table:

<table>
<thead>
<tr>
<th></th>
<th>DIN3</th>
<th>DIN2</th>
<th>DIN1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1001</td>
<td>FF1</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1002</td>
<td>FF2</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>P1003</td>
<td>FF3</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>P1004</td>
<td>FF4</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1005</td>
<td>FF5</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1006</td>
<td>FF6</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>P1007</td>
<td>FF7</td>
<td>Active</td>
<td>Active</td>
</tr>
</tbody>
</table>

Dependency:
Select fixed frequency operation (using P1000).

Inverter requires ON command to start in the case of direct selection (P0701 - P0706 = 15).

Note:
Fixed frequencies can be selected using the digital inputs, and can also be combined with an ON command.

P1002 Fixed frequency 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1002</td>
<td>-650.00</td>
<td>5.00</td>
<td>650.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 2.

Details:
See parameter P1001 (fixed frequency 1).

P1003 Fixed frequency 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1003</td>
<td>-650.00</td>
<td>10.00</td>
<td>650.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 3.

Details:
See parameter P1001 (fixed frequency 1).
P1004 Fixed frequency 4
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** Hz
- **Def.:** 15.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:** QuickComm. No

<table>
<thead>
<tr>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-650.00</td>
<td>15.00</td>
<td>650.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Details:
Defines fixed frequency setpoint 4.

See parameter P1001 (fixed frequency 1).

P1005 Fixed frequency 5
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** Hz
- **Def.:** 20.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:** QuickComm. No

<table>
<thead>
<tr>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-650.00</td>
<td>20.00</td>
<td>650.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Details:
Defines fixed frequency setpoint 5.

See parameter P1001 (fixed frequency 1).

P1006 Fixed frequency 6
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** Hz
- **Def.:** 25.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:** QuickComm. No

<table>
<thead>
<tr>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-650.00</td>
<td>25.00</td>
<td>650.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Details:
Defines fixed frequency setpoint 6.

See parameter P1001 (fixed frequency 1).

P1007 Fixed frequency 7
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** Hz
- **Def.:** 30.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:** QuickComm. No

<table>
<thead>
<tr>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-650.00</td>
<td>30.00</td>
<td>650.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Details:
Defines fixed frequency setpoint 7.

See parameter P1001 (fixed frequency 1).

P1016 Fixed frequency mode - Bit 0
- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def.:** 1
- **P-Group:** SETPOINT
- **Active:** first confirm
- **QuickComm. No:** QuickComm. No

<table>
<thead>
<tr>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Possible Settings:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

Details:
Fixed frequencies can be selected in three different modes. Parameter P1016 defines the mode of selection Bit 0.

See table in P1001 (fixed frequency 1) for description of how to use fixed frequencies.

P1017 Fixed frequency mode - Bit 1
- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def.:** 1
- **P-Group:** SETPOINT
- **Active:** first confirm
- **QuickComm. No:** QuickComm. No

<table>
<thead>
<tr>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Possible Settings:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

Details:
Fixed frequencies can be selected in three different modes. Parameter P1017 defines the mode of selection Bit 1.

See table in P1001 (fixed frequency 1) for description of how to use fixed frequencies.

P1018 Fixed frequency mode - Bit 2
- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def.:** 1
- **P-Group:** SETPOINT
- **Active:** first confirm
- **QuickComm. No:** QuickComm. No

<table>
<thead>
<tr>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Possible Settings:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

Details:
Fixed frequencies can be selected in three different modes. Parameter P1018 defines the mode of selection Bit 2.

See table in P1001 (fixed frequency 1) for description of how to use fixed frequencies.
P1020 BI: Fixed freq. selection Bit 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Fixed freq. selection Bit 0</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
</tr>
<tr>
<td>Def: 0</td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
</tr>
<tr>
<td>Max: 4000.0</td>
<td></td>
</tr>
</tbody>
</table>

Common Settings:
- **P1020 = 722.0**: Digital input 1
- **P1021 = 722.1**: Digital input 2
- **P1022 = 722.2**: Digital input 3

Dependency:
Accessible only if P0701 - P0703 = 99 (function of digital inputs = BICO)

Details:
Defined origin of fixed frequency selection.

Common Settings:
- P1020 = 722.0: Digital input 1
- P1021 = 722.1: Digital input 2
- P1022 = 722.2: Digital input 3

Details:
See P1020 (fixed frequency selection Bit 0) for most common settings.

P1021 BI: Fixed freq. selection Bit 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Fixed freq. selection Bit 1</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
</tr>
<tr>
<td>Def: 0</td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
</tr>
<tr>
<td>Max: 4000.0</td>
<td></td>
</tr>
</tbody>
</table>

Common Settings:
- **P1020 = 722.0**: Digital input 1
- **P1021 = 722.1**: Digital input 2
- **P1022 = 722.2**: Digital input 3

Dependency:
Accessible only if P0701 - P0703 = 99 (function of digital inputs = BICO)

Details:
Defined origin of fixed frequency selection.

Details:
See P1020 (fixed frequency selection Bit 0) for most common settings.

P1022 BI: Fixed freq. selection Bit 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Fixed freq. selection Bit 2</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
</tr>
<tr>
<td>Def: 0</td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
</tr>
<tr>
<td>Max: 4000.0</td>
<td></td>
</tr>
</tbody>
</table>

Common Settings:
- **P1020 = 722.0**: Digital input 1
- **P1021 = 722.1**: Digital input 2
- **P1022 = 722.2**: Digital input 3
- **P1023 = 722.3**: Digital input 4

Dependency:
Accessible only if P0701 - P0703 = 99 (function of digital inputs = BICO)

Details:
Defined origin of fixed frequency selection.

Details:
See P1020 (fixed frequency selection Bit 0) for most common settings.

r1024 CO: Act. fixed frequency

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype: Float</td>
<td>Act. fixed frequency</td>
</tr>
<tr>
<td>Unit: Hz</td>
<td></td>
</tr>
<tr>
<td>Def: -</td>
<td></td>
</tr>
<tr>
<td>P-Group: SETPOINT</td>
<td></td>
</tr>
<tr>
<td>Max: -</td>
<td></td>
</tr>
</tbody>
</table>

Details:
Displays sum total of selected fixed frequencies.

P1031 Setpoint memory of the MOP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Setpoint memory of the MOP</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
</tr>
<tr>
<td>Def: 0</td>
<td></td>
</tr>
<tr>
<td>P-Group: SETPOINT</td>
<td></td>
</tr>
<tr>
<td>Active: immediately</td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
</tr>
<tr>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Saves last motor potentiometer setpoint (MOP) that was active before OFF command or power down.

Possible Settings:
- **0**: MOP setpoint will not be stored
- **1**: MOP setpoint will be stored (P1040 is updated)

Note:
On next ON command, motor potentiometer setpoint will be the saved value in parameter P1040 (setpoint of the MOP).

P1032 Inhibit reverse direction of MOP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Inhibit reverse direction of MOP</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
</tr>
<tr>
<td>Def: 1</td>
<td></td>
</tr>
<tr>
<td>P-Group: SETPOINT</td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
</tr>
<tr>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Inhibits reverse setpoint selection

Possible Settings:
- **0**: Reverse direction is allowed
- **1**: Reverse direction inhibited

Dependency:
Motor potentiometer (P1040) must be chosen as main setpoint or additional setpoint (using P1000).

Note:
It is possible to change motor direction using the motor potentiometer setpoint (increase / decrease frequency either by using digital inputs or BOP/AOP keypad up / down).

P1035 BI: Enable MOP (UP-command)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>BI: Enable MOP (UP-command)</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
</tr>
<tr>
<td>Def: 19:13</td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
</tr>
<tr>
<td>Max: 4000.0</td>
<td></td>
</tr>
</tbody>
</table>

Defines source for motor potentiometer setpoint increase frequency.

Common Settings:
- **722.0**: Digital input 1 (requires P0701 to be set to 99, BICO)
- **722.1**: Digital input 2 (requires P0702 to be set to 99, BICO)
- **722.2**: Digital input 3 (requires P0703 to be set to 99, BICO)
- **722.3**: Digital input 4 (via analog input, requires P0704 to be set to 99)
- **19.D**: MOP up via BOP
P1036 BI: Enable MOP (DOWN-command)

<table>
<thead>
<tr>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>19:14</td>
<td></td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines source for motor potentiometer setpoint decrease frequency.

Common Settings:
- **722.0** = Digital input 1 (requires P0701 to be set to 99, BICO)
- **722.1** = Digital input 2 (requires P0702 to be set to 99, BICO)
- **722.2** = Digital input 3 (requires P0703 to be set to 99, BICO)
- **722.3** = Digital input 4 (via analog input, requires P0704 to be set to 99)

Normal Settings:
19.E = MOP down via BOP

P1040 Setpoint of the MOP

<table>
<thead>
<tr>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td></td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>Datatype: Float</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: SETPOINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Determines setpoint for motor potentiometer control (P1000 = 1).

Note:
If motor potentiometer setpoint is selected either as main setpoint or additional setpoint, the reverse direction will be inhibited by default of P1032 (inhibit reverse direction of MOP).

To re-enable reverse direction, set P1032 = 0.

r1050 CO: Act. Output freq. of the MOP

<table>
<thead>
<tr>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: SETPOINT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays output frequency of motor potentiometer setpoint ([Hz]).

P1055 BI: Enable JOG right

<table>
<thead>
<tr>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>0:0</td>
<td></td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines source of JOG right when P0719 = 0 (remote selection of command/setpoint source).

Common Settings:
- **722.0** = Digital input 1 (requires P0701 to be set to 99, BICO)
- **722.1** = Digital input 2 (requires P0702 to be set to 99, BICO)
- **722.2** = Digital input 3 (requires P0703 to be set to 99, BICO)
- **722.3** = Digital input 4 (via analog input, requires P0704 to be set to 99)

Normal Settings:
19.8 = JOG right via BOP
P1056 BI: Enable JOG left

<table>
<thead>
<tr>
<th>Min: 0.0</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

CStat: CT
Datatype: U32
Unit: -
Def: 0.0
P-Group: COMMANDS
Active: first confirm
QuickComm. No
Max: 4000.0

Defines source of JOG left when P0719 = 0 (remote selection of command/setpoint source).

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.9 = JOG left via BOP

P1058 JOG frequency right

<table>
<thead>
<tr>
<th>Min: 0.00</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

CStat: CUT
Datatype: Float
Unit: Hz
Def: 5.00
P-Group: SETPOINT
Active: Immediately
QuickComm. No
Max: 650.00

Jogging increases the motor speed by small amounts. The JOG buttons uses a non-latching switch on one of the digital inputs to control the motor speed.

While JOG right is selected, this parameter determines the frequency at which the inverter will run.

![Diagram showing JOG right and JOG left signals](image)

Dependency:
P1060 and P1061 set up and down ramp times respectively for jogging.

P1059 JOG frequency left

<table>
<thead>
<tr>
<th>Min: 0.00</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

CStat: CUT
Datatype: Float
Unit: Hz
Def: 5.00
P-Group: SETPOINT
Active: Immediately
QuickComm. No
Max: 650.00

While JOG left is selected, this parameter determines the frequency at which the inverter will run.

Dependency:
P1060 and P1061 set up and down ramp times respectively for jogging.
P1060 JOG ramp-up time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype: Float</td>
<td>Datatype:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: s</td>
<td>Unit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def: 10.00</td>
<td>Def:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td>Active:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td>QuickComm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 650.00</td>
<td>Max:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets jog ramp-up time. This is the time used while jogging is active.

Notice:
Ramp times will be used as follows:
P1060 / P1061: JOG mode is active
P1120 / P1121: Normal mode (ON/OFF) is active
P1060 / P1061 / P1124: Normal mode (ON/OFF) and P1124 is active

P1061 JOG ramp-down time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype: Float</td>
<td>Datatype:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: s</td>
<td>Unit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def: 10.00</td>
<td>Def:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td>Active:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td>QuickComm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 650.00</td>
<td>Max:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets ramp-down time. This is the time used while jogging is active.

Notice:
Ramp times will be used as follows:
P1060 / P1061: JOG mode is active
P1120 / P1121: Normal mode (ON/OFF) is active
P1060 / P1061 / P1124: Normal mode (ON/OFF) and P1124 is active

P1070 CI: Main setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype: U32</td>
<td>Datatype:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td>Unit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def: 755:0</td>
<td>Def:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: first confirm</td>
<td>Active:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td>QuickComm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 4000:0</td>
<td>Max:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines source of main setpoint.

Common Settings:
- 755 = Analog input 1 setpoint
- 1024 = Fixed frequency setpoint
- 1050 = Motor potentiometer (MOP) setpoint
P1071 CI: Main setpoint scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Defines source of the main setpoint scaling.

Common Settings:
- 755 = Analog input 1 setpoint
- 1024 = Fixed frequency setpoint
- 1050 = Motor potentiometer (MOP) setpoint

P1074 BI: Disable additional setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Disables additional setpoint

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P1075 CI: Additional setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Defines source of the additional setpoint (to be added to main setpoint).

Common Settings:
- 755 = Analog input 1 setpoint
- 1024 = Fixed frequency setpoint
- 1050 = Motor potentiometer (MOP) setpoint

P1076 CI: Additional setpoint scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Defines source of scaling for additional setpoint (to be added to main setpoint).

Common Settings:
- 1 = Scaling of 1.0 (100%)
- 755 = Analog input 1 Setpoint
- 1024 = Fixed Frequency Setpoint
- 1050 = MOP Setpoint

r1078 CO: Total frequency setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Displays sum of main and additional setpoints in [Hz].

r1079 CO: Selected frequency setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Displays selected frequency setpoint.

Following frequency setpoints are displayed:
- r1078 Total frequency setpoint
- P1058 JOG frequency right
- P1059 JOG frequency left

Dependency:
P1055 (BI: Enable JOG right) or P1056 (BI: Enable JOG left) define command source of JOG right or JOG left respectively.

Note:
P1055 = 0 and P1056 = 0 ==> Total frequency setpoint is selected.
Sets minimum motor frequency [Hz] at which motor will run irrespective of frequency setpoint.

The minimum frequency P1080 represents a masking frequency of 0 Hz for all frequency target value sources (e.g. ADC, MOP, FF, USS), with the exception of the JOG target value source (analogous to P1091). Thus the frequency band +/- P1080 is run through in optimum time by means of the acceleration/deceleration ramps. Dwelling in the frequency band is not possible (see example).

Furthermore, an undershoot of the actual frequency f_act below min. frequency P1080 is output by the following signal function.

\[
| f_{\text{act}} | \leq f_{\text{min}}
\]

Example:

Note:
Value set here is valid both for clockwise and for anticlockwise rotation.

Under certain conditions (e.g. ramping, current limiting), motor can run below minimum frequency.
Sets maximum motor frequency [Hz] at which motor will run irrespective of the frequency setpoint.

Dependency:
The maximal value of motor frequency P1082 is limited to pulse frequency P1800. P1082 is dependent on the derating characteristic as followed:

\[
\text{Max. frequency } \begin{cases} P1082 & \leq \frac{f_{\text{pulse}}}{15} = \frac{P1800}{15} \\
\end{cases}
\]

When \(P1300 < 20 \) (control mode = VF or FCC modes) then max output frequency is limited to smallest of 650 Hz or (maximum pulse frequency / 15)

Note:
The value set here is valid for both clockwise and anticlockwise rotation.

The maximum output frequency of inverter can be exceeded if one of the following is active:

- Slip compensation \(\text{Slip compensation} = f_{\text{max}} + f_{\text{slip comp max}} \)
- Flying restart \(\text{Flying restart} = f_{\text{max}} + f_{\text{slip nom}} \)

Notice:
Maximum motor speed is subject to mechanical limitations.
P1091 Skip frequency 1

Defines skip frequency 1 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Notice:
Stationary operation is not possible within the suppressed frequency range; the range is merely passed through (on the ramp).

For example, if P1091 = 10 Hz and P1101 = 2 Hz, it is not possible to operate continuously between 10 Hz +/- 2 Hz (i.e. between 8 and 12 Hz).

Details:
See P1091 (skip frequency 1).

P1092 Skip frequency 2

Defines skip frequency 2 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Details:
See P1091 (skip frequency 1).

P1093 Skip frequency 3

Defines skip frequency 3 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Details:
See P1091 (skip frequency 1).

P1094 Skip frequency 4

Defines skip frequency 4 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Details:
See P1091 (skip frequency 1).
P1101 Skip frequency bandwidth

<table>
<thead>
<tr>
<th>Stat</th>
<th>Datatype</th>
<th>Unit</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>Float</td>
<td>Hz</td>
<td>2.00</td>
<td>10.00</td>
</tr>
<tr>
<td>P-Group</td>
<td>SETPOINT</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Delivers frequency bandwidth to be applied to skip frequencies (in [Hz]).

Details:
See P1091 (skip frequency 1).

P1110 BI: Inhibit neg. freq. setpoint

<table>
<thead>
<tr>
<th>Stat</th>
<th>Datatype</th>
<th>Unit</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CT</td>
<td>U32</td>
<td>-</td>
<td>0:0</td>
<td>3</td>
</tr>
<tr>
<td>P-Group</td>
<td>COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inhibits direction reversal, thus preventing a negative setpoint from causing motor from running in reverse. Instead, it will run at minimum frequency (P1080) in the normal direction.

Common Settings:
0 = Disabled
1 = Enabled

Note:
It is possible to disable all reverse commands (i.e. the command is ignored). To do this, set P0719 = 0 (remote selection of command/setpoint source) and define the command sources (P1113) individually.

Notice:
This function does not disable the "reverse" command function; rather, a reverse command causes motor to run in the normal direction as described above.

P1113 BI: Reverse

<table>
<thead>
<tr>
<th>Stat</th>
<th>Datatype</th>
<th>Unit</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CT</td>
<td>U32</td>
<td>-</td>
<td>0:0</td>
<td>3</td>
</tr>
<tr>
<td>P-Group</td>
<td>COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines source of reverse command used when P0719 = 0 (remote selection of command/setpoint source).

Common Settings:
722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

r1114 CO: Freq. setp. after dir. ctrl.

<table>
<thead>
<tr>
<th>Datatype</th>
<th>Unit</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float</td>
<td>Hz</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Displays setpoint frequency after change of direction.

r1119 CO: Freq. setpoint before RFG

<table>
<thead>
<tr>
<th>Datatype</th>
<th>Unit</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float</td>
<td>Hz</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Displays output frequency after modification by other functions, e.g.:
* P1110 BI: Inhibit neg. freq. setpoint,
* P1091 - P1094 skip frequencies,
* P1080 Min. frequency,
* P1082 Max. frequency,
* limitations,
* etc.
P1120 Ramp-up time

CStat: CUT **Datatype:** Float **Unit:** s **Def:** 10.00 **Max:** 650.00 **Level:** 1

| Min: | 0.00 |

Time taken for motor to accelerate from standstill up to maximum motor frequency (P1082) when no rounding is used.

Setting the ramp-up time too short can cause the inverter to trip (overcurrent).

Note:
If an external frequency setpoint with set ramp rates is used (e.g. from a PLC). The best way to achieve optimum drive performance is to set ramp times in P1120 and P1121 slightly shorter than those of the PLC.

Notice:
Ramp times will be used as follows:
- P1060 / P1061: JOG mode is active
- P1120 / P1121: Normal mode (ON/OFF) is active
- P1060 / P1061: Normal mode (ON/OFF) and P1124 is active

P1121 Ramp-down time

CStat: CUT **Datatype:** Float **Unit:** s **Def:** 10.00 **Max:** 650.00 **Level:** 1

| Min: | 0.00 |

Time taken for motor to decelerate from maximum motor frequency (P1082) down to standstill when no rounding is used.

Notice:
Setting the ramp-down time too short can cause the inverter to trip (overcurrent (F0001) / overvoltage (F0002)).

Ramp times will be used as follows:
- P1060 / P1061: JOG mode is active
- P1120 / P1121: Normal mode (ON/OFF) is active
- P1060 / P1061: Normal mode (ON/OFF) and P1124 is active
P1124 BI: Enable JOG ramp times

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1124</td>
<td>0:0</td>
<td>0:0</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CT

Datatype: U32

Unit: -

Def: 0:0

P-Group: COMMANDS

Active: first confirm

QuickComm. No

Max: 4000:0

Defines source for switching between jog ramp times (P1060, P1061) and normal ramp times (P1120, P1121) as applied to the RFG. This parameter is valid for normal mode (ON/OFF) only.

Common Settings:

- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

Notice:

P1124 does not have any impact when JOG mode is selected. In this case, jog ramp times (P1060, P1061) will be used all the time.

Ramp times will be used as follows:

- P1060 / P1061: JOG mode is active
- P1120 / P1121: Normal mode (ON/OFF) is active
- P1060 / P1061: Normal mode (ON/OFF) and P1124 is active

P1130 Ramp-up initial rounding time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1130</td>
<td>0.00</td>
<td>0.00</td>
<td>2</td>
</tr>
</tbody>
</table>

CStat: CUT

Datatype: Float

Unit: s

Def: 0.00

P-Group: SETPOINT

Active: first confirm

QuickComm. No

Max: 40.00

Defines initial rounding time in seconds as shown on the diagram below.

![Diagram of rounding times](image)

where:

- \(T_{up\ total} = \frac{1}{2} P1130 + X \cdot P1120 + \frac{1}{2} P1131 \)
- \(T_{down\ total} = \frac{1}{2} P1130 + X \cdot P1121 + \frac{1}{2} P1133 \)

\(X \) is defined as: \(X = \Delta f / f_{max} \)

i.e. \(X \) is the ratio between the frequency step and \(f_{max} \)

Note:

Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:

Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.

P1131 Ramp-up final rounding time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1131</td>
<td>0.00</td>
<td>0.00</td>
<td>2</td>
</tr>
</tbody>
</table>

CStat: CUT

Datatype: Float

Unit: s

Def: 0.00

P-Group: SETPOINT

Active: first confirm

QuickComm. No

Max: 40.00

Defines rounding time at end of ramp-up as shown in P1130 (ramp-up initial rounding time).

Note:

Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:

Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.
P1132 Ramp-down initial rounding time

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>Float</th>
<th>Unit: s</th>
<th>Def: 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm. No</td>
<td>Max: 40.00</td>
</tr>
</tbody>
</table>

Defines rounding time at start of ramp-down as shown in P1130 (ramp-up initial rounding time).

Note:
Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:
Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.

P1133 Ramp-down final rounding time

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>Float</th>
<th>Unit: s</th>
<th>Def: 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm. No</td>
<td>Max: 40.00</td>
</tr>
</tbody>
</table>

Defines rounding time at end of ramp-down as shown in P1130 (ramp-up initial rounding time).

Note:
Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:
Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.

P1134 Rounding type

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>U16</th>
<th>Unit:</th>
<th>Def: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
</tr>
</tbody>
</table>

Defines smoothing response to OFF1 command or setpoint reduction.

If parameter P1134 = 0 it aviods sudden changes in setpoint frequency. Moreover, it gives smoother torque (no jerk).

Possible Settings:

- 0 Continuous smoothing
- 1 Discontinuous smoothing

Dependency:
No effect until total rounding time (P1130) > 0 s.

Notice:
- P1134 = 0:
 Rounding acts at all times. At a sudden reduction of the input value, overshoot can occur.
- P1134 = 1:
 Rounding does not act upon sudden reduction of input value during acceleration process.

Rounding times are not recommended when analog inputs are used. They would result in overshoot/undershoot in the inverter response.
P1135 OFF3 ramp-down time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF3 ramp-down time</td>
<td>0.00</td>
<td>5.00</td>
<td>2</td>
</tr>
</tbody>
</table>

CStat: CUT
Datatype: Float
Unit: s
Active: first confirm
QuickComm.: Yes
Max: 650.00

Defines ramp-down time from maximum frequency to standstill for OFF3 command.

Note: This time may be exceeded if the VDC_max level is reached.

P1140 BI: RFG enable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI: RFG enable</td>
<td>0:0</td>
<td>1:0</td>
<td>4</td>
</tr>
</tbody>
</table>

CStat: CT
Datatype: U32
Unit: -
Active: first confirm
QuickComm.: No
Max: 4000:0

Defines command source of RFG enable command (RFG: ramp function generator). If binary input is equal to zero than the RFG output will be set immediately to 0.

P1141 BI: RFG start

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI: RFG start</td>
<td>0:0</td>
<td>1:0</td>
<td>4</td>
</tr>
</tbody>
</table>

CStat: CT
Datatype: U32
Unit: -
Active: first confirm
QuickComm.: No
Max: 4000:0

Defines command source of RFG start command (RFG: ramp function generator). If binary input is equal to zero than the RFG output is held at it present value.

P1142 BI: RFG enable setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI: RFG enable setpoint</td>
<td>0:0</td>
<td>1:0</td>
<td>4</td>
</tr>
</tbody>
</table>

CStat: CT
Datatype: U32
Unit: -
Active: first confirm
QuickComm.: No
Max: 4000:0

Defines command source of RFG enable setpoint command (RFG: ramp function generator). If binary input is equal to zero than the RFG input will be set to zero and the RFG output will be ramp-down to zero.

r1170 CO: Frequency setpoint after RFG

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1170 CO: Frequency setpoint after RFG</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Datatype: Float
Unit: Hz
Def: -
Max: -

Displays overall frequency setpoint after ramp generator.
P1200 Flying start

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Starts inverter onto a spinning motor by rapidly changing the output frequency of the inverter until the actual motor speed has been found. Then, the motor runs up to setpoint using the normal ramp time.

Possible Settings:

0 Flying start disabled
1 Flying start is always active, start in direction of setpoint
2 Flying start is active if power on, fault, OFF2, start in direction of setpoint
3 Flying start is active if fault, OFF2, start in direction of setpoint
4 Flying start is always active, only in direction of setpoint
5 Flying start is active if power on, fault, OFF2, only in direction of setpoint
6 Flying start is active if fault, OFF2, only in direction of setpoint

Note:

Useful for motors with high inertia loads.

Settings 1 to 3 search in both directions.
Settings 4 to 6 search only in direction of setpoint.

Notice:

Flying start must be used in cases where the motor may still be turning (e.g. after a short mains break) or can be driven by the load. Otherwise, overcurrent trips will occur.

P1202 Motor-current: Flying start

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: %</th>
<th>Def: 100</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines search current used for flying start.

Value is in [%] based on rated motor current (P0305).

Note:

Reducing the search current may improve performance for flying start if the inertia of the system is not very high.
P1203 Search rate: Flying start

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
</tr>
<tr>
<td>Datatype</td>
<td>U16</td>
</tr>
<tr>
<td>Unit</td>
<td>%</td>
</tr>
<tr>
<td>Def</td>
<td>100</td>
</tr>
<tr>
<td>P-Group</td>
<td>FUNC</td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
</tr>
<tr>
<td>QuickComm. No</td>
<td>200</td>
</tr>
<tr>
<td>Max</td>
<td>200</td>
</tr>
</tbody>
</table>

Sets factor by which the output frequency changes during flying start to synchronize with turning motor. This value is entered in [%] defines the reciprocal initial gradient in the search sequence (see curve below). Parameter P1203 influences the time taken to search for the motor frequency.

\[
f_{\text{motor}} = f_{\text{search}} + 2 \frac{f_{\text{slip,nom}}}{1 \text{ [ms]}} \frac{T0330}{100} \text{ P0310}
\]

The search time is the time taken to search through all frequencies between max. frequency \(P1082 + 2 \times f_{\text{slip}} \) to 0 Hz.

\[
P1203 = 100 \% \text{ is defined as giving a rate of 2 \% of } f_{\text{slip,nom}} / \text{ [ms]}. \]

\[
P1203 = 200 \% \text{ would result in a rate of frequency change of 1 \% of } f_{\text{slip,nom}} / \text{ [ms]}. \]

Example:
For a motor with 50 Hz, 1350 rpm, 100 % would produce a maximum search time of 600 ms. If the motor is turning, the motor frequency is found in a shorter time.

Note:
A higher value produces a flatter gradient and thus a longer search time.
A lower value has the opposite effect.

r1204 Status word: Flying start V/f

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>FUNC</td>
</tr>
<tr>
<td>Datatype</td>
<td>U16</td>
</tr>
<tr>
<td>Unit</td>
<td>-</td>
</tr>
</tbody>
</table>

Bit parameter for checking and monitoring states during search, if V/f control mode is selected (see P1300).

Bitfields:
- **Bit00** Current applied
 - 0 NO
 - 1 YES
- **Bit01** Current could not be applied
 - 0 NO
 - 1 YES
- **Bit02** Voltage reduced
 - 0 NO
 - 1 YES
- **Bit03** Slope-filter started
 - 0 NO
 - 1 YES
- **Bit04** Current less threshold
 - 0 NO
 - 1 YES
- **Bit05** Current-minimum
 - 0 NO
 - 1 YES
- **Bit07** Speed could not be found
 - 0 NO
 - 1 YES
P1210 Automatic restart

<table>
<thead>
<tr>
<th>P1210</th>
<th>Automatic restart</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>-</td>
</tr>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
</tr>
<tr>
<td>Min:</td>
<td>0</td>
</tr>
<tr>
<td>Def:</td>
<td>1</td>
</tr>
<tr>
<td>Max:</td>
<td>5</td>
</tr>
</tbody>
</table>

Configures automatic restart function

Possible Settings:

0 - Disabled
1 - Trip reset after power on, P1211 disabled
2 - Restart after mains blackout, P1211 disabled
3 - Restart after mains brownout or fault, P1211 enabled
4 - Restart after mains brownout, P1211 enabled
5 - Restart after mains blackout and fault, P1211 disabled

Dependency:

Automatic restart requires constant ON command via a digital input wire link.

Caution:

P1210 > 2 can cause the motor to restart automatically without toggling the ON command!

Notice:

A "mains brownout" is where the power is interrupted and re-applied before the display on the BOP (if one is fitted to the inverter) has gone dark (a very short mains break where the DC link has not fully collapsed).

A "mains blackout" is where the display has gone dark (a long mains break where the DC link has fully collapsed) before the power is re-applied.

P1210 = 0:

Automatic restart is disabled.

P1210 = 1:

The inverter will acknowledge (reset) faults i.e. it will reset a fault when the is re-applied. This means the inverter must be fully powered down, a brownout is not sufficed. The inverter will not run until the ON command has been toggled.

P1210 = 2:

The inverter will acknowledge the fault F0003 at power on after blackout and restarts the drive. It is necessary that the ON command is wired via digital input (DIN).

P1210 = 3:

For these settings it is fundamental that the drive only restarts if it has been in a RUN state at the time of the faults (F0003, etc.). The inverter will acknowledge the fault and restarts the drive after a blackout or brownout. It is necessary that the ON command is wired via digital input (DIN).

P1210 = 4:

For these settings it is fundamental that the drive only restarts if it has been in a RUN state at the time of the fault (P0003). The inverter will acknowledge the fault and restarts the drive after a blackout or brownout. It is necessary that the ON command is wired via digital input (DIN).

P1210 = 5:

The inverter will acknowledge the faults F0003 etc. at power on after blackout and restarts the drive. It is necessary that the ON command is wired via digital input (DIN).

Following table presents an overview of parameter P1210 and its functionality.

<table>
<thead>
<tr>
<th>P1210</th>
<th>Blackout F0003</th>
<th>Browout F0003</th>
<th>All other faults without power cycle</th>
<th>All other faults with power cycle</th>
<th>ON command enabled during Power OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>Fault acknowledge restart</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Fault acknowledge restart</td>
</tr>
<tr>
<td>2</td>
<td>Fault acknowledge + restart</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Fault acknowledge + restart</td>
</tr>
<tr>
<td>3</td>
<td>Fault acknowledge + restart</td>
<td>Fault acknowledge + restart</td>
<td>Fault acknowledge + restart</td>
<td>Fault acknowledge + restart</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Fault acknowledge + restart</td>
<td>Fault acknowledge + restart</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Fault acknowledge + restart</td>
<td>–</td>
<td>–</td>
<td>Fault acknowledge + restart</td>
<td>Fault acknowledge + restart</td>
</tr>
</tbody>
</table>

Flying start must be used in cases where the motor may still be turning (e.g. after a short mains break) or can be driven by the load (P1200).
P1211 Number of restart attempts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Datatype</td>
<td>U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>FUNC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifies number of times inverter will attempt to restart if automatic restart P1210 is activated.

P1215 Holding brake enable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Datatype</td>
<td>U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enables/disables holding brake function. This function applies the following profile to the inverter:

Relay switching is also possible at point 1 and point 2 (if programmed in P0731 = 52.C) to control a brake.

ON / OFF1/OFF3:

![Diagram of ON / OFF1/OFF3](image)

ON / OFF2:

![Diagram of ON / OFF2](image)

Possible Settings:

- 0: Motor holding brake disabled
- 1: Motor holding brake enabled

Note:

The brake relay opens at point 1, if enabled using P0731 (function of digital output), and closes at point 2.
P1216 Holding brake release delay

<table>
<thead>
<tr>
<th>CStat:</th>
<th>T</th>
<th>Datatype: Float</th>
<th>Unit: s</th>
<th>Def: 1.0</th>
<th>Max: 20.0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines period during which inverter runs at min. frequency P1080 before ramping up at point 1 (as shown in P1215 - holding brake enable). Inverter starts at min. frequency P1080 on this profile, i.e. it does not use a ramp.

Note:
A typical value of min. frequency P1080 for this type of application is the slip frequency of the motor.

You can calculate the rated slip frequency by using the following formula:

\[
f_{slip}[\text{Hz}] = \frac{r0330}{100} \times \frac{n_{syn} - \frac{n_n}{n_{syn}}} - f_n
\]

Notice:
If used to hold the motor at a certain frequency against a mechanical brake (i.e. you are using a relay to control mechanical brake), it is important that min. frequency P1080 < 5 Hz; otherwise, the current drawn may be too high and the relay may not open.

P1217 Holding time after ramp down

<table>
<thead>
<tr>
<th>CStat:</th>
<th>T</th>
<th>Datatype: Float</th>
<th>Unit: s</th>
<th>Def: 1.0</th>
<th>Max: 20.0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines time for which inverter runs at minimum frequency (P1080) after ramping down at point 2.

Details:
See diagram P1215 (holding brake enable).
P1230 BI: Enable DC braking

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Def: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 4000:0</td>
<td></td>
</tr>
</tbody>
</table>

Enables DC braking via a signal applied from an external source. Function remains active while external input signal is active.

DC braking causes the motor to stop rapidly by applying a DC braking current (current applied also holds shaft stationary).

When the DC braking signal is applied, the inverter output pulses are blocked and the DC current is not applied until the motor has been sufficiently demagnetized.

The level of DC braking is set in P1232 (DC braking current - relative to the rated motor current) which is set to 100 % by default.

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

Caution:
Frequent use of long periods of DC braking can cause the motor to overheat.

Notice:
This delay time is set in P0347 (demagnetization time). If this delay is too short, overcurrent trips can occur.

DC braking is not possible when using a synchronous motor (i.e. P0300 = 2).

P1232 DC braking current

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: %</th>
<th>Def: 100</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 250</td>
<td></td>
</tr>
</tbody>
</table>

Defines level of DC current in [%] relative to rated motor current (P0305).
P1233 Parameter List

P1233 Duration of DC braking

<table>
<thead>
<tr>
<th>CStat:</th>
<th>DATATYPE:</th>
<th>Unit:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUT</td>
<td>U16</td>
<td>s</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>FUNC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P-Group: FUNC **Active:** Immediately **QuickComm. No** **Max:** 250

Min: 0 **Max:** 250

Defines duration for which DC injection braking is to be active following an OFF1 or OFF3 command. Setting this parameter between 1 and 250 sets the time duration (in seconds) of the DC injection starting with the OFF1 or OFF3 command.

Value:

- **P1233 = 0:** Not active following OFF1 / OFF3.
- **P1233 = 1 - 250:** Active for the specified duration.

Caution:

- Frequent use of long periods of DC braking can cause the motor to overheat.

Notice:

- The DC braking function causes the motor to stop rapidly by applying a DC braking current (the current applied also holds the shaft stationary). When the DC braking signal is applied, the inverter output pulses are blocked and the DC current not applied until the motor has been sufficiently demagnetized (demagnetization time is calculated automatically from motor data).

- The inverter will not restart if an ON-command is given during this period.

- DC braking is not possible when using a synchronous motor (i.e. P0300 = 2).

P1236 Compound braking current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P-Group: FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Description: Defines DC level superimposed on AC waveform after OFF1 / OFF3 command. The value is entered in [%] relative to rated motor current (P0305).

- If P1254 = 0:
 - Compound braking switch-on level \(= 1.13 \sqrt{2} \) \(V_{\text{mains}} = 1.13 \sqrt{2} \) P0210
- Otherwise:
 - Compound braking switch-on level \(= 0.98 \) r1242

Value:
- P1236 = 0: Compound braking disabled.
- P1236 = 1 - 250: Level of DC braking current defined as a [%] of rated motor current (P0305).

Dependency: Compound braking depends on the DC link voltage only (see threshold above). This will happen on OFF1, OFF3 and any regenerative condition.

- It is disabled, when:
 - DC braking is active
 - Flying start is active

Notice:
- Increasing the value will generally improve braking performance; however, if you set the value too high, an overcurrent trip may result.
- If used with dynamic brake enabled as well compound braking will take priority.
- If used with the Vdc max controller enabled the drive behaviour whilst braking may be worsened particularly with high values of compound braking.

P1240 Configuration of Vdc controller

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P-Group: FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Description: Enables / disables Vdc controller.

The Vdc controller dynamically controls the DC link voltage to prevent overvoltage trips on high inertia systems.

Possible Settings:
- 0 Vdc controller disabled
- 1 Vdc-max controller enabled

Note: Vdc max controller automatically increases ramp-down times to keep the DC-link voltage (r0026) within limits (P2172).

r1242 CO: Switch-on level of Vdc-max

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: FUNC</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Description: Displays switch-on level of Vdc max controller. The formula is only valid if auto detection is not activated (P1254=0).

Following equation is only valid, if P1254 = 0:

\[
r_{1242} = 1.15 \cdot \sqrt{2} \cdot V_{\text{mains}} - 1.15 \cdot \sqrt{2} \cdot P0210
\]

P1243 Dynamic factor of Vdc-max

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def:</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P-Group: FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Description: Defines dynamic factor for DC link controller in [%].

Dependency: P1243 = 100 % means parameters P1250, P1251 and P1252 (gain, integration time and differential time) are used as set. Otherwise, these are multiplied by P1243 (dynamic factor of Vdc-max).

Note: Vdc controller adjustment is calculated automatically from motor and inverter data.

P1250 Gain of Vdc-controller

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Datatype: Float</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def:</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>P-Group: FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>

Description: Enters gain for Vdc controller.
P1251 Integration time Vdc-controller

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>Datatype</td>
<td>Datatype: Float</td>
<td>Unit: ms</td>
<td>Def: 40.0</td>
</tr>
<tr>
<td>P-Group</td>
<td>FUNC</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
</tr>
</tbody>
</table>

Enters integral time constant for Vdc controller.

P1252 Differential time Vdc-controller

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>Datatype</td>
<td>Datatype: Float</td>
<td>Unit: ms</td>
<td>Def: 1.0</td>
</tr>
<tr>
<td>P-Group</td>
<td>FUNC</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
</tr>
</tbody>
</table>

Enters differential time constant for Vdc controller.

P1253 Vdc-controller output limitation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>Datatype</td>
<td>Datatype: Float</td>
<td>Unit: Hz</td>
<td>Def: 10</td>
</tr>
<tr>
<td>P-Group</td>
<td>FUNC</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
</tr>
</tbody>
</table>

Limits maximum effect of Vdc max controller.

P1254 Auto detect Vdc switch-on levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CT</td>
<td>Data Type: U16</td>
<td>Unit: -</td>
</tr>
<tr>
<td>P-Group</td>
<td>FUNC</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
</tr>
</tbody>
</table>

Enables/disables auto-detection of switch-on levels for Vdc max controller.

Possible Settings:

- 0 Disabled
- 1 Enabled
P1300 Control mode

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
<th>Level: 2</th>
<th>Min: 0</th>
<th>Max: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm:</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controls relationship between speed of motor and voltage supplied by inverter as illustrated in the diagram below.

Possible Settings:

- **0**: V/f with linear characteristic
- **1**: V/f with FCC
- **2**: V/f with parabolic characteristic
- **3**: V/f with programmable characteristic

Note:

- **V/f mode:**
 - **P1300 = 1**: V/f with FCC (flux current control)
 - *Maintains motor flux current for improved efficiency.*
 - *If FCC is chosen, linear V/f is active at low frequencies.*
 - **P1300 = 2**: V/f with a quadratic curve
 - *Suitable for centrifugal fans / pumps*

The following table presents an overview of control parameters (V/f) that can be modify in relationship to P1300 dependencies:

<table>
<thead>
<tr>
<th>ParNo.</th>
<th>ParText</th>
<th>Level</th>
<th>U/f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>V/f with linear characteristic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>V/f with FCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>V/f with parabolic characteristic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>V/f with programmable characteristic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ParNo.</th>
<th>ParText</th>
<th>Level</th>
<th>U/f</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1300</td>
<td>Control mode</td>
<td>0</td>
<td>1 2 3</td>
</tr>
<tr>
<td>P1310</td>
<td>Continuous boost</td>
<td>2</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1311</td>
<td>Acceleration boost</td>
<td>2</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1312</td>
<td>Starting boost</td>
<td>2</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1313</td>
<td>Boost end frequency</td>
<td>3</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1320</td>
<td>Programmable V/f freq. coord. 1</td>
<td>3</td>
<td>– – – x</td>
</tr>
<tr>
<td>P1321</td>
<td>Programmable V/f freq. coord. 2</td>
<td>3</td>
<td>– – – x</td>
</tr>
<tr>
<td>P1322</td>
<td>Programmable V/f freq. coord. 3</td>
<td>3</td>
<td>– – – x</td>
</tr>
<tr>
<td>P1323</td>
<td>Programmable V/f volt. coord. 1</td>
<td>3</td>
<td>– – – x</td>
</tr>
<tr>
<td>P1324</td>
<td>Programmable V/f volt. coord. 2</td>
<td>3</td>
<td>– – – x</td>
</tr>
<tr>
<td>P1325</td>
<td>Programmable V/f volt. coord. 3</td>
<td>3</td>
<td>– – – x</td>
</tr>
<tr>
<td>P1333</td>
<td>Start frequency for FCC</td>
<td>3</td>
<td>– x –</td>
</tr>
<tr>
<td>P1335</td>
<td>Slip compensation</td>
<td>2</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1336</td>
<td>Slip limit</td>
<td>2</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1337</td>
<td>Resonance damping gain V/f</td>
<td>3</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1340</td>
<td>Imax controller prop. gain</td>
<td>3</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1341</td>
<td>Imax controller integral time</td>
<td>3</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1342</td>
<td>Imax controller prop. gain</td>
<td>3</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1343</td>
<td>Imax controller integral time</td>
<td>3</td>
<td>x x x x</td>
</tr>
<tr>
<td>P1350</td>
<td>Voltage soft start</td>
<td>3</td>
<td>x x x x</td>
</tr>
</tbody>
</table>
At low output frequencies the output voltage is low to keep the flux level constant. However, the output voltage may be too low
- for magnetisation the asynchronous motor
- to hold the load
- to overcome losses in the system. The output voltage can be increased using parameter P1310.

Defines boost level in [%] relative to P0305 (rated motor current) applicable to both linear and quadratic V/f curves according to the diagram below:

\[V_{\text{ContBoost,}100} = \text{rated motor current (P0305)} \times \text{Stator resistance (P0350)} \times \text{Continuous boost (P1310)} \]
\[V_{\text{ContBoost,50}} = V_{\text{ContBoost,100}} / 2 \]

Dependency:
Setting in P0640 (motor overload factor [%]) limits the boost.

Note:
The boost values are combined when continuous boost (P1310) used in conjunction with other boost parameters (acceleration boost P1311 and starting boost P1312).
However priorities are allocated to these parameters as follows:
P1310 > P1311 > P1312

Notice:
Increasing the boost levels increases motor heating (especially at standstill).

\[\sum \text{Boosts} \leq 300 \cdot R_s \cdot I_{mot} \]

P1311 Acceleration boost

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>0.0</td>
<td>0.0</td>
<td>250.0</td>
</tr>
<tr>
<td>Datatype: Float</td>
<td>Unit: %</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
</tr>
<tr>
<td>P-Group: CONTROL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P1311 Acceleration boost will only produce boost during ramping, and is therefore useful for additional torque during acceleration and deceleration.

Appplies boost in [%] relative to P0305 (rated motor current) following a positive setpoint change and drops back out once the setpoint is reached.

![Linear V/f curve](attachment:image.png)

where voltage values are given

\[V_{\text{AccBoost,100}} = \text{rated motor current (P0305)} \times \text{Stator resistance (P0350)} \times \text{Acceleration boost (P1311)} \]

\[V_{\text{AccBoost,50}} = \frac{V_{\text{AccBoost,100}}}{2} \]

Dependency:

Setting in P0640 (motor overload factor [%]) limits boost.

Note:

Acceleration boost can help to improve response to small positive setpoint changes.

Notice:

Increasing the boost level increases motor heating.

Details:

See note in P1310 for boost priorities.
P1312 Starting boost

CStat: C Datatype: Float Unit: % Min: 0.0 Def: 0.0 Level: 2
P-Group: CONTROL Active: Immediately QuickComm. No Max: 250.0

Applies a constant linear offset (in [%] relative to P0305 (rated motor current)) to active V/f curve (either linear or quadratic) after an ON command and is active until
1) ramp output reaches setpoint for the first time respectively
2) setpoint is reduced to less than present ramp output

This is useful for starting loads with high inertia.

Setting the starting boost (P1312) too high will cause the inverter to limit the current, which will in turn restrict the output frequency to below the setpoint frequency.

\[
V_{\text{StartBoost,100}} = \text{rated motor current (P0305)} \times \text{Stator resistance (P0350)} \times \text{Starting boost (P1312)}
\]
\[
V_{\text{StartBoost,50}} = V_{\text{StartBoost,100}} / 2
\]

Example:
Setpoint = 50Hz. Ramping up with starting boost. During ramp up, setpoint changed to 20Hz. As soon as setpoint changed, starting boost removed because setpoint smaller than present ramp output.

Dependency:
Setting in P0640 (motor overload factor [%]) limits boost.

Notice:
Increasing the boost levels increases motor heating.

\[\sum \text{Boosts} \leq 300 \times R_s \times I_{\text{mot}}\]

Details:
See note in P1310 for boost priorities.

r1315 CO: Total boost voltage

Datatype: Float Unit: V Min: - Def: - Level: 4
P-Group: CONTROL

Displays total value of voltage boost (in volts).
P1316 Boost end frequency

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>Float</th>
<th>Unit:</th>
<th>%</th>
<th>Def:</th>
<th>20.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>CONTROL</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td>Max:</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Min: 0.0

 Defines point at which programmed boost reaches 50 % of its value.

This value is expressed in [%] relative to P0310 (rated motor frequency).

The default frequency is defined as follows:

\[
\text{f}^{\text{boost min}} = 2 \cdot \left(\frac{153}{\sqrt{P_{\text{motor}}}} + 3\right)
\]

Note:

The expert user may change this value to alter the shape of the curve, e.g. to increase torque at a particular frequency.

Default value is dependant on inverter rated power.

Details:

See diagram in P1310 (continuous boost).

P1320 Programmable V/f freq. coord. 1

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype:</th>
<th>Float</th>
<th>Unit:</th>
<th>Hz</th>
<th>Def:</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>CONTROL</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td>Max:</td>
<td>650.0</td>
<td></td>
</tr>
</tbody>
</table>

Min: 0.00

Sets V/f coordinates (P1320/1321 to P1324/1325) to define V/f characteristic.

\[
V_{\text{max}} = f(V_{\text{dc}}, M_{\text{max}})
\]

Example:

This parameter can be used to provide correct torque at correct frequency and is useful when used with synchronous motors.

Dependency:

To set parameter, select P1300 = 3 (V/f with programmable characteristic).

Note:

Linear interpolation will be applied between the individual data points.

V/f with programmable characteristic (P1300 = 3) has 3 programmable points. The two non-programmable points are:

- Continuous boost P1310 at zero 0 Hz
- Rated motor voltage P0304 at rated motor frequency P0310

The acceleration boost and starting boost defined in P1311 and P1312 are applied to V/f with programmable characteristic.

P1321 Programmable V/f volt. coord. 1

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>Float</th>
<th>Unit:</th>
<th>V</th>
<th>Def:</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>CONTROL</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td>Max:</td>
<td>3000.0</td>
<td></td>
</tr>
</tbody>
</table>

Min: 0.0

See P1320 (programmable V/f freq. coord. 1).
P1322 Programmable V/f freq. coord. 2
CStat: CT Datatype: Float Unit: Hz Def: 0.00 Level: 3
P-Group: CONTROL Active: Immediately QuickComm. No Max: 650.00

See P1320 (programmable V/f freq. coord. 1).

P1323 Programmable V/f volt. coord. 2
CStat: CUT Datatype: Float Unit: V Def: 0.0 Level: 3
P-Group: CONTROL Active: Immediately QuickComm. No Max: 3000.0

See P1320 (programmable V/f freq. coord. 1).

P1324 Programmable V/f freq. coord. 3
CStat: CT Datatype: Float Unit: Hz Def: 0.00 Level: 3
P-Group: CONTROL Active: Immediately QuickComm. No Max: 650.00

See P1320 (programmable V/f freq. coord. 1).

P1325 Programmable V/f volt. coord. 3
CStat: CUT Datatype: Float Unit: V Def: 0.0 Level: 3
P-Group: CONTROL Active: Immediately QuickComm. No Max: 3000.0

See P1320 (programmable V/f freq. coord. 1).

P1333 Start frequency for FCC
CStat: CUT Datatype: Float Unit: % Def: 10.0 Level: 3
P-Group: CONTROL Active: Immediately QuickComm. No Max: 100.0

Defines start frequency at which FCC (flux current control) is enabled as [%] of rated motor frequency (P0310).

Notice:
If this value is too low, the system may become unstable.

P1335 Slip compensation
CStat: CUT Datatype: Float Unit: % Def: 0.0 Level: 2
P-Group: CONTROL Active: Immediately QuickComm. No Max: 600.0

Dynamically adjusts output frequency of inverter so that motor speed is kept constant independent of motor load.

Increasing the load from md1 to md2 (see diagram) will decrease the motor speed from f1 to f2, due to the slip. The inverter can compensate for this by increasing the output frequency slightly as the load increases. The inverter measures the current and increases the output frequency to compensate for the expected slip.

![Diagram](image_url)

Value:
P1335 = 0 %:
Slip compensation disabled.
P1335 = 50 % - 70 %:
Full slip compensation at cold motor (partial load).
P1335 = 100 %:
Full slip compensation at warm motor (full load).

Note:
Gain adjustment enables fine-tuning of the actual motor speed (see P1460 - gain speed control).

100% = standard setting for warm stator.
Parameters

P1336 Slip limit

<table>
<thead>
<tr>
<th>CStat:</th>
<th>U16</th>
<th>Unit: %</th>
<th>Def: 250</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>CONTROL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 600</td>
</tr>
</tbody>
</table>

Dependency: Slip compensation (P1335) active.

Description:
Compensation slip limit in [%] relative to r0330 (rated motor slip), which is added to frequency setpoint.

r1337 CO: V/f slip frequency

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: CONTROL</td>
<td>P-Group: CONTROL</td>
<td>Immediate QuickComm. No</td>
<td>Max:</td>
</tr>
</tbody>
</table>

Dependency:
Displays actual compensated motor slip as [%]

P1338 Resonance damping gain V/f

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 0.00</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: CONTROL</td>
<td>P-Group: CONTROL</td>
<td>Immediate QuickComm. No</td>
<td>Max: 10.00</td>
</tr>
</tbody>
</table>

Description:
Defines resonance damping gain for V/f. Here, d\(i/dt\) of the active current will be scaled by P1338 (see diagram below). If d\(i/dt\) increases the resonance damping circuit decreases the inverter output frequency.

Diagram:

The resonance circuit dampens oscillations of the active current which frequently occur during no-load operation.

Note:
In V/f modes (see P1300), the resonance damping circuit is active in a range from approx. 6 % to 80 % of rated motor frequency (P0310).

If the value of P1338 is too high, this will cause instability (forward control effect).

P1340 Imax controller prop. gain

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 0.000</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: CONTROL</td>
<td>P-Group: CONTROL</td>
<td>Immediate QuickComm. No</td>
<td>Max: 0.499</td>
</tr>
</tbody>
</table>

Description:
Proportional gain of the I_max controller.

Dynamically controls the inverter if the output current exceeds the maximum motor current (r0067). It does this by first limiting the inverter output frequency (to a possible minimum of the nominal slip frequency). If this action does not successfully remove the overcurrent condition, the inverter output voltage is reduced. When the overcurrent condition has been removed successfully, frequency limiting is removed using the ramp-up time set in P1120.

P1341 Imax controller integral time

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: s</th>
<th>Def: 0.300</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: CONTROL</td>
<td>P-Group: CONTROL</td>
<td>Immediate QuickComm. No</td>
<td>Max: 32.000</td>
</tr>
</tbody>
</table>

Description:
Integral time constant of the I_max controller.

P1341 = 0:
I_max controller disabled

P1340 = 0 and P1341 > 0:
enhanced integral

P1340 > 0 and P1341 > 0:
normal PI control

See description in parameter P1340 for further information.

r1343 CO: Imax controller freq. output

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: CONTROL</td>
<td>P-Group: CONTROL</td>
<td>Immediate QuickComm. No</td>
<td>Max:</td>
</tr>
</tbody>
</table>

Dependency:
Displays effective frequency limitation.

If I_max controller not in operation, parameter normally shows max. frequency P1082.
r1344

<table>
<thead>
<tr>
<th>CO: Imax controller volt. output</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype: Float</td>
<td>Unit: V</td>
<td></td>
</tr>
<tr>
<td>P-Group: CONTROL</td>
<td>Def: -</td>
<td></td>
</tr>
</tbody>
</table>

Displays amount by which the I_max controller is reducing the inverter output voltage.

P1350

<table>
<thead>
<tr>
<th>Voltage soft start</th>
<th>Min: 0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: U16</td>
<td></td>
</tr>
<tr>
<td>P-Group: CONTROL</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
</tr>
<tr>
<td>Max: 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets whether voltage is built up smoothly during magnetization time (ON) or whether it simply jumps to boost voltage (OFF).

![Diagram of Vf characteristic](image)

Possible Settings:

- 0: OFF
- 1: ON

Note:

The settings for this parameter bring benefits and drawbacks:

P1350 = 0: OFF (jump to boost voltage)
- Benefit: flux is built up quickly
- Drawback: motor may move

P1350 = 1: ON (smooth voltage build-up)
- Benefit: motor less likely to move
- Drawback: flux build-up takes longer

P1800

<table>
<thead>
<tr>
<th>Pulse frequency</th>
<th>Min: 2</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: U16</td>
<td></td>
</tr>
<tr>
<td>P-Group: INVERTER</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
</tr>
<tr>
<td>Max: 16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets pulse frequency of power switches in inverter. The frequency can be changed in steps of 2 kHz.

Pulse frequencies > 4 kHz selected on 380-480 V units reduce the maximum continuous motor current.

Dependency:

Minimum pulse frequency depends on P1082 (maximum frequency) and P0310 (rated motor frequency).

The maximal value of motor frequency P1082 is limited to pulse frequency P1800 (see P1082).

Note:

At 4 kHz, full output current is obtained up to 50 degrees C (CT mode); over 50 degrees C, full output may be obtained at 8 kHz.

If silent operation is not absolutely necessary, lower pulse frequencies may be selected to reduce inverter losses and radio-frequency emissions.

Under certain circumstances, the inverter may reduce the switching frequency to provide protection against over-temperature (see P0290).

r1801

<table>
<thead>
<tr>
<th>CO: Act. pulse frequency</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: INVERTER</td>
<td>Datatype: U16</td>
<td></td>
</tr>
<tr>
<td>Unit: kHz</td>
<td>Def: -</td>
<td></td>
</tr>
<tr>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actual pulse frequency of power switches in inverter.

Notice:

Under certain conditions (inverter overtemperature, see P0290), this can differ from the values selected in P1800 (pulse frequency).
P1802 Modulator mode

<table>
<thead>
<tr>
<th>CSTat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>INVERTER</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 3</td>
</tr>
</tbody>
</table>

Selects inverter modulator mode.

Possible Settings:
- 0: SVM/ASVM automatic mode
- 1: Asymmetric SVM
- 2: Space vector modulation

Notice:
Asymmetric space vector modulation (ASVM) produces lower switching losses than space vector modulation (SVM), but may cause irregular rotation at very low speeds.

Space vector modulation (SVM) with over-modulation may produce current waveform distortion at high output voltages.

Space vector modulation (SVM) without over-modulation will reduce maximum output voltage available to motor.

P1803 Max. modulation

<table>
<thead>
<tr>
<th>CSTat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 106.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>INVERTER</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 150.0</td>
</tr>
</tbody>
</table>

Sets maximum modulation index.

Note:
P1803 = 100 %: Limit for over-control (for ideal inverter without switching delay). For vector control the modulation limit will be reduced automatically with 4 %.

P1820 Reverse output phase sequence

<table>
<thead>
<tr>
<th>CSTat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>INVERTER</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
</tr>
</tbody>
</table>

Changes direction of motor rotation without changing setpoint polarity.

Possible Settings:
- 0: OFF
- 1: ON

Dependency:
If positive and negative revolution is enabled, frequency setpoint is directly used.
If both positive and negative revolution are disabled, reference value is set to zero.

Details:
See P1000 (select frequency setpoint)

P1910 Select motor data identification

<table>
<thead>
<tr>
<th>CSTat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td>Active: first confirm</td>
<td>QuickComm. Yes</td>
<td>Max: 2</td>
</tr>
</tbody>
</table>

Performs a motor data identification.

Possible Settings:
- 0: Disabled
- 1: Identification of Rs with parameter change
- 2: Identification of Rs without parameter change

Dependency:
No measurement if motor data incorrect.

P1910 = 1: Calculated value for stator resistance (see P0350) is overwritten.
P1910 = 2: Values already calculated are not overwritten.

Note:
Before selecting motor data identification, "Quick commissioning" has to be performed in advance.

Once enabled (P1910 = 1), A0541 generates a warning that the next ON command will initiate measurement of motor parameters.

Notice:
When choosing the setting for measurement, observe the following:

1. "with parameter change"
 means that the value is actually adopted as P0350 parameter setting and applied to the control as well as being shown in the read-only parameters below.

2. "without parameter change"
 means that the value is only displayed, i.e. shown for checking purposes in the read-only parameter r1912 (identified stator resistance). The value is not applied to the control.
r1912 Identified stator resistance

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: -</td>
<td></td>
</tr>
<tr>
<td>Def: -</td>
<td></td>
</tr>
<tr>
<td>Max: -</td>
<td></td>
</tr>
</tbody>
</table>

P-Group: MOTOR

Displays measured stator resistance value (line-to-line) in [Ohms]

Note:
This value is measured using P1910 = 1 or 2, i.e., identification of all parameters with/without change.

P2000 Reference frequency

<table>
<thead>
<tr>
<th>CStat: CT</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 50.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Full-scale frequency setting used by serial link (corresponds to 4000H), analog I/O and P/D controller.

Example:
If a BICO connection is made between two parameters or alternatively using P0719 or P1000, the 'unit' of the parameters (standardized (Hex) or physical (i.e. Hz) values) may differ. MICROMASTER implicitly makes an automatic conversion to the target value.

\[
y_{[\text{Hz}]} = \frac{r2015_{[\text{Hz}]} \cdot P2000_{[\text{Hz}]}}{4000_{[\text{Hz}]}}
\]

Notice:
Reference variables are intended as an aid to presenting setpoint and actual value signals in a uniform manner. This also applies to fixed settings entered as a percentage. A value of 100% corresponds to a process data value of 4000H, or 4000 0000H in the case of double values.

In this respect, the following parameters are available:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2000 Reference frequency</td>
<td>Hz</td>
</tr>
<tr>
<td>P2001 Reference voltage</td>
<td>V</td>
</tr>
<tr>
<td>P2002 Reference current</td>
<td>A</td>
</tr>
</tbody>
</table>

P2001 Reference voltage

<table>
<thead>
<tr>
<th>CStat: CT</th>
<th>Datatype: U16</th>
<th>Unit: V</th>
<th>Def: 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Full-scale output voltage (i.e. 100%) used over serial link (corresponds to 4000H).

Example:
P2001 = 230 specifies that 4000H received via USS denotes 230 V.

If a BICO connection is made between two parameters, the 'unit' of the parameters (standardized (Hex) or physical (i.e. V) values) may differ. MICROMASTER implicitly makes an automatic conversion to the target value.

\[
y_{[\text{Hex}]} = \frac{r0026_{[\text{V}]} \cdot P2001_{[\text{V}]}}{4000_{[\text{Hex}]}}
\]
P2002 Reference current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2002</td>
<td>Reference current</td>
<td>0.10</td>
<td>0.10</td>
<td>10000.00</td>
<td>3</td>
</tr>
</tbody>
</table>

Full-scale output current used over serial link (corresponds to 4000H).

Example:
If a BICO connection is made between two parameters, the 'unit' of the parameters (standardized (Hex) or physical (i.e. A) values) may differ. MICROMASTER implicitly makes an automatic conversion to the target value.

![Diagram](image)

P2009[2] USS normalization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2009[2]</td>
<td>USS normalization</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Enables special normalization for USS.

Possible Settings:
- 0: Disabled
- 1: Enabled

Index:
- P2009[0]: Serial interface COM link
- P2009[1]: Serial interface BOP link

Note:
If enabled, the main setpoint (word 2 in PZD) is not interpreted as 100 % = 4000H, but as "absolute" instead (e.g. 4000H = 16384 means 163.84 Hz).

P2010[2] USS baudrate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2010[2]</td>
<td>USS baudrate</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Sets baud rate for USS communication.

Possible Settings:
- 3: 1200 baud
- 4: 2400 baud
- 5: 4800 baud
- 6: 9600 baud
- 7: 19200 baud
- 8: 38400 baud
- 9: 57600 baud

Index:
- P2010[0]: Serial interface COM link
- P2010[1]: Serial interface BOP link

P2011[2] USS address

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2011[2]</td>
<td>USS address</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>2</td>
</tr>
</tbody>
</table>

Sets unique address for inverter.

Index:
- P2011[0]: Serial interface COM link
- P2011[1]: Serial interface BOP link

Note:
You can connect up to a further 30 inverters via the serial link (i.e. 31 inverters in total) and control them with the USS serial bus protocol.
Parameter List

P2012[2] USS PZD length

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>U16</th>
<th>Unit:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Defines the number of 16-bit words in PZD part of USS telegram. In this area, process data (PZD) are continually exchanged between the master and slaves. The PZD part of the USS telegram is used for the main setpoint, and to control the inverter.

Index:

- **P2012[0]**: Serial interface COM link
- **P2012[1]**: Serial interface BOP link

Notice:

USS protocol consists of PZD and PKW which can be changed by the user via parameters P2012 and P2013 respectively.

USS telegram:

<table>
<thead>
<tr>
<th>STX</th>
<th>LGE</th>
<th>ADR</th>
<th>Parameter PKW</th>
<th>Process data PZD</th>
<th>BCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKE</td>
<td>IND</td>
<td>PWE</td>
<td>PZD1</td>
<td>PZD2</td>
<td>PZD3</td>
</tr>
</tbody>
</table>

PZD transmits a control word and setpoint or status word and actual values. The number of PZD-words in a USS-telegram are determined by parameter P2012, where the first two words (P2012 >= 2) are either:

- a) control word and main setpoint or
- b) status word and actual value.

When P2012 is greater or equal to 4 the additional control word is transferred as the 4th PZD-word (default setting).

<table>
<thead>
<tr>
<th>STW</th>
<th>HSW</th>
<th>ZSW</th>
<th>HIW</th>
<th>STW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZD1</td>
<td>PZD2</td>
<td>PZD3</td>
<td>PZD4</td>
<td>P2012</td>
</tr>
</tbody>
</table>

STW Control word **HSW** Main setpoint **ZSW** Status word **HIW** Main actual value **PZD** Process data
MICROMASTER 420 Parameter List

P2013[2] USS PKW length

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines the number of 16-bit words in PKW part of USS telegram. The PKW area can be varied. Depending on the particular requirement, 3-word, 4-word or variable word lengths can be parameterized. The PKW part of the USS telegram is used to read and write individual parameter values.

Possible Settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No words</td>
</tr>
<tr>
<td>3</td>
<td>3 words</td>
</tr>
<tr>
<td>4</td>
<td>4 words</td>
</tr>
<tr>
<td>127</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Index:

- P2013[0]: Serial interface COM link
- P2013[1]: Serial interface BOP link

Example:

<table>
<thead>
<tr>
<th>Data type</th>
<th>U16 (16 Bit)</th>
<th>U32 (32 Bit)</th>
<th>Float (32 Bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2013 = 3</td>
<td>✓</td>
<td></td>
<td>Parameter access fault</td>
</tr>
<tr>
<td>P2013 = 4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>P2013 = 127</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notice:

USS protocol consists of PZD and PKW which can be changed by the user via parameters P2012 and P2013 respectively.

Parameter P2013 determines the number of PKW-words in a USS-telegram. Setting P2013 = 3 or 4 will determine the number of PZD-words which are fixed during P2013 = 127, the length will be changed automatically.

P2013 = 3

- Fixes PKW length, but does not allow access to many parameter values. A parameter fault is generated when an out-of-range value is used, the value will not be accepted but the inverter state will not be affected. Useful for applications where parameters are not changed, but MM3s are also used. Broadcast mode is not possible with this setting.

P2013 = 4

- Fixes PKW length. Allows access to all parameters, but indexed parameters can only be read one index at a time. Word order for single word values are different to setting 3 or 127, see example below.

P2013 = 127

- Most useful setting. PKW reply length varies depending on the amount of information needed. Can read fault information and all indices of a parameter with a single telegram with this setting.

Example:

Set P0700 to value 5 (0700 = 2BC (hex))

<table>
<thead>
<tr>
<th>P2013 = 3</th>
<th>P2013 = 4</th>
<th>P2013 = 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master → MM4</td>
<td>22BC 0000 0005</td>
<td>22BC 0000 0000 0005</td>
</tr>
<tr>
<td>MM4 → Master</td>
<td>12BC 0000 0005</td>
<td>12BC 0000 0000 0005</td>
</tr>
</tbody>
</table>

Index:

- P2013[0]: Serial interface COM link
- P2013[1]: Serial interface BOP link

Example:

Parameter access fault

Parameter value

Parameter ID

Sub-index
P2014[2] USS telegram off time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CT</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td>ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines a time T_{off} after which a fault will be generated (F0070) if no telegram is received via the USS channels.

Index:
- P2014[0] : Serial interface COM link

Notice:
By default (time set to 0), no fault is generated (i.e. watchdog disabled).

r2015[4] CO: PZD from BOP link (USS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype:</td>
<td>U16</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Unit:</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays process data received via USS on BOP link (RS232 USS).

![Diagram of USS telegram and PZD mapping](image)

Index:
- r2015[0] : Received word 0
- r2015[1] : Received word 1
- r2015[2] : Received word 2
- r2015[3] : Received word 3

Note:
The control words can be viewed as bit parameters r2032 and r2033.
Selects signals to be transmitted to serial interface via BOP link.

Index:
- P2016[0]: Transmitted word 0
- P2016[1]: Transmitted word 1
- P2016[2]: Transmitted word 2
- P2016[3]: Transmitted word 3

Example:
P2016[0] = 52.0 (default). In this case, the value of r0052[0] (CO/BO: Status word) is transmitted as 1st PZD to the BOP link.

Note:
If r0052 not indexed, display does not show an index (".0").

Displays process data received via USS on COM link.

Index:
r2018[0]: Received word 0
r2018[1]: Received word 1
r2018[2]: Received word 2
r2018[3]: Received word 3

Note:
The control words can be viewed as bit parameters r2036 and r2037.
P2019[4] CI: PZD to COM link (USS)

<table>
<thead>
<tr>
<th>CI: PZD to COM link (USS)</th>
<th>Min: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTat: CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays process data received via USS on COM link.

Index:
- P2019[0]: Transmitted word 0
- P2019[1]: Transmitted word 1
- P2019[2]: Transmitted word 2
- P2019[3]: Transmitted word 3

Details:
- See P2016 (PZD to BOP link)

r2024[2] USS error-free telegrams

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of error-free USS telegrams received.

Index:
- r2024[0]: Serial interface COM link
- r2024[1]: Serial interface BOP link

r2025[2] USS rejected telegrams

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of USS telegrams rejected.

Index:
- r2025[0]: Serial interface COM link
- r2025[1]: Serial interface BOP link

r2026[2] USS character frame error

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of USS character frame errors.

Index:
- r2026[0]: Serial interface COM link
- r2026[1]: Serial interface BOP link

r2027[2] USS overrun error

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of USS telegrams with overrun error.

Index:
- r2027[0]: Serial interface COM link
- r2027[1]: Serial interface BOP link
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2028[2] USS parity error</td>
<td>Displays number of USS telegrams with parity error.</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Index:</td>
<td>r2028[0] : Serial interface COM link</td>
<td></td>
<td>r2028[1] : Serial interface BOP link</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2029[2] USS start not identified</td>
<td>Displays number of USS telegrams with unidentified start.</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Index:</td>
<td>r2029[0] : Serial interface COM link</td>
<td></td>
<td>r2029[1] : Serial interface BOP link</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2030[2] USS BCC error</td>
<td>Displays number of USS telegrams with BCC error.</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r2031[2] USS length error</td>
<td>Displays number of USS telegrams with incorrect length.</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Index:</td>
<td>r2031[0] : Serial interface COM link</td>
<td></td>
<td>r2031[1] : Serial interface BOP link</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2032 BO: CtrlWrd1 from BOP link (USS)</td>
<td>Displays control word 1 from BOP link (word 1 within USS).</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Bitfields:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit00</td>
<td>ON/OFF1</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit01</td>
<td>OFF2: Electrical stop</td>
<td>0</td>
<td>YES</td>
<td>1</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit02</td>
<td>OFF3: Fast stop</td>
<td>0</td>
<td>YES</td>
<td>1</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit03</td>
<td>Pulse enable</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit04</td>
<td>RFG enable</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit05</td>
<td>RFG start</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit06</td>
<td>Setpoint enable</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit07</td>
<td>Fault acknowledge</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit08</td>
<td>JOG right</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit09</td>
<td>JOG left</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit10</td>
<td>Control from PLC</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit11</td>
<td>Reverse (setpoint inversion)</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit12</td>
<td>Motor potentiometer MOP up</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit13</td>
<td>Motor potentiometer MOP down</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit14</td>
<td>Local / Remote</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
r2033

<table>
<thead>
<tr>
<th>BO: CtrlWrd2 from BOP link (USS)</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays control word 2 from BOP link (i.e. word 4 within USS).

Bitfields:

- **Bit00** Fixed frequency Bit 0
 - **Def:** NO
 - **Max:** 1

- **Bit01** Fixed frequency Bit 1
 - **Def:** NO
 - **Max:** 1

- **Bit02** Fixed frequency Bit 2
 - **Def:** NO
 - **Max:** 1

- **Bit08** PID enabled
 - **Def:** NO
 - **Max:** 1

- **Bit09** DC brake enabled
 - **Def:** NO
 - **Max:** 1

- **Bit13** External fault 1
 - **Def:** NO
 - **Max:** 1

Dependency:

P0700 = 4 (USS on BOP link) and P0719 = 0 (Cmd / Setpoint = BICO parameter).

r2036

<table>
<thead>
<tr>
<th>BO: CtrlWrd1 from COM link (USS)</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays control word 1 from COM link (i.e. word 1 within USS).

Bitfields:

- **Bit00** ON/OFF1
 - **Def:** NO
 - **Max:** 1

- **Bit01** OFF2: Electrical stop
 - **Def:** YES
 - **Max:** 0

- **Bit02** OFF3: Fast stop
 - **Def:** YES
 - **Max:** 1

- **Bit03** Pulse enable
 - **Def:** YES
 - **Max:** 0

- **Bit04** RFG enable
 - **Def:** NO
 - **Max:** 1

- **Bit05** RFG start
 - **Def:** NO
 - **Max:** 1

- **Bit06** Setpoint enable
 - **Def:** YES
 - **Max:** 0

- **Bit07** Fault acknowledge
 - **Def:** YES
 - **Max:** 1

- **Bit08** JOG right
 - **Def:** NO
 - **Max:** 1

- **Bit09** JOG left
 - **Def:** YES
 - **Max:** 0

- **Bit10** Control from PLC
 - **Def:** YES
 - **Max:** 1

- **Bit11** Reverse (setpoint inversion)
 - **Def:** NO
 - **Max:** 1

- **Bit13** Motor potentiometer MOP up
 - **Def:** NO
 - **Max:** 1

- **Bit14** Motor potentiometer MOP down
 - **Def:** NO
 - **Max:** 1

- **Bit15** Local / Remote
 - **Def:** NO
 - **Max:** 1

Details:

See r2033 (control word 2 from BOP link).
BO: CtrlWrd2 from COM link (USS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2037</td>
<td>Displays control word 2 from COM link (i.e. word 4 within USS).</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>-</td>
</tr>
<tr>
<td>Level:</td>
<td>3</td>
</tr>
</tbody>
</table>

Bitfields:

- Bit00: Fixed frequency Bit 0
- Bit01: Fixed frequency Bit 1
- Bit02: Fixed frequency Bit 2
- Bit08: PID enabled
- Bit09: DC brake enabled
- Bit13: External fault 1

Details:

- See r2033 (control word 2 from BOP link).

P2040 CB telegram off time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2040</td>
<td>Defines time after which a fault will be generated (F0070) if no telegram is received via the link.</td>
</tr>
<tr>
<td>CStat: CT</td>
<td>Active: Immediately QuickComm. No</td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Datatype: U16 Unit: ms</td>
</tr>
<tr>
<td>Level: 3</td>
<td>Def: 0 Max: 65535</td>
</tr>
</tbody>
</table>

P2041[5] CB parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Active: first confirm QuickComm. No</td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Datatype: U16 Unit: -</td>
</tr>
<tr>
<td>Level: 3</td>
<td>Def: 0 Max: 65535</td>
</tr>
</tbody>
</table>

Index:

- P2041[0] : CB parameter 0
- P2041[1] : CB parameter 1
- P2041[2] : CB parameter 2
- P2041[3] : CB parameter 3
- P2041[4] : CB parameter 4

Details:

- See relevant communication board manual for protocol definition and appropriate settings.
r2050[4]
CO: PZD from CB

Datatype: U16
Unit: -
Min: -
Def: -
Max: -
Level: 3

Displays PZD received from communication board (CB).

Note: The control words can be viewed as bit parameters r2090 and r2091.

Index:
- r2050[0] : Received word 0
- r2050[1] : Received word 1
- r2050[2] : Received word 2
- r2050[3] : Received word 3
Connects PZD to CB.

This parameter allows the user to define the source of status words and actual values for the reply PZD.

Index:
- P2051[0]: Transmitted word 0
- P2051[1]: Transmitted word 1
- P2051[2]: Transmitted word 2
- P2051[3]: Transmitted word 3

Common Settings:
- Status word 1 = 52 CO/BO: Act. status word 1 (see r0052)
- Actual value 1 = 21 inverter output frequency (see r0021)

Other BICO settings are possible.

CB identification

Displays identification data of the communication board (CB). The different CB types (r2053[0]) are given in the Enum declaration.

Possible Settings:
- 0: No CB option board
- 1: PROFIBUS DP
- 2: DeviceNet
- 256: not defined

Index:
- r2053[0]: CB type (PROFIBUS = 1)
- r2053[1]: Firmware version
- r2053[2]: Firmware version detail
- r2053[3]: Firmware date (year)
- r2053[4]: Firmware date (day/month)

CB diagnosis

Displays diagnostic information of communication board (CB).

Index:
- r2054[0]: CB diagnosis 0
- r2054[1]: CB diagnosis 1
- r2054[2]: CB diagnosis 2
- r2054[3]: CB diagnosis 3
- r2054[4]: CB diagnosis 4
- r2054[5]: CB diagnosis 5
- r2054[6]: CB diagnosis 6

Details:
See relevant communications board manual.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2090</td>
<td>BO: Control word 1 from CB</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays control word 1 received from communication board (CB).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitfields:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit00</td>
<td>ON/OFF1</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit01</td>
<td>OFF2: Electrical stop</td>
<td></td>
<td></td>
<td>0 YES</td>
<td></td>
<td>1 NO</td>
<td></td>
</tr>
<tr>
<td>Bit02</td>
<td>OFF3: Fast stop</td>
<td></td>
<td></td>
<td>0 YES</td>
<td></td>
<td>1 NO</td>
<td></td>
</tr>
<tr>
<td>Bit03</td>
<td>Pulse enable</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit04</td>
<td>RFG enable</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit05</td>
<td>RFG start</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit06</td>
<td>Setpoint enable</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit07</td>
<td>Fault acknowledge</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit08</td>
<td>JOG right</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit09</td>
<td>JOG left</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit10</td>
<td>Control from PLC</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit11</td>
<td>Reverse (setpoint inversion)</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit12</td>
<td>Motor potentiometer MOP up</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit13</td>
<td>Motor potentiometer MOP down</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit14</td>
<td>Local / Remote</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>If P700 = 6 (Profibus) then P810 must be set to 2090.15 for correct operation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This will not be cleared automatically when P700 is no longer equal to 6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Details:</td>
<td>See relevant communication board manual for protocol definition and appropriate settings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2091</td>
<td>BO: Control word 2 from CB</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays control word 2 received from communication board (CB).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitfields:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit00</td>
<td>Fixed frequency Bit 0</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit01</td>
<td>Fixed frequency Bit 1</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit02</td>
<td>Fixed frequency Bit 2</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit08</td>
<td>PID enabled</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit09</td>
<td>DC brake enabled</td>
<td></td>
<td></td>
<td>0 NO</td>
<td></td>
<td>1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit13</td>
<td>External fault 1</td>
<td></td>
<td></td>
<td>0 YES</td>
<td></td>
<td>1 NO</td>
<td></td>
</tr>
<tr>
<td>Details:</td>
<td>See relevant communication board manual for protocol definition and appropriate settings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2100[3]</td>
<td>Alarm number selection</td>
<td>U16</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>3</td>
</tr>
<tr>
<td>CStat:</td>
<td>CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>ALARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td>Selects up to 3 faults or warnings for non-default reactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>If you want F0005 to perform an OFF3 instead of an OFF2, set P2100[0] = 5, then select the desired reaction in P2101[0] (in this case, set P2101[0] = 3).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>All fault codes have a default reaction to OFF2. Some fault codes caused by hardware trips (e.g. overcurrent) cannot be changed from the default reactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P2101[3]
Stop reaction value
CStat: CT
Datatype: U16
Datatype: U16
Unit: -
Unit: -
Def: 0
Def: 0
Max: 4
Max: 4

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No reaction, no display</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>OFF1 stop reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OFF2 stop reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OFF3 stop reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>No reaction warning only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets drive stop reaction values for fault selected by P2100 (alarm number stop reaction).

This indexed parameter specifies the special reaction to the faults/warnings defined in P2100 indices 0 to 2.

Possible Settings:

- **Index:**
 - P2101[0] : Stop reaction value 1
 - P2101[1] : Stop reaction value 2
 - P2101[2] : Stop reaction value 3

Note:

Settings 0 - 3 only are available for fault codes.

Settings 0 and 4 only are available for warnings.

Index 0 (P2101) refers to fault/warning in index 0 (P2100).

P2103 BI: 1. Faults acknowledgement
CStat: CT
Datatype: U32
Datatype: U32
Unit: -
Unit: -
Def: 722:2
Def: 722:2
Max: 4000:0
Max: 4000:0

Defines first source of fault acknowledgement, e.g. keypad/DIN, etc. (depending on setting).

Common Settings:

- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P2104 BI: 2. Faults acknowledgement
CStat: CT
Datatype: U32
Datatype: U32
Unit: -
Unit: -
Def: 0:0
Def: 0:0
Max: 4000:0
Max: 4000:0

Selects second source of fault acknowledgement.

Common Settings:

- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P2106 BI: External fault
CStat: CT
Datatype: U32
Datatype: U32
Unit: -
Unit: -
Def: 1:0
Def: 1:0
Max: 4000:0
Max: 4000:0

Selects source of external faults.

Common Settings:

- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

r2110[4]
Warning number
P-Group: ALARMS
Datatype: U16
Datatype: U16
Unit: -
Unit: -
Def: -
Def: -
Max: -
Max: -

Displays warning information.

A maximum of 2 active warnings (indices 0 and 1) and 2 historical warnings (indices 2 and 3) may be viewed.

Index:

- r2110[0] : Recent Warnings --, warning 1
- r2110[1] : Recent Warnings --, warning 2
- r2110[2] : Recent Warnings -1, warning 3
- r2110[3] : Recent Warnings -1, warning 4

Note:

The keypad will flash while a warning is active. The LEDs indicate the warning status in this case.

If an AOP is in use, the display will show number and text of the active warning.

Notice:

Indices 0 and 1 are not stored.
P2111 Total number of warnings
CStat: CT Datatype: U16 Unit: - Def: 0 Level: 3
P-Group: ALARMS Active: first confirm QuickComm: No Max: 4

Displays number of warning (up to 4) since last reset. Set to 0 to reset the warning history.

r2114[2] Run time counter
Datatype: U16 Unit: - Def: - Level: 3
P-Group: ALARMS Max: -

Displays run time counter. It is the total time the drive has been powered up. When power goes value is saved, then restored on powerup. The run time counter r2114 will be calculate as followed:
Multiply the value in r2114[0], by 65536 and then add it to the value in r2114[1]. The resultant answer will be in seconds. This means that r2114[0] is not days.

Total powerup time= 65536*r2114[0]+r2114[1] Secs.

When AOP is not connected, the time in this parameter is used by r0948 to indicate when a fault has occurred.

Index:
r2114[0] : System Time, Seconds, Upper Word
r2114[1] : System Time, Seconds, Lower Word

Example:
If r2114[0] = 1 & r2114[1] = 20864
We get 1 * 65536 + 20864 = 86400 seconds which equals 1 day.

Details:
See r0948 (fault time)

P2115[3] AOP real time clock
CStat: CT Datatype: U16 Unit: - Def: 0 Level: 3
P-Group: ALARMS Active: Immediately QuickComm: No Max: 65535

Displays AOP real time.

Index:
P2115[0] : Real Time, Seconds+Minutes
P2115[1] : Real Time, Hours+Days
P2115[2] : Real Time, Month+Year

Details:
See r0948 (fault time).

P2120 Indication counter
CStat: CUT Datatype: U16 Unit: - Def: 0 Level: 4
P-Group: ALARMS Active: Immediately QuickComm: No Max: 65535

Indicates total number of alarm events. This parameter is incremented whenever an alarm event occurs. It also gets incremented when a warning is cleared or faults are cleared.

This parameter is used by the PC tools.

P2150 Hysteresis frequency f_hys
CStat: CUT Datatype: Float Unit: Hz Def: 3.00 Level: 3
P-Group: ALARMS Active: Immediately QuickComm: No Max: 10.00

Defines hysteresis level applied for comparing frequency and speed to threshold as illustrated in the diagram below.
P2155
Threshold frequency f₁

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Active Status</th>
<th>QuickComm</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2155.D</td>
<td>Delay time of threshold freq f₁</td>
<td>U16</td>
<td>10</td>
<td>0</td>
<td>10000</td>
<td>Immediately</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

Sets a threshold for comparing actual speed or frequency to threshold values f₁. This threshold controls status bits 4 and 5 in status word 2 (r0053).

\[
| f_{act} | \leq f₁ \\
| f_{act} | > f₁ \\
| f_{act} | \leq f_{act} \\
| f_{act} | > f_{act} \\
\]

P2156
Delay time of threshold freq f₁

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Active Status</th>
<th>QuickComm</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2156.D</td>
<td>Delay time of f₁</td>
<td>U16</td>
<td>10</td>
<td>0</td>
<td>10000</td>
<td>Immediately</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

Sets delay time prior to threshold frequency f₁ comparison (P2155).

P2164
Hysteresis frequency deviation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Active Status</th>
<th>QuickComm</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2164.D</td>
<td>Hyster freq deviat</td>
<td>Float</td>
<td>3.00</td>
<td>0.00</td>
<td>10.00</td>
<td>Immediately</td>
<td>QuickComm</td>
<td>3</td>
</tr>
</tbody>
</table>

Hysteresis frequency for detecting permitted deviation (from setpoint) or frequency or speed. This frequency controls bit 8 in status word 1 (r0052) and bit 6 in status word 2 (r0053).

P2167
Switch-off frequency f_off

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Active Status</th>
<th>QuickComm</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2167.D</td>
<td>SwOff freq f_off</td>
<td>Float</td>
<td>1.00</td>
<td>0.00</td>
<td>10.00</td>
<td>Immediately</td>
<td>QuickComm</td>
<td>3</td>
</tr>
</tbody>
</table>

Sets frequency threshold below which inverter switches off.

If the frequency falls below this threshold, bit 1 in status word 2 (r0053) is set.

Dependency
Switched off only if OFF1 or OFF3 active.
P2168 Delay time T_off

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines time for which the inverter may operate below switch-off frequency (P2167) before switch off occurs.

Dependency:
Active if holding brake (P1215) not parameterized.

Details:
See diagram in P2167 (switch-off frequency)

P2170 Threshold current I_thresh

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype:</td>
<td>Float</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines threshold current in [%] relative to P0305 (rated motor current) to be used in comparisons of I_act and I_Thresh as illustrated in the diagram below.

P2171 Delay time current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines delay time prior to activation of current comparison.

Details:
See diagram in P2170 (threshold current I_thresh)

P2172 Threshold DC-link voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines DC link voltage to be compared to actual voltage as illustrated in the diagram below.

P2173 Delay time DC-link voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines delay time prior to activation of threshold comparison.

Details:
See diagram in P2172 (threshold DC-link voltage)
Threshold current for A0922 (load missing) in [%] relative to P0305 (rated motor current) as illustrated in the diagram below.

P2179

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>CStat:</th>
<th>Datatype:</th>
<th>Unit:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2179</td>
<td>0.0</td>
<td>CUT</td>
<td>Float</td>
<td>%</td>
<td>3.0</td>
<td>3</td>
</tr>
<tr>
<td>C-Group</td>
<td>ALARMS</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>

Note:

It may be that the motor is not connected (load missing) or a phase could be missing.

Notice:

If a motor setpoint cannot be entered and the current limit (P2179) is not exceeded, Alarm A0922 (no load applied) is issued when delay time (P2180) expires.

P2180

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>CStat:</th>
<th>Datatype:</th>
<th>Unit:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2180</td>
<td>0</td>
<td>CUT</td>
<td>U16</td>
<td>ms</td>
<td>2000</td>
<td>3</td>
</tr>
<tr>
<td>C-Group</td>
<td>ALARMS</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

Note:

It may be that the motor is not connected (load missing) or a phase could be missing.

Notice:

If a motor setpoint cannot be entered and the current limit (P2179) is not exceeded, alarm A0922 (no load applied) is issued when delay time (P2180) expires.

Details:

See diagram in P2179 (current limit for no load identification).
r2197 CO/BO: Monitoring word 1

<table>
<thead>
<tr>
<th>P-Group:</th>
<th>ALARMS</th>
<th>Datatype:</th>
<th>U16</th>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
</table>

Monitoring word 1 which indicates the state of monitor functions. Each bit represents one monitor function.

Bitfields:

- **Bit00** f_act <= P1080 (f_min) 0 NO 1 YES
- **Bit01** f_act <= P2155 (f_1) 0 NO 1 YES
- **Bit02** f_act > P2155 (f_1) 0 NO 1 YES
- **Bit03** f_act > zero 0 NO 1 YES
- **Bit04** f_act >= setp. (f_set) 0 NO 1 YES
- **Bit05** f_act <= P2167 (f_off) 0 NO 1 YES
- **Bit06** f_act > P1082 (f_max) 0 NO 1 YES
- **Bit07** f_act == setp. (f_set) 0 NO 1 YES
- **Bit08** Act. current r0027 >= P2170 0 NO 1 YES
- **Bit09** Act. unfilt. Vdc < P2172 0 NO 1 YES
- **Bit10** Act. unfilt. Vdc > P2172 0 NO 1 YES
- **Bit11** No load condition 0 NO 1 YES

P2200 BI: Enable PID controller

<table>
<thead>
<tr>
<th>C-Stat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>U32</th>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
</table>

PID mode Allows user to enable/disable the PID controller. Setting to 1 enables the PID closed-loop controller.

Dependency:

Setting 1 automatically disables normal ramp times set in P1120 and P1121 and the normal frequency setpoints.

Following an OFF1 or OFF3 command, however, the inverter frequency will ramp down to zero using the ramp time set in P1121 (P1135 for OFF3).

Note:

The PID setpoint source is selected using P2253. The PID setpoint and the PID feedback signal are interpreted as [%] values (not [Hz]). The output of the PID controller is displayed as [%] and then normalized into [Hz] through P2000 (reference frequency) when PID is enabled.

In level 3, the PID controller source enable can also come from the digital inputs in settings 722.0 to 722.2 for DIN1 to DIN3 or from any other BiCo source.

The reverse command is not active whilst PID is active.

Notice:

The minimum and maximum motor frequencies (P1080 and P1082) as well as the skip frequencies (P1091 to P1094) remain active on the inverter output. However, enabling skip frequencies with PID control can produce instabilities.
P2201 Fixed PID setpoint 1

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-130.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 0.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 130.00

Defines Fixed PID Setpoint 1

In addition, you can set any of the digital input parameters to fixed PID setpoint (FF-PID) via the digital inputs (P0701 - P0703).

There are three selection modes for the PID fixed setpoint:

1. **Direct selection (P0701 = 15 or P0702 = 15, etc.):**
 - In this mode of operation, 1 digital input selects one PID fixed setpoint.

2. **Direct selection with ON command (P0701 = 16 or P0702 = 16, etc.):**
 - Description as for 1), except that this type of selection issues an ON command concurrent with any setpoint selection.

3. **Binary Coded Decimal selection (P0701 - P0703 = 17):**
 - Using this method to select the fixed PID setpoint (FF-PID) allows you to choose up to 7 different PID setpoints.

 The setpoints are selected according to the following table:

 Example:

<table>
<thead>
<tr>
<th>DIN3</th>
<th>DIN2</th>
<th>DIN1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2201</td>
<td>PID-FF1</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2202</td>
<td>PID-FF2</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2203</td>
<td>PID-FF3</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2204</td>
<td>PID-FF4</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2205</td>
<td>PID-FF5</td>
<td>Active</td>
</tr>
<tr>
<td>P2206</td>
<td>PID-FF6</td>
<td>Active</td>
</tr>
<tr>
<td>P2207</td>
<td>PID-FF7</td>
<td>Active</td>
</tr>
</tbody>
</table>

Dependency:
- P2000 = 1 required in user access level 2 to enable setpoint source.

- In mode 1 (above):
 - ON command required to start motor (enable pulses).

- In mode 2 (above):
 - If inputs programmed to PID fixed setpoint and selected together, the selected setpoints are summed.

Note:
- You may mix different types of frequencies; however, remember that they will be summed if selected together.

P2201 = 100 % corresponds to 4000 hex

P2202 Fixed PID setpoint 2

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-130.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 10.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 130.00

Defines Fixed PID Setpoint 2

Details:
- See P2201 (Fixed PID Setpoint 1).

P2203 Fixed PID setpoint 3

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-130.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 20.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 130.00

Defines Fixed PID Setpoint 3

Details:
- See P2201 fixed PID setpoint 1 (FF-PID 1).

P2204 Fixed PID setpoint 4

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-130.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 30.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 130.00

Defines Fixed PID Setpoint 4

Details:
- See P2201 (Fixed PID Setpoint 1).

P2205 Fixed PID setpoint 5

<table>
<thead>
<tr>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-130.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 40.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 130.00

Defines Fixed PID Setpoint 5

Details:
- See P2201 (Fixed PID Setpoint 1).
P2206 Fixed PID setpoint 6
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def.:** 50.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 130.00

Min: -130.00

Level: 2

Details:
Defines Fixed PID Setpoint 6

Details:
See P2201 (Fixed PID Setpoint 1).

P2207 Fixed PID setpoint 7
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def.:** 60.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 130.00

Min: -130.00

Level: 2

Details:
Defines Fixed PID Setpoint 7

Details:
See P2201 (Fixed PID Setpoint 1).

P2216 Fixed PID setpoint mode - Bit 0
- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def.:** 1
- **P-Group:** TECH
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 3

Min: 1

Level: 3

Details:
Fixed frequencies for PID setpoint can be selected in three different modes. Parameter P2216 defines the mode of selection Bit 0.

Possible Settings:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

P2217 Fixed PID setpoint mode - Bit 1
- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def.:** 1
- **P-Group:** TECH
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 3

Min: 1

Level: 3

Details:
BCD or direct selection Bit 1 for PID setpoint.

Possible Settings:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

P2218 Fixed PID setpoint mode - Bit 2
- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def.:** 1
- **P-Group:** TECH
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 3

Min: 1

Level: 3

Details:
BCD or direct selection Bit 2 for PID setpoint.

Possible Settings:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

P2220 BI: Fixed PID setp. select Bit 0
- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def.:** 0.0
- **P-Group:** COMMANDS
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 4000:0

Min: 0:0

Level: 3

Details:
Defines command source of fixed PID setpoint selection Bit 0

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P2221 BI: Fixed PID setp. select Bit 1
- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def.:** 0.0
- **P-Group:** COMMANDS
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 4000:0

Min: 0:0

Level: 3

Details:
Defines command source of fixed PID setpoint selection Bit 1.

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

P2222 BI: Fixed PID setp. select Bit 2
- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def.:** 0.0
- **P-Group:** COMMANDS
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 4000:0

Min: 0:0

Level: 3

Details:
Defines command source of fixed PID setpoint selection Bit 2.

Common Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
r2224 CO: Act. fixed PID setpoint

<table>
<thead>
<tr>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Datatype: Float Unit: % P-Group: TECH

Displays total output of PID fixed setpoint selection.

Note:

r2224 = 100 % corresponds to 4000 hex

P2231 Setpoint memory of PID-MOP

<table>
<thead>
<tr>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Datatype: U16 Unit: - P-Group: TECH Active: Immediately

Setpoint memory

Possible Settings:

- 0: PID-MOP setpoint will not be stored
- 1: PID-MOP setpoint will be stored (P2240 is updated)

Dependency:

- P2231 = 0: If 0 selected, setpoint returns to value set in P2240 (setpoint of PID-MOP) after an OFF command.
- P2231 = 1: If 1 is selected, active setpoint is 'remembered' and P2240 updated with current value.

Details:

See P2240 (setpoint of PID-MOP)

P2232 Inhibit rev. direct. of PID-MOP

<table>
<thead>
<tr>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Datatype: U16 Unit: - P-Group: TECH Active: first confirm

Inhibits reverse setpoint selection when PID motor potentiometer is chosen either as a main setpoint or additional setpoint.

Possible Settings:

- 0: Reverse direction is allowed
- 1: Reverse direction inhibited

Note:

Setting 0 enables a change of motor direction using the motor potentiometer setpoint (increase/decrease frequency either by using digital inputs or motor potentiometer up/down buttons).

P2235 BI: Enable PID-MOP (UP-cmd)

<table>
<thead>
<tr>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0</td>
<td>19:13</td>
<td>4000:0</td>
<td>3</td>
</tr>
</tbody>
</table>

Datatype: U32 Unit: - P-Group: COMMANDS Active: first confirm

Defines source of UP command.

Common Settings:

- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 19.D = Keypad UP cursor

Dependency:

To change setpoint:

1. Use UP / DOWN key on BOP or
2. Set P0702/P0703 = 13/14 (function of digital inputs 2 and 3)

P2236 BI: Enable PID-MOP (DOWN-cmd)

<table>
<thead>
<tr>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0</td>
<td>19:14</td>
<td>4000:0</td>
<td>3</td>
</tr>
</tbody>
</table>

Datatype: U32 Unit: - P-Group: COMMANDS Active: first confirm

Defines source of DOWN command.

Common Settings:

- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.E = Keypad DOWN cursor

Dependency:

To change setpoint:

1. Use UP / DOWN key on BOP or
2. Set P0702/P0703 = 13/14 (function of digital inputs 2 and 3)

P2240 Setpoint of PID-MOP

<table>
<thead>
<tr>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-130.00</td>
<td>10.00</td>
<td>130.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Datatype: Float Unit: % P-Group: TECH

Setpoint of the motor potentiometer.

Note:

P2240 = 100 % corresponds to 4000 hex
r2250 CO: Output setpoint of PID-MOP

Datatype: Float
Unit: %
Def: -
Min: -
Max: -
Level: 2

Displays output setpoint of motor potentiometer in [%].

Note:

r2250 = 100 % corresponds to 4000 hex

P2253 CI: PID setpoint

CStat: CUT
Datatype: U32
Unit: -
Def: 0:0
Min: 0:0
Max: 4000:0
Level: 2

P-Group: TECH
Active: first confirm
QuickComm: No

Defines setpoint source for PID setpoint input.

This parameter allows the user to select the source of the PID setpoint. Normally, a digital setpoint is selected either using a fixed PID setpoint or an active setpoint.

Common Settings:

755 = Analog input 1
2224 = Fixed PI setpoint (see P2201 to P2207)
2250 = Active PI setpoint (see P2240)

P2254 CI: PID trim source

CStat: CUT
Datatype: U32
Unit: -
Def: 0:0
Min: 0:0
Max: 4000:0
Level: 3

P-Group: TECH
Active: first confirm
QuickComm: No

Selects trim source for PID setpoint. This signal is multiplied by the trim gain and added to the PID setpoint.

Common Settings:

755 = Analog input 1
2224 = Fixed PI setpoint (see P2201 to P2207)
2250 = Active PI setpoint (see P2240)

P2255 PID setpoint gain factor

CStat: CUT
Datatype: Float
Unit: -
Def: 100.00
Min: 0.00
Max: 100.00
Level: 3

P-Group: TECH
Active: Immediately
QuickComm: No

Gain factor for PID setpoint. The PID setpoint input is multiplied by this gain factor to produce a suitable ratio between setpoint and trim.

P2256 PID trim gain factor

CStat: CUT
Datatype: Float
Unit: -
Def: 100.00
Min: 0.00
Max: 100.00
Level: 3

P-Group: TECH
Active: Immediately
QuickComm: No

Gain factor for PID trim. This gain factor scales the trim signal, which is added to the main PID setpoint.
P2257 Ramp-up time for PID setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
</tr>
<tr>
<td>P-Group: TECH</td>
<td>Active: Immediately</td>
</tr>
<tr>
<td>Min: 0.00</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Sets the ramp-up time for the PID setpoint.

- **Dependency:**

P2200 = 1 (PID control is enabled) disable normal ramp-up time (P1120).

 PID ramp time effective only on PID setpoint and only active when PID setpoint is changed or when RUN command is given (when PID setpoint uses this ramp to reach its value from 0 %).

- **Notice:**

 Setting the ramp-up time too short may cause the inverter to trip, on overcurrent for example.

P2258 Ramp-down time for PID setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
</tr>
<tr>
<td>P-Group: TECH</td>
<td>Active: Immediately</td>
</tr>
<tr>
<td>Min: 0.00</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Sets ramp-down time for PID setpoint.

- **Dependency:**

P2200 = 1 (PID control is enabled) disables normal ramp-up time (P1120).

 PID setpoint ramp effective only on PID setpoint changes.

 P1121 (ramp-down time) and P1135 (OFF3 ramp-down time) define the ramp times used after OFF1 and OFF3 respectively.

- **Notice:**

 Setting the ramp-down time too short can cause the inverter to trip on overvoltage (F0002) / overcurrent (F0001).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Unit</th>
<th>Default</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2260 CO: PID setpoint after PID-RFG</td>
<td>Displays total active PID setpoint after PID-RFG in [%].</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>P2261 PID setpoint filter timeconstant</td>
<td>Sets a time constant for smoothing the PID setpoint.</td>
<td>Float</td>
<td>s</td>
<td>0.00</td>
<td>3</td>
</tr>
<tr>
<td>r2262 CO: Filtered PID setp. after RFG</td>
<td>Displays filtered PID setpoint after PID-RFG in [%].</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P2264 CI: PID feedback</td>
<td>Selects the source of the PID feedback signal.</td>
<td>U132</td>
<td>-</td>
<td>755:0</td>
<td>2</td>
</tr>
<tr>
<td>P2265 PID feedback filter timeconstant</td>
<td>Defines time constant for PID feedback filter.</td>
<td>Float</td>
<td>s</td>
<td>0.00</td>
<td>2</td>
</tr>
<tr>
<td>r2266 CO: PID filtered feedback</td>
<td>Displays PID feedback signal in [%].</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>P2267 Max. value for PID feedback</td>
<td>Sets the upper limit for the value of the feedback signal in [%].</td>
<td>Float</td>
<td>%</td>
<td>-200.00</td>
<td>3</td>
</tr>
<tr>
<td>P2268 Min. value for PID feedback</td>
<td>Sets lower limit for value of feedback signal in [%].</td>
<td>Float</td>
<td>%</td>
<td>-200.00</td>
<td>3</td>
</tr>
<tr>
<td>P2269 Gain applied to PID feedback</td>
<td>Allows the user to scale the PID feedback as a percentage value [%].</td>
<td>Float</td>
<td>-</td>
<td>0.00</td>
<td>3</td>
</tr>
</tbody>
</table>

Note:
- r2260 = 100 % corresponds to 4000 hex
- r2262 = 100 % corresponds to 4000 hex
- P2264 = 100 % corresponds to 4000 hex
- P2267 = 100 % corresponds to 4000 hex
- P2268 = 100 % corresponds to 4000 hex
- P2269 = 100 % corresponds to 4000 hex

Common Settings:
- 755 = Analog input 1 setpoint
- 2224 = Fixed PID setpoint
- 2250 = Output setpoint of PID-MOP

Notice:
- When PID is enabled (P2200 = 1) and the signal rises above this value, the inverter will trip with F0222.
- When PID is enabled (P2200 = 1) and the signal rises below this value, the inverter will trip with F0221.

Level:
- Level 1: Low
- Level 2: Medium
- Level 3: High

Datatype:
- Float
- U132

Unit:
- %
P2270 PID feedback function selector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Def: 0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P-Group: TECH</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applies mathematical functions to the PID feedback signal, allowing multiplication of the result by P2269 (gain applied to PID feedback).

Possible Settings:
- 0: Disabled
- 1: Square root \(\sqrt{x} \)
- 2: Square \(x^2 \)
- 3: Cube \(x^3 \)

P2271 PID transducer type

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Def: 0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>P-Group: TECH</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allows the user to select the transducer type for the PID feedback signal.

Possible Settings:
- 0: Disabled
- 1: Inversion of PID feedback signal

Value:
- P2271 = 0 (default): If the feedback signal is less than the PID setpoint, the PID controller will increase motor speed to correct this.
- P2271 = 1: If the feedback signal is greater than the PID setpoint, the PID controller will reduce motor speed to correct this.

Notice:
- It is essential that you select the correct transducer type.
- If you are unsure whether 0 or 1 is applicable, you can determine the correct type as follows:
 1. Disable the PID function (P2200 = 0).
 2. Increase the motor frequency while measuring the feedback signal.
 3. If the feedback signal increases with an increase in motor frequency, the PID transducer type should be set to 0.
 4. If the feedback signal decreases with an increase in motor frequency, the PID transducer type should be set to 1.

r2272 CO: PID scaled feedback

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TECH</td>
<td>Datatype: Float</td>
<td>Unit: %</td>
<td>Def: -</td>
<td>Max: -</td>
<td>2</td>
</tr>
</tbody>
</table>

Displays PID scaled feedback signal in [%].

Note:
- r2272 = 100 % corresponds to 4000 hex

r2273 CO: PID error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TECH</td>
<td>Datatype: Float</td>
<td>Unit: %</td>
<td>Def: -</td>
<td>Max: -</td>
<td>2</td>
</tr>
</tbody>
</table>

Displays PID error (difference) signal between setpoint and feedback signals in [%].

Note:
- r2273 = 100 % corresponds to 4000 hex
P2280 PID proportional gain

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** -
- **Def:** 3.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 125.00
- **Level:** 2

<table>
<thead>
<tr>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3.00</td>
<td>125.00</td>
</tr>
</tbody>
</table>

Allows user to set proportional gain for PID controller.

The PID controller is implemented using the standard model.

![PID controller diagram](image)

For best results, enable both P and I terms.

Dependency:
- P2280 = 0 (P term of PID = 0):
 - I term acts on the square of the error signal.
- P2285 = 0 (I term of PID = 0):
 - PID controller acts as a P or PD controller respectively.

Note:
- If the system is prone to sudden step changes in the feedback signal, P term should normally be set to a small value (0.5) with a faster I term for optimum performance.

P2285 PID integral time

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 0.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 100.00
- **Level:** 2

Sets integral time constant for PID controller.

Details:
- See P2280 (PID proportional gain).

P2291 PID output upper limit

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 100.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 200.00
- **Level:** 2

Sets upper limit for PID controller output in [%].

Dependency:
- If F max (P1082) is greater than P2000 (reference frequency), either P2000 or P2291 (PID output upper limit) must be changed to achieve F max.

Note:
- P2291 = 100 % corresponds to 4000 hex (as defined by P2000 (reference frequency)).

P2292 PID output lower limit

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def:** 0.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 200.00
- **Level:** 2

Sets lower limit for the PID controller output in [%].

Dependency:
- A negative value allows bipolar operation of PID controller.

Note:
- P2292 = 100 % corresponds to 4000 hex.

P2293 Ramp-up /-down time of PID limit

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 1.00
- **P-Group:** TECH
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 100.00
- **Level:** 3

Sets maximum ramp rate on output of PID.

When PI is enabled, the output limits are ramped up from 0 to the limits set in P2291 (PID output upper limit) and P2292 (PID output lower limit). Limits prevent large step changes appearing on the output of the PID when the inverter is started. Once the limits have been reached, the PID controller output is instantaneous.

These ramp times are used whenever a RUN command is issued.

Note:
- If an OFF1 or OFF 3 are issued, the inverter output frequency ramps down as set in P1121 (ramp-down time) or P1135 (OFF3 ramp-down time).
r2294
CO: Act. PID output
Datatype: Float Unit: % Min: - Def: - Max: - Level: 2
P-Group: TECH

Displays PID output in [%]

Note:
r2294 = 100 % corresponds to 4000 hex

P3900
End of quick commissioning
CStat: C Datatype: U16 Unit: - Min: 0 Def: 0 Level: 1
P-Group: QUICK Active: first confirm QuickComm. Yes Max: 3

Performs calculations necessary for optimized motor operation.

After completion of calculation, P3900 and P0010 (parameter groups for commissioning) are automatically reset to their original value 0.

Possible Settings:
0 No quick commissioning
1 Start quick commissioning with factory reset
2 Start quick commissioning
3 Start quick commissioning only for motor data

Dependency:
Changeable only when P0010 = 1 (quick commissioning)

Note:
P3900 = 1:
When setting 1 is selected, only the parameter settings carried out via the commissioning menu "Quick commissioning", are retained; all other parameter changes, including the I/O settings, are lost. Motor calculations are also performed.

P3900 = 2:
When setting 2 is selected, only those parameters, which depend on the parameters in the commissioning menu "Quick commissioning" (P0010 = 1) are calculated. The I/O settings are also reset to default and the motor calculations performed.

P3900 = 3:
When setting 3 is selected, only the motor and controller calculations are performed. Exiting quick commissioning with this setting saves time (for example, if only motor rating plate data have been changed).

Calculates a variety of motor parameters, overwriting previous values. These include P0344 (motor weight), P0350 (demagnetization time), P2000 (reference frequency), P2002 (reference current).

P3950
Access of hidden parameters
CStat: CUT Datatype: U16 Unit: - Min: 0 Def: 0 Max: 255 Level: 4
P-Group: ALWAYS Active: first confirm QuickComm. No

Accesses special parameters for development (expert only) and factory functionality (calibration parameter).

r3954[13]
CM version and GUI ID
Datatype: U16 Unit: - Min: - Def: - Max: - Level: 4
P-Group: -

Used to classify firmware (only for SIEMENS internal purposes).

Index:
r3954[0] : CM version (major release)
r3954[1] : CM version (minor release)
r3954[2] : CM version (baselevel or patch)
r3954[3] : GUI ID
r3954[4] : GUI ID
r3954[5] : GUI ID
r3954[6] : GUI ID
r3954[7] : GUI ID
r3954[8] : GUI ID
r3954[9] : GUI ID
r3954[10] : GUI ID
r3954[12] : GUI ID minor release
P3980 Commissioning command selection

| Min: 0 | Level: 4 |

CStat: T **Datatype:** U16 **Unit:** - **Def:** 0 **P-Group:** - **Active:** first confirm **QuickComm. No**

Toggles command and setpoint sources between freely programmable BICO parameters and fixed command/setpoint profiles for commissioning.

The command and setpoint sources can be changed independently. The tens digit selects the command source, the ones digit the setpoint source.

Possible Settings:

0 Cmd = BICO parameter Setpoint = BICO parameter
1 Cmd = BICO parameter Setpoint = MOP setpoint
2 Cmd = BICO parameter Setpoint = Analog setpoint
3 Cmd = BICO parameter Setpoint = Fixed frequency
4 Cmd = BICO parameter Setpoint = USS on BOP link
5 Cmd = BICO parameter Setpoint = USS on COM link
6 Cmd = BICO parameter Setpoint = CB on COM link
10 Cmd = BOP Setpoint = BICO parameter
11 Cmd = BOP Setpoint = MOP setpoint
12 Cmd = BOP Setpoint = Analog setpoint
13 Cmd = BOP Setpoint = Fixed frequency
15 Cmd = BOP Setpoint = USS on COM link
16 Cmd = BOP Setpoint = CB on COM link
40 Cmd = USS on BOP link Setpoint = BICO parameter
41 Cmd = USS on BOP link Setpoint = MOP setpoint
42 Cmd = USS on BOP link Setpoint = Analog setpoint
43 Cmd = USS on BOP link Setpoint = Fixed frequency
44 Cmd = USS on BOP link Setpoint = USS on BOP link
45 Cmd = USS on BOP link Setpoint = USS on COM link
46 Cmd = USS on BOP link Setpoint = CB on COM link
50 Cmd = USS on COM link Setpoint = BICO parameter
51 Cmd = USS on COM link Setpoint = MOP setpoint
52 Cmd = USS on COM link Setpoint = Analog setpoint
53 Cmd = USS on COM link Setpoint = Fixed frequency
54 Cmd = USS on COM link Setpoint = USS on BOP link
55 Cmd = USS on COM link Setpoint = USS on COM link
60 Cmd = CB on COM link Setpoint = BICO parameter
61 Cmd = CB on COM link Setpoint = MOP setpoint
62 Cmd = CB on COM link Setpoint = Analog setpoint
63 Cmd = CB on COM link Setpoint = Fixed frequency
64 Cmd = CB on COM link Setpoint = USS on BOP link
66 Cmd = CB on COM link Setpoint = CB on COM link

P3981 Reset active fault

| Min: 0 | Level: 4 |

CStat: CT **Datatype:** U16 **Unit:** - **Def:** 0 **P-Group:** ALARMS **Active:** first confirm **QuickComm. No**

Resets active faults when changed from 0 to 1.

Possible Settings:

0 No fault reset
1 Reset fault

Note:

Automatically reset to 0.

Details:

See P0947 (last fault code)
2 Function Diagrams

- MOD
- V/f control
- AFM
- SUM/JOG
- Selection
- PID
- Controller
- VDC
- Control
- Flying Start
- Restart
- Braking
- Monitoring
- PID
- MOP
- Fixed PID setpoint
- FF
- MOP
- JOG
- USS
- BOP link
- BOP
- DAC
- ADC
- DOUT
- DIN
- Modulator
- Sequence control
- Motor and inverter protection, adaptation of motor parameters
- Parameterization
- General Overview
- External command + setpoint source
 - DIN
 - DOUT
 - ADC
 - DAC
 - BOP
- USS 3000 COM link
- USS 2000 BOP link
- USS 1000
- MOD
- 6SE6400-5BA00-0BP0
- 04/02
- MICROMASTER 420 Parameter List
Overview

Connection of External and Internal Setpoints

1200_BICO_Overv.vsd

Function diagram

- 1200 -
2 Function Diagrams

MICROMASTER 420
Parameter List

6SE6400-5BA00-0BP0

04/02

09.08.2001 V1.13

Digital Inputs

External Command + Setpoint Source

CO/BO: Bin.inp.val

- 2000 -
Analog Input (ADC)

- Type of ADC
 - 0: 1

- ADC deadband width
 - 0 ... 10 [V]

- Value x1: ADC scal.
 - 0 ... 10 [V]

- Value y1: ADC scal.
 - -99999.9 ... 99999.9 [%]

- Value y2: ADC scal.
 - -99999.9 ... 99999.9 [%]

- ADC after scal.
 - [%]

- ADC before scal.
 - [%]

- Smooth time ADC
 - 0 ... 10000 [ms]

- Act. ADC input [V]
 - r0752

- Delay on sig. loss
 - 0 ... 10000 [ms]

- Warning signal out
 - [V]

- 50 % of P0761
 - [V]

- Type of ADC
 - 0: 1

- Volt
 - [V]

- 100 [%]
 - 4000 h4000 h 10 V

- y10V
 - 100 [%]

- x2x1
 - [%]

- y2
 - [%]

- y1
 - [%]

- Warning, signal lost (F0080)

- Act. ADC input [V]
 - r0752

- Type of ADC
 - 0: 1
If the operating display (r0000) is selected, a changeover to the value display has taken place with the toggle key and the unit is in the "Operation" status.

Priority 1: RESET
Priority 2: SET

Function diagram

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Command + Setpoint Source</td>
<td>2400_BOP.vsd</td>
<td>Function diagram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Operator Panel (BOP)</td>
<td>06.07.2001 V1.13</td>
<td>MICROMASTER 420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Activation of the raise and lower keys is only effective if the operating display (r0000) is selected. The positive direction of rotation from BOP is set and operation=1 of sequence control.

Basic Operator Panel (BOP)

- Seven-segment display
- Raise key
- Toggle key
- Reversing key
- ON key
- OFF key
- JOG key
- Program key
- Lower key
MICROMASTER 420 Parameter List

6SE6400-5BA00-0BP0

117

Function Diagram

USS on BOP link, Receiving

Notes:
- Bit 10 must be set in the first PZD word of the telegram received via USS so that the converter will accept the process data as being valid. For this reason, the control word 1 must be transferred to the converter in the first PZD word.

External Interfaces

USS baudrate

USS address

USS PZD length

USS PKW length

USS telegram T_off

Change par. via

USS configuration

Bit2 = 1

- Bit 00 ON/OFF1
- Bit 01 OFF2: Electrical stop
- Bit 02 OFF3: Fast stop
- Bit 03 Pulse enable
- Bit 04 RFG enable
- Bit 05 RFG start
- Bit 06 Setpoint enable
- Bit 07 Fault acknowledge
- Bit 08 JOG right
- Bit 09 JOG left
- Bit 10 Control from PLC
- Bit 11 Reverse (setpoint inversion)
- Bit 12 Motor potentiometer MOP up
- Bit 13 Motor potentiometer MOP down
- Bit 15 CDS Bit 0 (Local/Remote)

Bo00 ON/OFF1
Bo01 OFF2: Electrical stop
Bo02 OFF3: Fast stop
Bo03 Pulse enable
Bo04 RFG enable
Bo05 RFG start
Bo06 Setpoint enable
Bo07 Fault acknowledge
Bo08 JOG right
Bo09 JOG left
Bo10 Control from PLC
Bo11 Reverse (setpoint inversion)
Bo12 Motor potentiometer MOP up
Bo13 Motor potentiometer MOP down
Bo15 CDS Bit 0 (Local/Remote)

2500_USSonBOP.vsd

Function diagram

08.03.2002 V1.13

MICROMASTER 420
Bit00 Drive ready
Bit01 Drive ready to run
Bit02 Drive running
Bit03 Drive fault active
Bit04 OFF2 active
Bit05 OFF3 active
Bit06 Quench inhibit active
Bit07 Drive warning active
Bit08 Deviation setpoint / act. value
Bit09 PZD control
Bit10 Maximum frequency reached
Bit11 Warning: Motor current
Bit12 Motor holding brake active
Bit13 Motor overload
Bit14 Motor runs right
Bit15 Inverter overload

Bit00 DC brake active
Bit01 Act. freq. \(r0021 > P2167 \) (f_off)
Bit02 Act. freq. \(r0021 > P1080 \) (f_min)
Bit03 Act. current \(r0027 > P2170 \)
Bit04 Act. freq. \(r0021 > P1255 \) (f_1)
Bit05 Act. freq. \(r0021 < P1255 \) (f_1)
Bit06 Act. freq. \(r0021 = \) setpoint
Bit07 Act. Vdc \(r0026 > P2172 \)
Bit08 Act. Vdc \(r0026 > P2172 \)
Bit09 Ramping finished
Bit10 PID output \(r2294 = P2292 \) (PID_min)
Bit11 PID output \(r2294 = P2291 \) (PID_max)
Bit12 Download data set 0 from AOP
Bit13 Download data set 1 from AOP

Bit2 = 1

Note:
\(P2016[0] = 52 \)
\(P2016[1] = 21 \)
\(P2016[3] = 53 \)
are default settings

All parameters:
Index = 1
=> BOP link
Function diagram

Bit 3 = 1

- Change par. via 0 ... 15 P0927 (15)
- USS baudrate 3 ... 9 P2010 (2) (6)
- USS address 0 ... 31 P2011 (2) (0)
- USS PZD length 0 ... 4 P2012 (2) (2)
- USS PKW length 0 ... 127 P2013 (2) (127)
- USS telegram T_off 0 ... 65535 [ms] P2014 (2) (0)

All parameters Index = 0 => COM link

USS configuration

Note:
Bit 10 must be set in the first PZD word of the telegram received via USS so that the converter will accept the process data as being valid. For this reason, the control word 1 must be transferred to the converter in the first PZD word.

External Interfaces

1. 2. 3. 4. 5. 6. 7. 8.

<table>
<thead>
<tr>
<th>External Interfaces</th>
<th>2600_USSonCOM.vsd</th>
<th>Function diagram</th>
<th>08.03.2002 V1.13</th>
<th>MICROMASTER 420</th>
</tr>
</thead>
<tbody>
<tr>
<td>USS on COM link, Receiving</td>
<td>2600_USSonCOM.vsd</td>
<td>Function diagram</td>
<td>08.03.2002 V1.13</td>
<td>MICROMASTER 420</td>
</tr>
</tbody>
</table>
B00: Drive ready
B01: Drive ready to run
B02: Drive running
B03: Drive fault active
B04: OFF2 active
B05: OFF3 active
B06: QN inhibit active
B07: Drive warning active
B08: Deviation setpoint / act. value
B09: PZD control
B10: Maximum frequency reached
B11: Warning: Motor current
B12: Motor holding brake active
B13: Motor overload
B14: Motor runs right
B15: Inverter overload
B00: DC brake active
B01: Act. freq. r0021 = P2167 (f_off)
B02: Act. freq. r0021 = P1080 (f_min)
B03: Act. current r0027 >= P2170
B04: Act. freq. r0021 = P2155 (f1)
B05: Act. freq. r0021 < P2155 (f1)
B06: Act. freq. r0021 == setpoint
B07: Act. Vdc r0026 < P2172
B08: Act. Vdc r0026 > P2172
B09: Ramping finished
B10: PID output r2264 == P2262 (PID_min)
B11: PID output r2264 == P2261 (PID_max)
B12: Download data set 0 from AOP
B13: Download data set 1 from AOP

Bit 0: Drive ready
Bit 1: Drive ready to run
Bit 2: Drive running
Bit 3: Drive fault active
Bit 4: OFF2 active
Bit 5: OFF3 active
Bit 6: QN inhibit active
Bit 7: Drive warning active
Bit 8: Deviation setpoint / act. value
Bit 9: PZD control
Bit 10: Maximum frequency reached
Bit 11: Warning: Motor current
Bit 12: Motor holding brake active
Bit 13: Motor overload
Bit 14: Motor runs right
Bit 15: Inverter overload

All parameters:
Index = 0 => COM link

Bit3 = 1

Note:
P2019[0] = 52
P2019[1] = 21
are default settings
MICROMASTER 420 Parameter List
6SE6400-5BA00-0BP0
Note:
P2051[0] = 52
P2051[1] = 21
P2051[3] = 53
are default settings
Internal Setpoint Source
Motor Potentiometer (MOP)
Fixed Frequency (FF) bit coded:

- Bit 0: FF sel. Bit 0 (P1020)
- Bit 1: FF sel. Bit 1 (P1021)
- Bit 2: FF sel. Bit 2 (P1022)

Fixed frequencies:

- Fixed frequency 1: -650.00 ... 650.00 [Hz] (P1001)
- Fixed frequency 2: -650.00 ... 650.00 [Hz] (P1002)
- Fixed frequency 3: -650.00 ... 650.00 [Hz] (P1003)

Function diagram:

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Setpoint Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200_FF.vsd Function diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Frequency (FF) bit coded (P1016 - P1018 = 1 or 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02.04.2002 V1.13 MICROMASTER 420</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Fixed Frequency (FF) binary coded (P1016 - P1018 = 3)

1: If all FF mode selections equal 3
(P1016 = P1017 = P1018 = 3)
0: For all other cases
Internal Setpoint Source

- Fixed PID setpoint, bit coded (P2216 - P2218 = 1 or 2)

Function diagram

- 3300 -
MICROMASTER 420 Parameter List

Function Diagram

Internal Setpoint Source

Fixed PID setpoint, binary coded (P2216 - P2218 = 3)

OFF1

1: If all FF mode selections equal 3 (P2216 = P2217 = P2218 = 3)
0: For all other cases
Internal Setpoint Source
PID Motor Potentiometer (PID-MOP)

PID-MOP setp. mem.
P2231 (0)

Rated frequency
12.00 ... 650.00 [Hz]
P0310 (50.00)

Max. frequency
0.00 ... 650.00 [Hz]
P1082 (50.00)

BI: PID-MOP (UP)
P2235

BI: PID-MOP (DWN)
P2236

PID-MOP output start value control

Setp. of PID-MOP
-200.00 ... 200.00 [%]
P2240 (10.00)

PID-MOP setp. mem.
P2231 (0)

Inhib. PID-MOD rev
P2232 (1)

-1
1
1
0
0
1
1

External Setpoint Source

3400_PIDMOP.vsd
Function diagram
06.07.2001 V1.13 MICROMASTER 420
MICROMASTER 420 Parameter List

6SE6400-5BA00-0BP0
MICROMASTER 420 Parameter List

Parameter List

130 6SE6400-5BA00-0BP0

- 5100 -

Function diagram

14.03.2002 V1.13 MICROMASTER 420

Setpoint Channel

PID controller

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5100_PID.vsd</td>
<td>Function diagram</td>
<td>- 5100 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional Frequency Modifications (AFM)

<table>
<thead>
<tr>
<th>Setpoint channel</th>
<th>Function diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOG</td>
<td>5200_AFM.vsd</td>
</tr>
<tr>
<td>SUM</td>
<td>Function diagram</td>
</tr>
<tr>
<td>PID controller</td>
<td>2 Function Diagrams</td>
</tr>
<tr>
<td>CO: Act. PID output [%]</td>
<td>5200_AFM.vsd</td>
</tr>
<tr>
<td>P2200</td>
<td>2 Function Diagrams</td>
</tr>
</tbody>
</table>

Parameters

- **Setpoint channel**
 - 0:0
 - BI: Inh. neg. setp
 - BI: Reverse
 - P1110
 - P1113
 - P1091 (0.00)
 - P1092 (0.00)
 - P1093 (0.00)
 - P1094 (0.00)
 - P1080 (0.00)
 - P1082 (60.00)
 - P1101 (2.00)
 - P1119

- **CO: Tot. freq. setp [Hz]**
 - P1110

- **CO: Act. PID output [%]**
 - P2200

- **CO: Sel. freq. setp**
 - P1075

- **CO: Setp before RFG**
 - P1119

- **CO: Sel. freq. setp**
 - P1114

- **Display**
 - 26.07.2001 V1.13

- **MICROMASTER 420**
 - 5200_AFM.vsd
 - Function diagram
Setpoint Channel

Ramp Function Generator

- **Parameter List**
 - MM420
 - 6SE6400-5BA00-0BP0

Power On
- (Freeze y)
- Stop RFG

Function diagram
- **Function diagram**
- **Diagram Elements**
 - **P1130**
 - **P1131**
 - **P1132**
 - **P1133**

Parameters
- P1133
- P1130
- P1131
- P1132
- P1133

Setpoint Channel
- CO: Setp before RFG [Hz]
- CO: Setp after RFG [Hz]

Ramp Function Generator
- P1141.C
- P1142.C
- P1140.C

EN
- BI: RFG start
- BI: RFG enable setp
- BI: RFG enable

Investigation
- Bring RFG to a standstill

Controller
- Imax controller

Date and Version
- 06.11.2001 V1.1

Additional Information
- MICROMASTER 440
- 5300_RFG.vsd

Legend
- **Legend Elements**
 - **Power On**
 - **Function Diagram**
 - **Parameter List**
Display values

- CO: Act. freq setp [Hz] 0020
- CO: Setp before RFG [Hz] 1119
- Act. rotor speed [1/min] r0022
- CO: Act. frequency [Hz] 0021
- CO: Act. outp. freq [Hz] 0024
- CO: Act. outp. vol [V] 0025
- CO: Act. Vdc [V] 0026

Analogue outputs

- CO: Act. outp. freq [Hz] 0024
- CO: Act. outp. volt [V] 0025

Reference values

P2000 = Reference frequency
P2001 = Reference voltage
P2002 = Reference current

DAC characteristic

- Value x1 DAC scal. -99999.0 ... 99999.0 [%] P0777 (0.0)
- Value y2 DAC scal. 0 ... 20 P0780 (20)

Characteristics

- y = f(x)

Details refer to Sheet 2000
3 Faults and Alarms

3.1 MICROMASTER 420 fault messages

In the event of a failure, the inverter switches off and a fault code appears on the display.

NOTE
To reset the fault code, one of three methods listed below can be used:
1. Cycle the power to the drive.
2. Press the button on the BOP or AOP.
3. Via Digital Input 3 (default setting)

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible Causes</th>
<th>Diagnose & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
</table>
| F0001 Overcurrent | ➢ Motor power does not correspond to the inverter power
➢ Motor lead short circuit
➢ Earth fault | Check the following:
1. Motor power (P0307) must correspond to inverter power (P0206)
2. Cable length limits must not be exceeded
3. Motor cable and motor must have no short-circuits or earth faults
4. Motor parameters must match the motor in use
5. Value of stator resistance (P0350) must be correct
6. Motor must not be obstructed or overloaded
➢ Increase the ramp time
➢ Reduce the boost level | OFF2 |
| F0002 Overvoltage | ➢ DC-link voltage (r0026) exceeds trip level (P2172)
➢ Overvoltage can be caused either by too high main supply voltage or if motor is in regenerative mode
➢ Regenerative mode can be cause by fast ramp downs or if the motor is driven from an active load | Check the following:
1. Supply voltage (P0210) must lie within limits indicated on rating plate
2. DC-link voltage controller must be enabled (P1240) and parameterized properly
3. Ramp-down time (P1121) must match inertia of load | OFF2 |
| F0003 Undervoltage | ➢ Main supply failed
➢ Shock load outside specified limits | Check the following:
1. Supply voltage (P0210) must lie within limits indicated on rating plate
2. Supply must not be susceptible to temporary failures or voltage reductions | OFF2 |
| F0004 Inverter Over-temperature | ➢ Ambient temperature outside of limits,
➢ Fan failure | Check the following:
1. Fan must turn when inverter is running
2. Pulse frequency must be set to default value
3. Air inlet and outlet points are not obstructed
Ambient temperature could be higher than specified for the inverter | OFF2 |
| F0005 Inverter I²t | ➢ Inverter overloaded
➢ Duty cycle too demanding
➢ Motor power (P0307) exceeds inverter power capability (P0206) | Check the following:
1. Load duty cycle must lie within specified limits
2. Motor power (P0307) must match inverter power (P0206) | OFF2 |
| F0011 Motor Over-temperature I²t | ➢ Motor overloaded
➢ Motor data incorrect
➢ Long time period operating at low speeds | Check the following:
1. Check motor data
2. Check loading on motor
3. Boost settings too high (P1310, P1311, P1312)
4. Check parameter for motor thermal time constant
5. Check parameter for motor I²t warning level | OFF1 |
<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible Causes</th>
<th>Diagnose & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0041</td>
<td>Stator resistance measurement failure</td>
<td>1. Check if the motor is connected to the inverter</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check that the motor data has been entered correctly</td>
<td></td>
</tr>
<tr>
<td>F0051</td>
<td>Parameter EEPROM Fault</td>
<td>1. Factory reset and new parameterization</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Change inverter</td>
<td></td>
</tr>
<tr>
<td>F0052</td>
<td>Powerstack Fault</td>
<td>Reading of the powerstack information has failed or the data is invalid</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Change inverter</td>
<td></td>
</tr>
<tr>
<td>F0060</td>
<td>Asic Timeout</td>
<td>Internal communications failure</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Acknowledge fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Change inverter if repeated</td>
<td></td>
</tr>
<tr>
<td>F0070</td>
<td>Communications board setpoint error</td>
<td>No setpoint received from communications board during telegram off time</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Check connections to the communications board</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check the master</td>
<td></td>
</tr>
<tr>
<td>F0071</td>
<td>No Data for USS (RS232 link) during Telegram Off Time</td>
<td>No response during telegram off time via USS (BOP link)</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Check connections to the communications board</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check the master</td>
<td></td>
</tr>
<tr>
<td>F0072</td>
<td>No Data from USS (RS485 link) during Telegram Off Time</td>
<td>No response during telegram off time via USS (COM link)</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Check connections to the communications board</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check the master</td>
<td></td>
</tr>
<tr>
<td>F0080</td>
<td>Analogue input - lost input signal</td>
<td>Check connection to analogue input</td>
<td>OFF2</td>
</tr>
<tr>
<td>F0085</td>
<td>External Fault</td>
<td>Disable terminal input for fault trigger</td>
<td>OFF2</td>
</tr>
<tr>
<td>F0101</td>
<td>Stack Overflow</td>
<td>1. Run self test routines</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Change inverter</td>
<td></td>
</tr>
<tr>
<td>F0221</td>
<td>PI Feedback below minimum value</td>
<td>1. Change value of P2268</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Adjust feedback gain</td>
<td></td>
</tr>
<tr>
<td>F0222</td>
<td>PI Feedback above maximum value</td>
<td>1. Change value of P2267</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Adjust feedback gain</td>
<td></td>
</tr>
<tr>
<td>F0450</td>
<td>(Service mode only) BIST Tests Failure</td>
<td>Fault value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Some of the power section tests have failed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Some of the control board tests have failed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Some of the functional tests have failed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 Some of the IO module tests have failed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 The Internal RAM has failed its check on power-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Inverter may run but certain actions will not function correctly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Replace inverter</td>
<td>OFF2</td>
</tr>
</tbody>
</table>
3.2 MICROMASTER 420 alarm messages

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Possible Causes</th>
<th>Diagnose & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0501</td>
<td>Motor power does not correspond to the inverter power</td>
<td>1. Check whether the motor power corresponds to the inverter power</td>
<td>--</td>
</tr>
<tr>
<td>A0501</td>
<td>Motor leads are too short</td>
<td>2. Check that the cable length limits have not been exceeded</td>
<td>--</td>
</tr>
<tr>
<td>A0501</td>
<td>Earth faults</td>
<td>3. Check motor cable and motor for short-circuits and earth faults</td>
<td>--</td>
</tr>
<tr>
<td>A0501</td>
<td>Check whether the motor parameters correspond with the motor being used</td>
<td>4. Check the stator resistance</td>
<td>--</td>
</tr>
<tr>
<td>A0502</td>
<td>Mains supply too high</td>
<td>5. Increase the ramp-up-time</td>
<td>--</td>
</tr>
<tr>
<td>A0502</td>
<td>Load regenerative</td>
<td>6. Reduce the boost</td>
<td>--</td>
</tr>
<tr>
<td>A0502</td>
<td>Ramp-down time too short</td>
<td>7. Check whether the motor is obstructed or overloaded</td>
<td>--</td>
</tr>
<tr>
<td>A0503</td>
<td>Mains supply too low</td>
<td>8. Increase ramp down times</td>
<td>--</td>
</tr>
<tr>
<td>A0504</td>
<td>Warning level of inverter heat-sink temperature (P0614) is exceeded, resulting in pulse frequency reduction and/or output frequency reduction (depending on parametrization in (P0610))</td>
<td>1. Check if ambient temperature is within specified limits</td>
<td>--</td>
</tr>
<tr>
<td>A0505</td>
<td>Warning level is exceeded; current will be reduced if parameterized (P0610 = 1)</td>
<td>2. Check load conditions and duty cycle</td>
<td>--</td>
</tr>
<tr>
<td>A0506</td>
<td>Heatsink temperature and thermal junction model are outside of allowable range</td>
<td>3. Check if fan is turning when drive is running</td>
<td>--</td>
</tr>
<tr>
<td>A0511</td>
<td>Motor overloaded</td>
<td>Check the following:</td>
<td>--</td>
</tr>
<tr>
<td>A0541</td>
<td>Motor data identification (P1910) selected or running</td>
<td>1. P0611 (motor (i^2t) time constant) should be set to appropriate value</td>
<td>--</td>
</tr>
<tr>
<td>A0600</td>
<td>Software error</td>
<td>2. P0614 (Motor (i^2t) overload warning level) should be set to suitable level</td>
<td>--</td>
</tr>
<tr>
<td>A0700</td>
<td>CB (communication board) specific</td>
<td>3. Are long periods of operation at low speed occurring</td>
<td>--</td>
</tr>
<tr>
<td>A0701</td>
<td>CB (communication board) specific</td>
<td>4. Check that boost settings are not too high</td>
<td>--</td>
</tr>
<tr>
<td>A0702</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0703</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0704</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0705</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0706</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0707</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0708</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0709</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>Fault</td>
<td>Possible Causes</td>
<td>Diagnose & Remedy</td>
<td>Reaction</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>A0710 CB communication error</td>
<td>Communication with CB (communication board) is lost</td>
<td>Check CB hardware</td>
<td>--</td>
</tr>
<tr>
<td>A0711 CB configuration error</td>
<td>CB (communication board) reports a configuration error</td>
<td>Check CB parameters</td>
<td>--</td>
</tr>
</tbody>
</table>
| A0910 Vdc-max controller deactivated | Vdc max controller has been deactivated, since controller is not capable of keeping DC-link voltage (r0026) within limits (P2172)
- Occurs if main supply voltage (P0210) is permanently too high
- Occurs if motor is driven by an active load, causing motor to go into regenerative mode
- Occurs at very high load inertias, when ramping down | Check the following:
1. Input voltage (P0756) lies within range?
2. Load must match
In certain cases apply braking resistor | -- |
| A0911 Vdc-max controller active | Vdc max controller is active; so ramp-down times will be increased automatically to keep DC-link voltage (r0026) within limits (P2172) | 1. Check parameter inverter input voltage
2. Check ramp-down times | -- |
| A0912 Vdc-min controller active | Vdc min controller will be activated if DC-link voltage (r0026) falls below minimum level (P2172)
- The kinetic energy of the motor is used to buffer the DC-link voltage, thus causing deceleration of the drive!
- So short mains failures do not necessarily lead to an undervoltage trip | Analogue input parameters should not be set to the same value as each other | -- |
| A0920 ADC parameters not set properly | ADC parameters should not be set to identical values, since this would produce illogical results.
- Index 0: Parameter settings for output identical
- Index 1: Parameter settings for input identical
- Index 2: Parameter settings for input do not correspond to ADC type | Analogue input parameters should not be set to the same value as each other | -- |
| A0921 DAC parameters not set properly | DAC parameters should not be set to identical values, since this would produce illogical results.
- Index 0: Parameter settings for output identical
- Index 1: Parameter settings for input identical
- Index 2: Parameter settings for output do not correspond to DAC type | Analogue Output parameters should not be set to the same value as each other | -- |
| A0922 No load applied to inverter | No Load is applied to the inverter
As a result, some functions may not work as under normal load conditions
Low output voltage eg when 0 boost applied at 0 Hz | 1. Check that load is applied to the inverter
2. Check motor parameters correspond to motor attached
3. As a result, some functions may not work correctly, because there is no normal load condition | -- |
| A0923 Both JOG Left and JOG Right are requested | Both JOG right and JOG left (P1055/P1056) have been requested. This freezes the RFG output frequency at its current value. JOG right and JOG left signals active together | Make sure that JOG right and JOG left signals are not applied simultaneously | -- |
Suggestions and/or Corrections

To
Siemens AG
Automation & Drives
Group
SD VM 4
P.O. Box 3269

D-91050 Erlangen
Federal Republic of Germany

Suggestions
Corrections

For Publication/Manual:

MICROMASTER 420
Parameter List

Suggestions for technical documentation

From
Name:

Company/Service Department
Address: _________________________________
Phone: ________ / ________________________
Fax: ________ / ____________________________

User Documentation

Order No.: 6SE6400-5BA00-0BP0
Issue 04/02

Should you come across any printing errors when reading this publication, please notify us on this sheet. Suggestions for improvement are also welcome.