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C.4 Transient and Steady State Response Analysis 
 
 
 
4.1 Introduction 
 
Many applications of control theory are to servomechanisms 
which are systems using the feedback principle designed so 
that the output will follow the input. Hence there is a need for 
studying the time response of the system. 
 
The time response of a system may be considered in two parts: 

•  Transient response: this part reduces to zero as ∞→t  
•  Steady-state response: response of the system as ∞→t  

 
4.2 Response of the first order systems 
 
Consider the output of a linear system in the form 
 

)()()( sUsGsY =                  (4.1) 
where 

)(sY  : Laplace transform of the output 
)(sG  : transfer function of the system 
)(sU  : Laplace transform of the input 

 
Consider the first order system of the form uyya =+& , its 
transfer function is 
 

)(
1

1)( sU
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sY
+

=  

 
For a transient response analysis it is customary to use a 
reference unit step function )(tu for which 
 

s
sU 1)( =  

 
It then follows that 
 

assssa
sY

/1
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−=

+
=                (4.2) 

 
On taking the inverse Laplace of equation (4.2), we obtain 
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parttransient
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partstatesteady
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−

−=  )0( ≥t               (4.3) 

 
Both of the input and the output to the system are shown in 
Fig. 4.1.  The response has an exponential form. The constant 
a is called the time constant of the system. 

 

63.0

00.1

a t

)(tu

 
Fig. 4.1 

Notice that when at = , then 63.01)()( 1 =−== −eayty . The 

response is in two-parts, the transient part ate /− , which 
approaches zero as ∞→t and the steady-state part 1, which is 
the output when ∞→t . 
 
If the derivative of the input are involved in the differential 
equation of the system, that is, if uubyya +=+ && , then its 
transfer function is 
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where 
abK /=  

bz /1=  : the zero of the system 
ap /1=  : the pole of the system 

 
When ssU /1)( = , Eq. (4.4) can be written as 
 

ps
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p
zKK =1  and 
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Hence, 
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With the assumption that 0>> pz , this response is shown in 
Fig. 4.2. 
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Fig. 4.2 

 
We note that the responses to the systems (Fig. 4.1 and Fig. 
4.2) have the same form, except for the constant terms 1K and 

2K . It appears that the role of the numerator of the transfer 
function is to determine these constants, that is, the size of 

)(ty , but its form is determined by the denominator. 
 
4.3 Response of second order systems 
 
An example of a second order system is a spring-dashpot 
arrangement shown in Fig. 4.3. Applying Newton’s law, we 
find 
 

)(tuykyyM +−−= &&& µ  
 
where k is spring constant, µ is damping coefficient, y is the 
distance of the system from its position of equilibrium point, 
and it is assumed that 0)0()0( == yy & . 
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Fig. 4.3 

 
Hence ykyyMtu ++= &&& µ)(  
 
On taking Laplace transforms, we obtain 
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where MK /1= , Ma /1 µ= , Mka /2 = . Applying a unit 
step input, we obtain 
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where
2

4 2
2
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2,1
aaa

p
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= , 1p and 2p are the poles of the 

transfer function
21

2
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KsG
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= , that is, the zeros of the 

denominator of G(s). 
 
There are there cases to be considered: 
 
Case 1: 2

2
1 4aa > → over-damped system 

 
In this case 1p and 2p are both real and unequal. Eq. (4.6) can 
be written as 
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where 
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(notice that 0321 =++ KKK ). On taking Laplace transform 
of Eq.(4.7), we obtain 
 

tptp eKeKKty 21
321)( −− ++=                (4.8) 

 
The transient part of the solution is seen to be 

tptp eKeK 21
32

−− + . 
 

Case 2: 2
2
1 4aa = → critically damped system 

 
In this case, the poles are equal: papp === 2/121 , and 
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Hence ptpt etKeKKty −− ++= 321)( , where 2
1 / pKK = , 

2
2 / pKK −=  and pKK /3 −=  so that 
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Case 3: 2
2
1 4aa < → under-damped system 

 
In this case, the poles 1p and 2p  are complex conjugate having 

the form βα ip ±=2,1 where 2/1a=α and 2
122

1 4 aa −=β . 

Hence 
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(Notice that 2K and 3K are complex conjugates) 
It follows that  
 

]sin)(cos)[(

)(

23321

)(
3

)(
21

tiKKtKKeK

eKeKKty
t

titi

ββα

βαβα

−+++=

++=
−

−−+−

 

(using the relation tite ti βββ sincos += ) 
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where αβε /tan =  
 
Notice that when 0=t , 0)( =ty . The there cases discussed 
above are plotted in Fig. 4.4. 
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Fig. 4.4 

 
From Fig. 4.4, we see that the importance of damping (note 
that µµ ,/1 Ma = being the damping factor). We would 
expect that when the damping is 0 (that is, 01 =a ) the system 
should oscillate indefinitely. Indeed when 01 =a , then 
 

0=α , and 2a=β  
 
and since 1sin =ε and 0cos =ε , then 2/πε = , Eq. (4.12) 
becomes 
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This response of the undamped system is shown in Fig.4.5. 
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Fig. 4.5 
 

There are two important constants associated with each second 
order system. 
 

•  The undamped natural frequency nω of the system is the 

frequency of the response shown in Fig. 4.5: 2an =ω  
 
•  The damping ratio ξ of the system is the ratio of the 

actual damping )( 1Ma=µ to the value of the damping 

cµ , which results in the system being critically damped 

(that is, when 21 2 aa = ). Hence 
2

1
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a

c
==

µ
µξ . 

 
We can write equation (4.12) in terms of these constants. We 
note that ξωna 21 = and 2

2 na ω= . Hence 
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Eq. (4.12) becomes 
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where 

21 ξωω −= n  and 
ξ
ξ

ε
21

tan
−

= . 

 
It is conventional to choose 1/ 2 =aK and then plot graphs of 
the ‘normalised’ response )(ty against tω for various values of 
the damping ratioξ . There typical graphs are shown in Fig. 
4.6. 
 
Some definitions 
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Fig. 4.7 

(1) Overshoot defined as  

 %100
 valuedesired final

overshoot maximum
×  

 
(2) Time delay dt , the time required for a system response 

to reach 50% of its final value. 
 
(3) Rise time, the time required for the system response to 

rise from 10% to 90% of its final value. 
 
(4) Settling time, the time required for the eventual settling 

down of the system response to be within (normally) 5% 
of its final value. 

 
(5) Steady-state error sse , the difference between the steady 

state response and the input. 
 
In fact, one can often improve one of the parameters but at the 
expense of the other. For example, the overshoot can be 
decreased at the expense of the time delay. 
 
In general, the quality of a system may be judged by various 
standards. Since the purpose of a servomechanism is to make 
the output follow the input signal, we may define expressions 
which will describe dynamics accuracy in the transient state. 
Such expression are based on the system error, which in its 
simplest form is the difference between the input and the 
output and is denoted by )(te , that is, )()()( tutyte −= , where 

)(ty is the actual output and )(tu is the desired output ( )(tu is 
the input). 
 
The expression called the performance index can take on 
various forms, typically among them are: 
 

(1) integral of error squared (IES) ∫
∞

0

2 )( dtte  

(2) integral of absolute error (IAS) ∫
∞

0
)( dtte  

(3) integral of time multiplied absolute error criterion (ITAE) 

∫
∞

0
)( dttet  

 
Having chosen an appropriate performance index, the system 
which minimizes the integral is called optimal. The object of 
modern control theory is to design a system so that it is 
optimal with respect to a performance index and will be 
discussed in the part II of this course. 
 
4.4 Response of higher order systems 
 
We can write the transfer function of an thn - order system in 
the form 
 

n
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Example 4.1________________________________________ 
 

With reference to Fig. 2.11, calculate the close loop transfer 

function )(sG given the transfer functions
3

1)(
+

=
s

sA  and 

ssB /2)( =  
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Fig. 2.11 

 
We obtain 
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__________________________________________________________________________________________ 
 
The response of the system having the transfer function (4.14) 
to a unit step input can be written in the form 
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where 
mzzz ,,, 21 L  : the zeros of the numerator  

nppp ,,, 21 L  : the zeros of the denominator 
 
We first assume that mn ≥ in equation (4.14); we then have 
two cases to consider: 
 
Case 1: nppp ,,, 21 L  are all distinct numbers. The partial 
fraction expansion of equation (4.15) has the form 
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121 ,,, +nKKK L are called the residues of the expansions. The 

response has the form 
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Case 2: nppp ,,, 21 L  are not distinct any more. Here at least 
one of the roots, say 1p , is of multiplicity r , that is 
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The partial fraction expansion of equation (4.17) has the form 
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response has the form  
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We now consider that mn < in equation (4.14); which is the 
case when the system is improper; that is, it can happen when 
we consider idealized and physically non-realisable systems, 

such as resistanceless circuits. We then divide the numerator 
until we obtain a proper fraction so that when applying a unit 
step input, we can write )(sY as 
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where Kdc ss ,, and 1K are all constants. 
 
The inverse Laplace transform of the first right term of (4.20) 
involves the impulse function and various derivatives of it. 
The second term of (4.20) is treated as in Case 1 or Case 2 
above. 
 
Example 4.2________________________________________ 
 

Find the response of the system having a transfer function 
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to a unit step input. 
 
In this case, 
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The partial fraction expansion as 
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__________________________________________________________________________________________ 
 
4.5 Steady state error 
 
Consider a unity feedback system as in Fig. 4.8 
 
 

)(sR )(sC
A(s)

)(sE

 
 

Fig. 4.8 
where 

)(tr  : reference input 
)(tc  : system output 
)(te  : error 

 
We define the error function as 
 

)()()( tctrte −=                (4.21) 
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hence, )(lim tee
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=  and by the final value theorem 
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We now define three error coefficients which indicate the 
steady state error when the system is subjected to three 
different standard reference inputs )(sr . 
 
(1) step input, )()( tuktr = ( k  is a constant) 
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Fig. 4.9 
 
(2) Ram input, )()( tutktr = ( k  is a constant) 

In this case, 2)(
s
ksR = , so that 

v
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kK = , where 
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Fig. 4.10 

 
 

(3) Parabolic input, )(
2
1)( 2 tutktr = ( k  is a constant) 

In this case, 3)(
s
ksR = , so that 

a
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Fig. 4.11 

 
Example 4.3________________________________________ 
 
Find the (static) error coefficients for the system having a 

open loop transfer function 
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__________________________________________________________________________________________ 
 
From the definition of the error coefficients, it is seen that sse  
depends on the number of poles at 0=s of the transfer 
function. This leads to the following classification. A transfer 
function is said to be of type N if it has N poles at the origin. 
Thus if 
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1K is called the gain of the transfer function. Hence the steady 
state error sse depends on j and )(tr as summarized in Table 
4.1 

Table 4.1 
 

sse  
j  System 

r(t)=ku(t) r(t)=ktu(t) r(t)=½kt2u(t) 

0 
1 
2 

Type 1 
Type 2 
Type 3 

Finite 
0 
0 

∞ 
finite 

0 

∞ 
∞ 

finite 

 
4.6 Feedback Control 
 
Consider a negative feedback system in Fig. 4.12 
 

)(sR )(sC
A(s)

B(s)
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Fig. 4.12 

 
The close loop transfer function is related to the feed-forward 
transfer function )(sA  and feedback transfer function )(sB by 
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We consider a simple example of a first order system for 

which
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On taking Laplace inverse transform, we obtain the impulse 
response of the system, where 
 

(1) 0=c (response of open loop system): ate
a
Ktg /)( −=  

(2) 0≠c : α
t

a
cK

e
a
Ke

a
Ktg t −− ==

+1

)( , where 
1+

=
cK
aα  

a andα are respectively the time-constants of the open loop 
and closed loop systems. a is always positive, butα can be 
either positive or negative. 
 
Fig. 4.13 shows how the time responses vary with different 
values of cK . 

t

)(tg

stable region 4=Kc

0=Kc
1−=Kc

3−=Kc5−=Kc1−≤Kc

a
K

 
Fig. 4.13 

 
If the impulse response does not decay to zero as t increase, 
the system is unstable. From the Fig. 4.13, the instability 
region is defined by 1−≤Kc . 
 
In many applications, the control system consists basically of 
a plant having the transfer function )(sA and a controller 
having a transfer function )(sB , as in Fig. 4.14. 
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Fig. 4.14 

 
With the closed loop transfer function 
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The controllers can be of various types. 
 
(1) The on-off Controller 

The action of such a controller is very simple. 
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where )(tq is output signal from the controller 
 1Q , 2Q are some constants 
 
The on-off controller is obviously a nonlinear device and 
it cannot be described by a transfer function. 
 

(2) Proportional Controller 
For this control action 

)()( teKtq p=  

where pK is a constant, called the controller gain. The 
transfer function of this controller is 

pK
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(3) Integral Controller 

In this case ∫=
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dtteKtq
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(4) Derivative Controller 

In this case 
dt
deKtq =)( , hence 
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(5) Proportional-Derivative Controller (PD) 

In this case 
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(6) Proportional-Integral Controller (PI) 

In this case ∫+=
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(7) Proportional-Derivative-Integral Controller (PID) 

In this case ∫++=
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Example 4.4________________________________________ 
 
Design a controller for a plant having the transfer function 

)2/(1)( += ssA so that the resulting closed loop system has a 
zero steady state error to a reference ramp input. 
 
For zero steady state error to a ramp input, the system must be 
of type 2. Hence if we choose an integral controller with 

sKsB /)( = then the transfer function of the closed loop 
system including the plant and the controller is 
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The response of this control system depends on the roots of 
the denominator polynomial 02 23 =++ Kss . 
 
If we use PI controller, )/1()( sKKsB p += the system is of 
type 2 and response of the system depends on the roots of 

02 23 =+++ pp KKsKss  
__________________________________________________________________________________________ 
 
 
 
 
 
  
  
 
 
 
 
 
 


