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C.4 Transient and Steady State Response Analysis

4.1 Introduction

Many applications of control theory are to servomechanisms
which are systems using the feedback principle designed so
that the output will follow the input. Hence there is a need for
studying the time response of the system.

The time response of a system may be considered in two parts:
o Transient response: this part reduces to zero ast — o
o Steady-state response: response of the system ast — o

4.2 Response of the first order systems
Consider the output of a linear system in the form

Y (s)=G(s)U(s) 4.1
where

Y(s) :Laplace transform of the output

G(s) :transfer function of the system

U(s) : Laplace transform of the input

Consider the first order system of the form ay+y=u, its
transfer function is

Y(s)=

=——-U(s)
as+1

For a transient response analysis it is customary to use a
reference unit step function u(t) for which

U(s):%

It then follows that

Y(s) ! 1 ! 4.2)

:(as+1)s - s s+l/a

On taking the inverse Laplace of equation (4.2), we obtain

y(t) = 1 - el t=0) 4.3)

S
steady—state part ~ transient part

Both of the input and the output to the system are shown in
Fig. 4.1. The response has an exponential form. The constant
a is called the time constant of the system.
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Fig. 4.1

Notice that when t =a, then y(t)=y(a)=1 —e1=0.63. The

response is in two-parts, the transient part e V2 | which
approaches zero as t — oo and the steady-state part 1, which is
the output when t — .

If the derivative of the input are involved in the differential
equation of the system, that is, ifay+y=bu+u, then its

transfer function is

Y(s) =2y sy =k SE2u(s) (4.4)
as+1 S+ p
where
K=b/a

z=1/b :the zero of the system
p=1/a :the pole of the system

When U(s)=1/s, Eq. (4.4) can be written as

Y(s):ﬁ_L’ where K; =K 2 and K, =K 2=
S S+ p p p

Hence,

y(t) = K, - Kye™® (4.5)

—
steady—state part  transient part

With the assumption that z> p >0, this response is shown in
Fig. 4.2.
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Fig. 4.2

We note that the responses to the systems (Fig. 4.1 and Fig.
4.2) have the same form, except for the constant terms K; and

K, . It appears that the role of the numerator of the transfer

function is to determine these constants, that is, the size of
y(t), but its form is determined by the denominator.

4.3 Response of second order systems

An example of a second order system is a spring-dashpot
arrangement shown in Fig. 4.3. Applying Newton’s law, we
find

M §=—uy-ky+u®

where K is spring constant, # is damping coefficient, y is the
distance of the system from its position of equilibrium point,
and it is assumed that y(0)=y(0)=0.
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Hence u(t)=My+uy+ky

On taking Laplace transforms, we obtain

1 K
Y(8)=— U@s)=—
Ms” +us+k s“+a;s+a,

U(s)

where K=1/M , a;=u/M, a, =k/M . Applying a unit
step input, we obtain

kK
S(S+ Pp)(s+ pa)

a, t4/af —4a,

2

Y(s) (4.6)

where py, = , Pyand p, are the poles of the

K
2
ST+aS+a,

transfer function G(S) = , that is, the zeros of the
denominator of G(s).

There are there cases to be considered:
Case 1: a12 >4a, — over-damped system

In this case p;and p, are both real and unequal. Eq. (4.6) can
be written as

v, K2, K @.7)
S S+p; S+p,
where
K K K K
K, = =— K, = Ky =
PPy @ pi(P; = P2) P2 (P2 — P1)

(notice that K; + K, + K5 =0). On taking Laplace transform
of Eq.(4.7), we obtain

y(t) =K + K,e Pt 4 Kye P 4.8)

The transient part of the solution is seen to be
K,e Pt L Kye Pt

Case 2: a12 =4a, — critically damped system

In this case, the poles are equal: p; =p, =a;/2=p,and

Y(s)

K, K K
K Ly 72 3 (4.9)
S

Cs(s+p)? S+P  (s+p)?

Hence y(t)=K; +Kye P +Kyte P where K; =K/ p? ,
K, =-K/p? and K5 =—K/p so that

y(t):%(l—e’pt ~pte ™) (4.10)
P

Case 3: a12 <4a, — under-damped system

In this case, the poles p; and p, are complex conjugate having

the form p, , =a +i fwhere a=a, /2 andﬁ:% 4a, 7a12 .

Hence
Y(s):ﬁ+ Ka + Ks ,
S S+ Py S+ Py
where
K, K Ko - K(-p-ia) _ K(p+ia)

Papet Y 2@+ )

- a’+ ﬁz ’
(Notice that K, and K5 are complex conjugates)
It follows that
y(t) = Ky + Ky @At | K e (@71AN
=K, +e (K, + K3)cos Bt + (K5 — K,)isin At]
(using the relation et = cos Pt+isin ft)
K K

+
0!2+ﬂ2 052+ﬂ2

2
- 2552* 2552 f1+%e*"“sin(ﬁt+5) (4.12)
a a

where tane =/«

e*“‘(—cosﬁt—%sinﬂt @.11)

Notice that whent=0, y(t)=0 . The there cases discussed
above are plotted in Fig. 4.4.

y(t)‘ under damped system

u(t)
1 —

critically damped system
//\ over damped system

Fig. 4.4

From Fig. 4.4, we see that the importance of damping (note
that a; = u/M,u being the damping factor). We would

expect that when the damping is 0 (that is,a; =0 ) the system
should oscillate indefinitely. Indeed when a; =0 , then

a=0,and ﬂ:\/g

and since sing=1and cose=0, then e=7/2, Eq. (4.12)
becomes

K . K
y(t) ——{l—sm( a2t+%ﬂ :g[l—cos azt]

a

This response of the undamped system is shown in Fig.4.5.
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There are two important constants associated with each second
order system.

e The undamped natural frequency w,, of the system is the

frequency of the response shown in Fig. 4.5: @, =./a,

e The damping ratio & of the system is the ratio of the
actual damping u(=a;M) to the value of the damping

M , which results in the system being critically damped

(that is, when a; =2,/a, ). Hence &= Mo A .

He 2\/5

We can write equation (4.12) in terms of these constants. We

note that a; =2w,¢anda, = a)r% . Hence

Vi+va?/p* = |1+ af 5 = 2‘/5 !

43.2 - al

Eq. (4.12) becomes

y(t):L2 oL _gent sin(wt + &) (4.13)
@n 1—9”2
where
1—£2
w:wmll—fz and tane = gf .

It is conventional to choose K /a, =1and then plot graphs of
the ‘normalised’ response y(t) against @t for various values of

the damping ratio & . There typical graphs are shown in Fig.
4.6.

Some definitions

(1) Overshoot defined as
maximum overshoot

- x100%
final desired value

(2) Time delayty , the time required for a system response
to reach 50% of its final value.

(3) Rise time, the time required for the system response to
rise from 10% to 90% of its final value.

(4) Settling time, the time required for the eventual settling
down of the system response to be within (normally) 5%
of its final value.

(5) Steady-state error ey , the difference between the steady
state response and the input.

In fact, one can often improve one of the parameters but at the
expense of the other. For example, the overshoot can be
decreased at the expense of the time delay.

In general, the quality of a system may be judged by various
standards. Since the purpose of a servomechanism is to make
the output follow the input signal, we may define expressions
which will describe dynamics accuracy in the transient state.
Such expression are based on the system error, which in its
simplest form is the difference between the input and the
output and is denoted by e(t) , that is, e(t) = y(t) —u(t) , where
y(t) is the actual output and u(t) is the desired output (u(t) is
the input).

The expression called the performance index can take on
various forms, typically among them are:

(1) integral of error squared (IES) J e? (t)dt
0

00
(2) integral of absolute error (IAS) .[ | e |(t)dt
0

(3) integral of time multiplied absolute error criterion (ITAE)

rﬂ e|tdt
0

Having chosen an appropriate performance index, the system
which minimizes the integral is called optimal. The object of
modern control theory is to design a system so that it is
optimal with respect to a performance index and will be
discussed in the part II of this course.

4.4 Response of higher order systems

We can write the transfer function of an n'" - order system in
the form

y(t) 4 maximum overshoot steady-state
error e
I Ssi K(s™+bs™ !+ .. +by)
10 G(s) = ; ] (4.14)
0.9 T S'+a;s’  +...+a,
0.5 Example 4.1
(: rise time With reference to Fig. 2.11, calculate the close loop transfer
: y > function G(S) given the transfer functions A(S) = ! and
tq t s+3
Fig. 4.7 B(s)=2/s
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Fig. 2.11
We obtain
G(s) = s s

s243s42 (S+D)(s+2)

The response of the system having the transfer function (4.14)
to a unit step input can be written in the form

_Ks+2)(5+2y)-(5+2p)
S(S+ P)(S+ P2)-+(S+ Pn)

where
Zy,2p,",Zy : the zeros of the numerator

Y(s) (4.15)

P1> P2, e+, Pp : the zeros of the denominator

We first assume that n>min equation (4.14); we then have
two cases to consider:

Case 1: p;,p,,-, Py are all distinct numbers. The partial
fraction expansion of equation (4.15) has the form

viy=Ki, Ko () Ko (4.16)
S S+ Py S+ Pp

Ki,K,, -+, Ky, are called the residues of the expansions. The
response has the form

yO) =K, +Kye P4 4K, e Pt

Case 2: p;, Py, -+, Py are not distinct any more. Here at least

one of the roots, say p; , is of multiplicity r, that is

K(s+2z))(s+23)-(S+Zy)
S(s+Pp)" (5+P2)---(5+ Pp)

Y(s)= (4.17)

The partial fraction expansion of equation (4.17) has the form

KZI 4ot K2r bt KI’]*I’+2 (418)
(s+p)'

Y(s)=Kiy

S S+ S+ Pn-rs1

Since f_l K T :.Ltj_le_pt > (j:1’2""’r) > the
s+p)l | (G-

response has the form

_ _ K 1
() = Ky + Ky e P4 Kppe Pty 4 —20 e Py

(r-1)!
Kie Pt b Ky e Pt (4.19)
We now consider that n <min equation (4.14); which is the

case when the system is improper; that is, it can happen when
we consider idealized and physically non-realisable systems,

such as resistanceless circuits. We then divide the numerator
until we obtain a proper fraction so that when applying a unit
step input, we can write Y (S) as

Ki(s"+d;s" 4. +dp)
ss"+a;s" +...+ay)
(4.20)

n-m-1

Y(s)=K(c; +Cy8+...+CS )+

where Cg,dg, K and K are all constants.

The inverse Laplace transform of the first right term of (4.20)
involves the impulse function and various derivatives of it.
The second term of (4.20) is treated as in Case 1 or Case 2
above.

Example 4.2

Find the response of the system having a transfer function

5(52 +55+6)

SO e P P
S +65°+10s+8

to a unit step input.

In this case,
5(52 +55+6) 5(s+2)(s+3)

Y(s)= -
®) 34652 +10s+8  S(S+A[s+L+D)[s+(1—0)]

The partial fraction expansion as

VoK K Ky K
S Ss+4 s+(0+1) s+(1-1)

1 7 +i —7-i
Ky = LKy =——.
4’ 3Ty 4

where K, :%, Ky=-

Hence

15 1 4 1 ;
ty=———e"" +—e " (—14cost + 2sint
Y =g v e )

15 1 a 2000

= + X" e7tsin(t +352)
4 4 4

4.5 Steady state error

Consider a unity feedback system as in Fig. 4.8

R(s) + _E(s) C(s)
HT—» 2
Fig. 4.8
where
r(t) : reference input
c(t) : system output
e(t) : error
We define the error function as
e(t) =r(t)—c(t) 4.21)
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hence, e = lime(t) . Since E(s)=R(s)—AS)E(S) , it
t—>o

follows that E(s) = _RO)_ and by the final value theorem
1+A(s)
e, = lim SE(S) = lim X&) 4.22)
=) s—0 1+ A(S)

We now define three error coefficients which indicate the
steady state error when the system is subjected to three
different standard reference inputs r(s) .

(1) step input, r(t) =ku(t) (k is a constant)

sk/s k
= lim =
s—>0 1+ A(s) 1+ lim A(S)
s—0

eSS

lim A(s) = K, , called the position error constant, then
s—0

k —
e =—— or K, =< 4.23)
1+ K, €gs
et} ku() steady-state

error e, i

!

=a 4

Fig. 4.9
(2) Ram input, r(t) =ktu(t) (k is a constant)
In this case, R(S) = Lz , so that egg = L or K, = L , Where
S K

) eSS
K, = lim sA(s) is called the velocity error constant.
s—0

c(t)4 steady-state i/ ~
errore,, = q

~y

Fig. 4.10

(3) Parabolic input, r(t) :%kt2u(t) (K is a constant)

. k k k
In this case, R(S) = — 50 that egg = — or K; =—, where
S Ka €ss

Kq = lim szA(s) is called the acceleration error constant.
s—0

c(t)4 steady-state |
error e i 2

Example 4.3

Find the (static) error coefficients for the system having a
8

open loop transfer function A(S) = ————
P P (®) S(4s+2)
Ky =lim A(s) =

s—0
Ky = lim sA(s) =4

s—0

K, = lims?A(s)=0
s—0

From the definition of the error coefficients, it is seen that egg

depends on the number of poles at S=0 of the transfer
function. This leads to the following classification. A transfer
function is said to be of type N if it has N poles at the origin.
Thus if

_ K(s=2)) (5 2p)

S (4.24)
$H(s=p)+(5=pn)

A(s)

Ats=0, AGs) = lim L where K, = ~C2)CZn) 4 55y

50 gJ (=p1)-+(=Pn)
K is called the gain of the transfer function. Hence the steady
state error €g depends on j and r(t) as summarized in Table
4.1

Table 4.1
. eSS
] | System 2
r(t)=ku(t) r(ty=ktu(t) | r(t)='aktu(t)
0 | Typel Finite 0 0
1 | Type?2 0 finite o0
2 | Type3 0 0 finite

4.6 Feedback Control

Consider a negative feedback system in Fig. 4.12

R(s) + _E(s) C(s)
O S —>

Fig. 4.12

The close loop transfer function is related to the feed-forward
transfer function A(S) and feedback transfer function B(S) by

Chapter 4 Transient and Steady State Response Analysis

20



Introduction to Control Theory Including Optimal Control

Nguyen Tan Tien - 2002.3

___ Al
6= 1+ A(S)B(s) (4.26)

We consider a simple example of a first order system for

which A(S) = and B(s) =c , so that
as+1
as+Kc+1 s+

a
On taking Laplace inverse transform, we obtain the impulse
response of the system, where

(1) ¢ =0 (response of open loop system): g(t) = ﬁe_”a
a

K _Kc+lt _t
2)c#0: g(t)y=—e 2 =—e «, where =
a a Kc+1

a and o are respectively the time-constants of the open loop
and closed loop systems. a is always positive, but & can be
either positive or negative.

Fig. 4.13 shows how the time responses vary with different
values of Kc .

gt}
Ke<-1 Kc=-5 Kc=-3
K Kc=-1
a Kc=0
stable region o=
t

Fig. 4.13

If the impulse response does not decay to zero as t increase,
the system is unstable. From the Fig. 4.13, the instability
region is defined by Kc <—1.

In many applications, the control system consists basically of
a plant having the transfer function A(s) and a controller

having a transfer function B(S), as in Fig. 4.14.

R(s) + E(5) Q(s) C(s)
[BO) == A® F—1—
- controller plant
Fig. 4.14
With the closed loop transfer function
__A(S)B()
G(s)= T ASBE) 4.27)

The controllers can be of various types.

(1) The on-off Controller
The action of such a controller is very simple.

(@ ife)>0
q(t)_{Qz if e(t)<0

where  q(t) is output signal from the controller
Q,, Q, are some constants

The on-off controller is obviously a nonlinear device and
it cannot be described by a transfer function.

(2) Proportional Controller
For this control action

at) =Kpet)
where K is a constant, called the controller gain. The
transfer function of this controller is

B(s)= 2

R (4.28)

(3) Integral Controller
t
In this case q(t) = Kje(t)dt , hence
0
B(s)=K/s (4.29)
(4) Derivative Controller
In this case q(t) =K % , hence
B(s)=Ks (4.30)
(5) Proportional-Derivative Controller (PD)
In this case q(t) = K e(t) + K % , hence

K
B(S)=Kp(1+K—;s}=Kp(1+Ks) (4.30)

(6) Proportional-Integral Controller (PI)

t
In this case q(t) = K pe(t)+ K, J e(t)dt , hence
0

_ Kl K
B(s)—Kp(H <. S] Kp(1+ Sj (4.31)

(7) Proportional-Derivative-Integral Controller (PID)

t
In this case q(t) = K e(t) + K % + sze(t)dt , hence
0

K K, 1
B(s) = K"[HK_:,HK_‘Z,E]_ Kp(+kis+k, /5)

Example 4.4

Design a controller for a plant having the transfer function
A(S) =1/(s+2) so that the resulting closed loop system has a
zero steady state error to a reference ramp input.

For zero steady state error to a ramp input, the system must be
of type 2. Hence if we choose an integral controller with
B(s)=K/s then the transfer function of the closed loop
system including the plant and the controller is

AS)B(S) _ K
1+A(S)B(S) s +2s% +K
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The response of this control system depends on the roots of

the denominator polynomial $3+2s2 4K =0.

If we use PI controller, B(s) =K (1+K/s) the system is of
type 2 and response of the system depends on the roots of
$7+252 + K s+KK, =0
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