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ABSTRACT 
 

This paper proposes a robust tracking controller with bound estimation based on neural network for 
the magnetic levitation system. The neural network is to approximate  an unknown uncertain nonlinear 
dynamic function in the model of the magnetic levitation system. And the robust control is proposed to 
compensate for approximation error from the neural network. The weights of the neural network are tuned 
on-line and the bound of the approximation error is estimated by the adaptive law. The stability of  the 
proposed controller is proven by Lyapunop theory. The robustness effect of the proposed controller is 
verified by the simulation and experimental results for the magnetic levitation system. 
 
 
1. INTRODUCTION 
 

Magnetic levitation (Maglev) systems are 
widely used in many engineering systems such as 
frictionless bearings, vibration isolation of 
sensitive machinery, high-speed maglev passenger 
trains. Highly nonlinear and open-loop unstable 
make Maglev have difficulties in control. 

The performance of the PID controller will be 
deteriorated when system parameters such as 
resistance and inductance vary with electromagnet 
heating. Controllers for magnetic levitation 
systems are proposed based on the feedback 
linearization technique [1]. Sliding mode control 
has been used to design the robust nonlinear 
controllers [2]. However, to design the controller, 
all the model parameters need to be available. In 
practical applications these conditions are not 
always satisfied.  

In recent years, neural networks (NN) based 
control methodology has become an alternative to 
adaptive control since NNs are considered as 
universal approximation, learning and adaptation 
abilities to handle unknown knowledge about real 
plants. The robust nonlinear controller based on 
NN for Maglev system is carried out in [3], 

modeling and control for Maglev system based on 
NN with minimal structure is designed [4].  

In this paper, a NN-based robust tracking 
controller for Maglev system is proposed. The 
controller can guarantee robustness to dynamic 
uncertainties and also estimates the bound of the 
NN approximation error.  The stability of the 
proposed controller is proven by the Lyapunop 
theory. 

The rest of this paper is organized as follows. 
Section 2 presents the nonlinear model for the 
magnetic levitated system. Section 3 deals with a 
NN-based robust tracking control scheme with 
bound estimation for the magnetic levitated 
system. The simulation results of the proposed 
controller are presented and discussed in Section 4. 
Finally, the conclusion is given in Section 5.  

 
 

2. MODEL OF THE MAGNETIC 
LEVITATION SYSTEM 

 
Figure 1 shows the experiment model for the 

Maglev system that has been carried out in a 
project at National key lab for Digital Control & 
System Engineering, Vietnam. 
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Fig.1 Experiment model 

 
The Maglev system in the model contains two 

feedback sensors. One is a small current sense 
resistor in series with the coil. The other is a 
phototransitor embedded in the chamber pedestal 
and providing the ball position signal. After 
amplifying, both  current sensor and  phototransitor 
are wired to analog inputs of card PCI-1711. The 
control signal from the computer is sent to the 
controllable voltage source through the analog 
output of card PCI-1711. 

To develop the mathematical model, the 
schematic diagram in Figure 2 is considered. 
Where R  is the coil’s resistance; h  is the position 

of the ball; L  is the coil’s inductance; i  is the 
current in the coil of electromagnet. The applied 

voltage 
a

v  is defined using Kirchhoff’s voltage 

law: 
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The force due to gravity applied on the 
levitation ball is defined as 

 
 mgFg =  (2) 

 
where g  is the gravitational constant; m is 

the mass of the ball. 
The velocity of the ball is define as 
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Applying Newton’s second law of the 

motion ball: 
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where mK  is the magnetic force constant. 

The inductance L  is a nonlinear 
function of the position of the ball h  and it 
can be approximated by [2]: 

 

 
h

K
L)h(L m

p

2
+=  (5) 

 
where pL  is a parameter of the system. 

From (1) and (5) the applied voltage 
a

v  

is rewritten as 
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Let choose the state vector [ ]
321

xxxx =  

such that ix,hx,hx ===
321

&  and the control 

input 
a

vu =  then the state-space model of Maglev 

system can be defined as 
 

h  

a
v  

Fig.2. Diagram of magnetic levitation 
system 
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Given the desired state vector 

[ ]
dddd

xxxx
321

= , the control objective is to 

make the state vector x  be driven to 
d

x .  

Remark 1: From (3) and (4) that the desired 
state vector to drive the ball to a constant position 

is 



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The new states are defined as  
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Remark 2: When ∞→t  the state vector x  

will converge to 
d

x  as long as the new state vector 

[ ]
321

z,z,zz =  is driven to zero. 

The dynamic model of the Maglev system with 
the new states can be rewritten as 
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where 
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3. DESIGN OF A NEURAL NETWORK – 
BASED ROBUST CONTROL WITH 
BOUND ESTIMATION 

 
A design of dynamic sliding mode control for 

the magnetic levitation system is proposed in [2] 
with the nonlinear model dynamic )z(f in Eq. 

(10) is assumed to be available. But in practice 
applications, the uncertainty such as  R  changes 
over time and is difficult to compute. Motivated by 
this work, a NN–based robust controller is now 
designed for the Maglev system where the )z(f  

is assumed unknown. 
Let the output of the system as 

 
1

zy =  (11) 

 
Then, define a filtered tracking error as 
 

 
32211
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where 
1

λ , 
2

λ  are real positive constants chosen 

such that the state vector )t(z  exponentially goes 

to 0 as )t(r  tends to 0, i.e., the polynomial 

12

2 λλ ++ ss  is a Hurwitz polynomial. Then the 

time derivative r  can be written as 
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If we knew the exact form of the nonlinear 

function )z(f , then the ideal control law  

 ( )
3221

1
zzKr)z(f

)z(g
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would bring )t(r  to zero exponentially for any 

0>K . Based on NN, an unknown smooth 

function )z(f  can be presented as 

 

 εσ += )zV(W)z(f TT  (15) 
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where the NN approximation error ε  is assumed 

to be bounded by E≤ε ; (.)σ  is a continuous 

sigmoid activation function. The first layer weights 

V  are selected randomly and will not be tuned 

while the second weights W  are tunable. The ideal 

weights W for the best approximate the given 

function )z(f  are difficult to reach. So the 

approximation value of )z(f  can be estimated as 

 

 )zV(Ŵ)z(f̂ TTσ=  (16) 

 
Propose the robust adaptive control law as 
 

 ( )vzzKr)z(f̂
)z(g

û ++++−=
3221

1
λλ (17) 

where v  is the robust controller that is added in the 
system to compensate the NN approximation error 
ε . 

Then, the Eq.(13) can be rewritten as 
 

 εσ +−−= vKr)zV(W
~

r TT&   (18) 

 

where ŴWW
~

−= is the NN weights error. 
Theorem: Given the magnetic levitation 

system (9), propose the robust adaptive control law 
(17), and the weights adaptation law of NN as 
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where 0
1

>α  is the learning rate of NN 

The robust controller is proposed as 
 

 )rsgn(Êv =  (20) 

 

where the estimate of bound E  is Ê , sgn(.)  is a 

standard sign function. The bound adaptation law 
is chosen as 
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where ÊEE
~

−=  is the bounded estimation error;  
0

2
>α  is a positive constant. 

Then, the closed loop system (9) and (18) is 
asymptotically stable, the filtered error r , the NN 

weights error W
~

and the bounded estimation error 

E
~

 are all bounded. 
 
Proof: Choose Lyapunop function candidate as 
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Differentiating yields 
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Substitute (18), (19) and (21) into (23) and 

perform a simple manipulation to obtain 
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 Since 0≤V& , it can be seen that  r ,W
~

and E
~

 

are all bounded. Let function V)t( &−=Φ  and 

integrate function )t(Φ with respect to time 
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Since ( ))(E
~

,W
~

),(rV 00  is bounded and 
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),t(rV  is nonincreasing and bounded,  

we get 
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Remark 3: )t(Φ& is bounded. 
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(b) 
 

Fig.3 The position versus time when 
)g(.m 8711= , )(.R Ω718=  and 

%)g(.m 1258711 +=  after 50.  seconds. (a) the 

dynamic sliding mode controller, (b) the proposed 
controller. 

 
By Barbalat’s Lemma, it can be seen that 

0≤
∞→

)t(lim
t

Φ . Thus 0→)t(r  when ∞→t . As 

result, the closed loop system (9) and (18) is 
asymptotically stable.  

 
 
4. SIMULATION AND EXPERIMENTAL 

RESULTS 
 

Simulations are performed to verify the 
proposed controller. The parameters of the Maglev 
system are chosen as follows. The coil’s nominal 
resistance )(.R Ω718= , the inductance 

)H(.L
h

650= , the gravitation constant 

)s/m(.g 2819= , the magnetic force constant 
44101 −= .K

m
 and the nominal mass value of the 

ball )g(.m 8711= . 
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(b) 

Fig.4 The position versus time when 

)g(.m 8711= ,  )(.R Ω718=  and 

)(.R Ω758=  after 50.  seconds. (a) the dynamic 

sliding mode controller, (b) the proposed 
controller. 

 
The initial values of neural network weights 

W  are chosen randomly in ],[ 10  and the bound 

estimation is 00 =)(Ê . 004
1

=λ , 02
2

=λ , 

502=K . 
To design the dynamic sliding mode law [2], 

nominal values of mass of the ball and the coil’s 
resistance are used to substitute into  the function 

)z(f  in Eq. (10). The simulation result of the 

controller is shown in Figure 3.a.  After 

50. seconds the mass value of the ball is changes 

to %125 . In the same case but )z(f  is assumed 

unknown, the simulation result of the proposed 
controller is shown in Figure 3.b. The performance 
of two kind of controllers in the situation are 
almost the same. 

In Figure 4.a, after 50. seconds the coil’s 

resistance value is changed from )(. Ω718  to  
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(b) 
 
Fig.5 The position versus time when 

)g(.m 8711= ,  )(.R Ω718=  and 

%)g(.m 1258711 += , )(.R Ω758=  after 50.  

seconds. (a) the dynamic sliding mode controller, 
(b) the proposed controller.  

 
)(. Ω758  the dynamic sliding mode controller 

causes the a steady state error. In addition if the 
mass value is changed by %125  in Figure 5.a, the 
dynamic sliding mode controller becomes unstable. 
Under same conditions, Figures 4.b and 5.b show 
the results using the proposed controller. As it can 
be seen form the figures that the tracking 
performance of the magnetic levitation system is 
robust. 

Experiments were carried out with respect to 
conditions above except the mass value of ball 

)g(m 68= . Figure 6 shows the effectiveness of 

the proposed controller when attracting the ball 
from the initial position )m(.0140 to )m(.010  

and keeping it at this position during 15 seconds 
afterward. 

 
5. CONCLUSION  
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Fig.6 Experimental result of the proposed 

controller for the position versus time when 
)g(m 68= . 

 
The robust tracking controller with bounded 

estimation based on NN is proposed for Maglev 
system. This controller is robust  to system  
parameter variations such as the resistance due to 
electromagnet heating and the ball mass values. 
The stability is proven using Lyapunop theory.  
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