Go to Home Page
You are here
Go to Reference Section
Go to Directories Section
Go to Community Section
Go to Fun Section
Go to Science Store
Go to About PhysLink.com
Club PhysLink
   Not a member yet?
   Get Free Membership
   Username:
   
   Password:
   
    Remember me
   
   Forgot your login?
Top Destinations Menu
 Ask the ExpertsAsk the
Experts

 Physics and Astronomy Departments DirectoryUniversity
Departments

 Discussion ForumsDiscussion
Forums

 Online Chat Online
Chat

 FREE Einstein eCardsEinstein
eGreetings

 PhysLink.com Science eStoreScience
eStore

Community

Chikrii Word2TeX Software

Click here for a free 2-week trial

Become a Sponsor


   Question

What are the upper and lower limits for the mass of a neutron star? - and why?

Asked by: Tom C

Answer

A neutron star has a mass between 1.4 and 3 times the mass of the Sun.

When a star uses up its available fusion fuel, its mass can no longer be supported by internal gas pressure. While outer layers are blown away, the resulting collapsed core will result in either of a white dwarf, a neutron star, or a black hole, depending on its final mass.

If the core mass is less than about 1.4 times that of the Sun, the result is a white dwarf. It is supported by "electron degeneracy" pressure, a quantum mechanical concept based on the Pauli exclusion principle which restricts the number of electrons occupying the same energy state.

If the mass is greater than 1.4 times that of the Sun, electron degeneracy is not enough to overcome the force of gravity and a neutron star can result. A neutron star is basically a giant neutron, with all matter compressed to a maximum density allowed for matter. A single teaspoon of neutron matter would weigh billions of tons.

If the mass is greater than about 3 times that of the Sun, even a neutron star cannot resist the force of gravity and a black hole is created. It has an "event horizon", inside of which nothing can escape, but has no physical size of its own and can only be described as a "singularity".

Answered by: Paul Walorski, B.A., Part-time Physics/Astronomy Instructor



go to the top  
Advertisement:



All rights reserved. © Copyright '1995-'2004 PhysLink.com