Go to Home Page
You are here
Go to Reference Section
Go to Directories Section
Go to Community Section
Go to Fun Section
Go to Science Store
Go to About PhysLink.com
Club PhysLink
   Not a member yet?
   Get Free Membership
    Remember me
   Forgot your login?
Top Destinations Menu
 Ask the ExpertsAsk the

 Physics and Astronomy Departments DirectoryUniversity

 Discussion ForumsDiscussion

 Online Chat Online

 FREE Einstein eCardsEinstein

 PhysLink.com Science eStoreScience


Chikrii Word2TeX Software

Click here for a free 2-week trial

Become a Sponsor


How is the 'STERADIAN' defined and how is it used?

Asked by: Undisclosed Visitor


Steradians are a measure of the angular 'area' subtended by a two dimensional surface about the origin in three dimensional space, just as a radian is a measure of the angle subtended by a one dimensional line about the origin in two dimensional (plane) space. Steradians are equivalently referred to as 'square radians.'

A sphere subtends 4 pi square radians (steradians) about the origin. By analogy, a circle subtends 2 pi radians about the origin. Numerically, the number of steradians in a sphere is equal to the surface area of a sphere of unit radius. I.e., area of sphere = 4 pi r^2, but with r = 1, area = 4 pi. Likewise, numerically, the number of radians in a circle is equal to the circumference of a circle of unit radius. I.e., circumference = 2 pi r, but with r = 1, circumference = 2 pi.

As one would expect, steradians (square radians) can be converted to square degrees by multiplying by the square of the number of degrees in a radian = 57.2957795... degrees. For example, the number of square degrees in a sphere is equal to 4 pi x (57.2957795)^2 = 41,253 square degrees (rounded to the nearest square degree). For those who prefer to work in square degrees, it is helpful to remember that the number of square degrees in a sphere contains the digits 1 through 5, with no repeats.

Steradians occur virtually anywhere in physics where a flux through a three dimensional surface is involved. For example, the ubiquitous factors of 4 pi that keep popping up in formulas derived in electromagnetics really just represent the scaling, or normalizing, of whatever is being described to the angular area subtended by a sphere. Not surprisingly, steradians find heavy use in antenna engineering to characterize such properties as the 'directivity' of an antenna relative to an 'isotropic' radiator (one that radiates uniformly in all directions through the surface of an imaginary sphere).

Answered by: Warren Davis, Ph.D., President, Davis Associates, Inc., Newton, MA USA

go to the top  

All rights reserved. © Copyright '1995-'2004 PhysLink.com