* Bài toán va chạm:

Va chạm là một hiện tượng thường gặp trong đời sống và trong kỹ thuật. Việc áp dụng các định luật động lực học để giải bài toán va chạm thường gặp nhiều khó khăn do thời gian va chạm giữa các vật thường rất ngắn ( chỉ vào khoảng từ 10-2s đến 10-5s) nên cường độ tác dụng của các lực lên các vật thường rất lớn. Aùp dụng các định luật bảo toàn để giải bài toán va chạm cho ta kết quả nhanh chóng hơn nhiều mà không cần quan tâm đến các quá trình quá độ xảy ra trong khi va chạm.

Nội dung của bài toán va chạm là như sau : biết khối lượng và vận tốc của các vật trước va chạm, ta cần tìm vận tốc của các vật sau va chạm.

Xét hai vật có khối lượng m1 và m2 chuyển động trong mặt phẳng nằm ngang (mặt phẳng xOy) và ngược chiều nhau đến va chạm trực diện với nhau. Vận tốc ban đầu của các vật lần lượt là . Như đã nói ở mục (II.5 ), trong mặt phẳng nằm ngang chúng ta có thể áp dụng định luật bảo toàn động lượng của các vật tham gia va chạm, tức là :

m1+m2= m1+m2                        (1)

trong đó là vận tốc của các vật sau va chạm.

a/ Va chạm hoàn toàn đàn hồi :

Người ta gọi va chạm giữa hai vật là hoàn toàn đàn hồi nếu trong quá trình va chạm không có hiện tượng chuyển một phần động năng của các vật trước va chạm thành nhiệt và công làm biến dạng các vật sau va chạm. Nói cách khác, sau va chạm đàn hồi các quả cầu vẫn có hình dạng như cũ và không hề bị nóng lên.

Lưu ý rằng va chạm xảy ra trong mặt phẳng nằm ngang tức là độ cao so với mặt đất của các quả cầu không thay đổi nên thế năng của chúng không thay đổi trong khi va chạm, vì vậy bảo toàn cơ năng trong trường hợp này chỉ là bảo toàn động năng.

Do vậy, ta có phương trình :

      (2)

Để giải hệ phương trình (1) và (2) ta làm như sau :

Vì các vectơ , , có cùng phương nên ta chuyển phương trình vectơ (1) thành phương trình vô hướng :

m1v10 + m2v20 = m1v1 + m2v2

và biến đổi phương trình này thành :

m1(v10 – v1) = m2(v2 –v20)                         (1’)

Biến đổi (2) thành :

m1(v102 – v12) = m2(v22 – v202)                  (2’)

Chia (2’) cho (1’) ta có :

(v10 + v1 ) = (v2 + v20)

Nhân hai vế của phương trình này với m1 ta có :

m1(v10 + v1) = m1(v2 + v20)                       (3)

Cộng (3) với (1’) ta tìm được vận tốc của vật thứ hai sau va chạm :

v2 =                    (IV.4)

Ta nhận thấy vai trò của hai quả cầu m1 và m2 hoàn toàn tương đương nhau nên trong công thức trên ta chỉ việc tráo các chỉ số 1 và 2 cho nhau thì ta tìm được vận tốc của quả cầu thứ nhất sau va chạm:

v1=                     (IV.5)

Ta xét một trường hợp riêng của biểu thức (IV.4) và (IV.5) :

Giả sử hai quả cầu hoàn toàn giống nhau , tức là m1 = m2. Từ (IV.4) và (IV.5) ta có :

v2 = v10

v1 = v20

nghĩa là hai quả cầu sau va chạm trao đổi vận tốc cho nhau : quả cầu thứ nhất có vận tốc của quả cầu thứ hai trước khi có va chạm và ngược lại.

Hình sau minh họa trường hợp một trong hai quả cầu trước va chạm đứng yên :

Hình bên cho thấy sau va chạm, quả cầu thứ hai có vận tốc v2 = v10 = 0, nghiã là nó đứng yên như quả cầu thứ nhất trước khi va chạm, còn quả cầu thứ nhất sau va chạm lại có vận tốc v1 = v20 nghĩa là nó chuyển động như quả cầu thứ hai trước khi va chạm. Hai quả cầu đã thay đổi vai trò cho nhau. Nếu ma sát ở điểm treo dây rất nhỏ thì các quả cầu sẽ lần lượt lúc đứng yên lúc chuyển động xen kẽ nhau.

 

b) Va chạm mềm:

Người ta gọi va chạm giữa các vật là va chạm mềm nếu sau va chạm hai vật dính liền với nhau thành một vật. Trong va chạm mềm một phần động năng của các quả cầu đã chuyển thành nhiệt và công làm biến dạng các vật sau va chạm. Dĩ nhiên trong va chạm mềm ta không có sự bảo toàn cơ năng của các vật.

Định luật bảo toàn động lượng dẫn đến phương trình :

m1 + m2 = (m1 + m2)

trong đó là vận tốc của vật sau va chạm. Từ đó, ta tính được vận tốc của các vật sau va chạm :

=                         (IV.6)

Ta hãy tính phần động năng tổn hao trong quá trình va chạm :

Động năng của hai vật trước va chạm :

Ko=

Động năng của chúng sau va chạm :

K=(m1+m2)v2=

Phần động năng tổn hao trong quá trình va chạm là :

DK = Ko - K =(v10-v20)2 > 0                (IV.7)

Biểu thức trên chứng tỏ rằng động năng của các quả cầu luôn luôn bị tiêu hao thành nhiệt và công làm biến dạng các vật sau va chạm.

Muốn đập vỡ một viên gạch, tức là muốn chuyển động năng của búa thành năng lượng biến dạng làm vỡ viên gạch thì theo (IV.7) ta cần tăng vận tốc v10 của búa trước khi va chạm, tức là phải đập búa nhanh. Ngược lại, khi đóng đinh ta phải làm giảm phần động năng tiêu hao vì ta muốn chuyển động năng của búa thành động năng của đinh ấn sâu vào gỗ. Muốn vậy, phải tăng khối lượng m1 của búa để đạt được động năng của búa vẫn lớn khi mà vận tốc v10 của búa không lớn , nhờ vậy mà giảm được phần động năng tiêu hao thành nhiệt.

(*) Áp dụng :

Sau đây chúng ta sẽ trình bày một áp dụng của va chạm mềm để xác định vận tốc ban đầu của đầu đạn khi bay ra khỏi nòng súng.

Để xác định vận tốc v10 của viên đạn có khối lượng m1 khi bay ra khỏi nòng súng, người ta bắn viên đạn vào một bao cát có khối lượng m2 đứng yên (v20 = 0). Sau va chạm, viên đạn và bao cát dính vào nhau và có cùng vận tốc là v . Bao cát được treo bằng một thanh kim loại cứng có chiều dài l . Đầu thanh có gắn một lưỡi dao O làm trục quay. Nhờ động năng sau va chạm mà hệ quay đi một góc q , và được nâng lên một độ cao h so với vị trí cân bằng. Tất cả động năng của hệ đã chuyển thành thế năng. Đo góc q , biết m1, m2 và l ta có thể xác định được vận tốc ban đầu v10 của viên đạn khi bay ra khỏi nòng súng. Thật vậy, áp dụng (IV.6) và để ý rằng v20 = 0 ta có :

v=   

Từ đó có thể tính động năng sau va chạm của hệ là :

K=(m1+m2)v2=

Thế năng của hệ ở vị trí được xác định bởi góc q là :

U = (m1 + m2)gh = (m1 + m2)gl(1 - cosq )

Theo định luật bảo toàn cơ năng :

(m1+m2) gl(1 - cosq )=

Dựa vào hệ thức lượng giác :

1 – cosq = 2sin2(q /2)

Ta có thể biến đổi phương trình trên thành :

4glsin2(q /2) = ()2

Từ đó tính được:

v10=2()sin(q /2)

Hệ thống bố trí như trên cho phép ta xác định được vận tốc của viên đạn khi đo góc lệch q , do đó được gọi là con lắc thử đạn.

c/ Va chạm thật giữa các vật:

Thực tế, va chạm giữa các vật không hoàn toàn đàn hồi cũng như không phải là va chạm mềm mà là trường hợp trung gian giữa hai trường hợp trên. Trong quá trình va chạm, một phần động năng của các vật đã chuyển thành nhiệt và công biến dạng mặc dù sau va chạm hai vật không dính liền nhau mà chuyển động với những vận tốc khác nhau.

Từ thời Niutơn, bằng thực nghiệm người ta đã xác định được rằng trong va chạm thật giữa các vật thì tỉ số e của vận tốc tương đối ( tức là hiệu của hai vận tốc ) sau va chạm (v1 - v2) và vận tốc tương đối trước va chạm (v10 – v20) chỉ phụ thuộc vào bản chất của các vật va chạm :

- e =

Tỉ số e gọi là hệ số đàn hồi.

Trong va chạm hoàn toàn đàn hồi , từ biểu thức (3) ta suy ra :

v1 – v2 = - (v10 – v20)

Như vậy, đối với va chạm hoàn toàn đàn hồi thì e = 1. Trong va chạm mềm thì vì sau va chạm hai vật cùng chuyển động cùng với vận tốc v như nhau nên vận tốc tương đối của chúng sau va chạm bằng không, do đó e = 0 . Đối với va chạm của các vật thật thì e có gia trị giữa 0 và 1.

Niutơn đã xác định được với thủy tinh thì e = 15/16 còn đối với sắt thì e = 5/9.

Biết hệ số đàn hồi e , ta có thể xác định được vận tốc sau va chạm của các vật và phần động năng tiêu hao trong va chạm . Thật vậy , từ định nghĩa của hệ số đàn hồi e ở trên và định luật bảo toàn động lượng ta có hệ phương trình :

v1 – v2 = - e(v10 – v20)

m1v1 + m2v2 = m1v10 + m2v20

Muốn giải hệ phương trình này, chúng ta nhân hai vế của phương trình đầu với m2 rồi cộng phương trình thu được với phương trình thứ hai của hệ ta được :

(m1 + m2)v1 = (m1 + m2)v10 – m2(e + 1)(v10-v20)

Từ đó tính được :

v1 = v10 -

Tương tự , ta tìm được :

v2 = v20 -

Phần động năng tiêu hao trong va chạm là :

D K=Ko-K=m1+m2- m1-m2

D K = m1(-)+m2(-)

D K=m1(-)(+)+m2(-)(+)

Từ các biểu thức của v1 và v2 mà ta tìm được ở trên ta có đẳng thức sau :

m1(v10-v1) = -m2(v20 - v2) =(e+1)( v10-v20)

Vậy :

D K=(e+1)( v10-v20)[(v10+v1)- (+)]

Mặt khác :  (v10 + v1) –(v20 + v2) = (v10 – v20)(1 – e)

Cuối cùng: DK=(1 – e2) ( v10-v20)2

Từ biểu thức trên , ta thấy trong va chạm hoàn toàn đàn hồi (e = 1) thì DK = 0, tức là không có sự tổn hao động năng của các quả cầu sau va chạm. Trong va chạm mềm (e = 0) thì biểu thức trên hoàn toàn trùng với biểu thức (IV.7) mà ta đã tính được trước đây.